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ith the advent of nonlinear vec-
tor network analyzers (NVNA), 

new measurement techniques 
have become available for charac-

terizing nonlinear radio-frequency 
(RF) devices and circuits. In particular, the accurate 
measurement of the response of nonlinear circuits to 
periodic modulated and pulsed nonlinear RF excita-
tion is now possible. Furthermore, using advanced 
triggering and multiple  recording techniques, 1) the 
implementation of a real-time (ultra fast) active load-
pull, 2) the measurement of pulsed-RF, pulsed-bias 
signals with reduced desensitization, and 3) the mea-
surement of phase-stable RF signals with very wide 
(gigahertz) modulation bandwidths have been dem-

onstrated. These advanced measurement techniques 
are the subject of this article.

Three major types of NVNAs have been devel-
oped: sampler-based NVNAs, scope-based NVNAs 
and mixer-based NVNAs. Here, we focus on the 
sampler-based NVNAs, which include the original 
microwave transition analyzer (MTA) from Agi-
lent, the large-signal network analyzer (LSNA) [1] 
from Maury Microwaves, and the recently commer-
cialized Superfast WAve Processor (SWAP) from 
Verspecht-Teyssler-DeGroote (VTD), all shown in 
Figure 1. See [2] for a brief history of the develop-
ment of sampler-based NVNA technology. The 
sampler-based NVNAs typically have a smaller 
dynamic range (on the order of 70 dB) but have the 
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 advantage of acquiring periodic continuous-wave 
(CW) and modulated RF signals in a single-measure-
ment record (for example 10 ms for a 100 Hz reso-
lution bandwidth). The phase accuracy is typically 
a fraction of a degree for a multisine with 64 tones 
of equal power [3]. Note that multisine  excitations 
are often used for characterizing devices [4] because 
their periodic nature aligns to the frequency grid of 
sampler-based systems.

The sampler-based NVNA relies on sampling 
down-conversion to acquire, in a single measure-

ment, the amplitude and phase of the fundamental 
and harmonics of the incident and reflected waves 
for periodic RF excitations. The RF signals can also 
be periodically modulated or pulsed. The principle 
of operation of subsampling is that of a stroboscope 
[1]. Subsampling essentially down-converts all the 
RF tones in the measurement bandwidth of the inter-
mediate frequency (IF) receiver. 

Sampling and Broadband Measurements
The sampler-based NVNA can acquire multitone peri-
odic signals with wide RF bandwidth (up to 50 GHz in 
the LSNA) and effectively remap them under appropri-
ate conditions within the bandwidth of its IF receiver 
(10 MHz in Maury’s LSNA and 50 MHz in VTD’s 
SWAP). Once down-converted to IF, the RF tones are 
filtered with a low-pass IF filter and then sampled and 
digitized using analog-to-digital converters (ADCs). 
See “Sampling Down-Conversion in a Sampler-Based 
NVNA” for a more detailed discussion.

In the first commercialized sampler-based 
NVNA, the modulation bandwidth for the RF signals 
acquired was initially limited to twice the IF receiver 
bandwidth, e.g., 20 MHz in the LSNA and 100 MHz 
in the SWAP. It is, however, possible under appro-
priate conditions to further increase the modulation 
bandwidth by a proper selection of the measurement 
parameters of the NVNA, such as the local oscillator 
(LO) sampling frequency and the ADC frequency, 
in such a way that none of the fundamental and 
harmonic tones fold down to the same IF-band fre-
quency during down-conversion. Uncalibrated mea-
surements of RF signals, with gigahertz bandwidth 
were first reported in [5]. Calibrated broadband mea-
surements were next achieved by stitching several 
narrower band measurements [6]. Advanced ADC 
triggering techniques which enable one to acquire, 
in a single measurement, phase-stable broadband 
RF signals were then demonstrated for four tones by 
[7] and for 64 tones by [3] (see Figure 2) both at eight 
times the IF bandwidth of the LSNA receiver. To sta-
bilize the phase, the ADC trigger frequency used for 
starting the measurements needs to be a subharmonic 
of the greatest common divider frequency for all the 
down-converted IF tones of interest [3]. The modified 
architecture required for this measurement is shown 
in Figure S1. The ADC trigger is generated from the 
ADC fractional-N (fracN) synthesizer (a highly pre-
cise and stable single-tone source with programmable 
frequency in the IF band) using a counter.

Pulsed-RF Measurements 
Using Broadband Acquisition
Pulsed-bias, pulsed-RF measurements are becoming 
common practice for the nonlinear characterization of 
microwave transistors that are affected by self-heat-
ing and trapping. Using a pulsed-bias and pulsed-RF 

(a)

(b)

(c)

Figure 1. Three generations of sampler-based nonlinear 
vector network analyzers (NVNAs): (a) the microwave 
transition analyzer (MTA) for measurement with sampling 
down conversion (1991, photo courtesy of Ke Wu, used with 
permission), (b) the large signal network analyzer (LSNA), 
which integrates two MTAs and harmonic phase reference 
calibration (1995, photo copyright Cambridge University 
Publishing, used with permission), and (c) the SWAP, a new 
sampler-based NVNA, which offers a low-cost instrument for 
dedicated large-signal measurements (2009, photo courtesy of 
Jean-Pierre Teyssier, used with permission).
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A simplified architecture for the sampler-based 
NVNA is showed in Figure S1. As in a normal 
network analyzer, two couplers are used to 
separate the incident and reflected waves at ports 
1 and 2. The sampler-based NVNA then relies 
on sampling-down conversion for measuring the 
amplitude and phase of these multiharmonic RF 
signals. Sampling-down conversion is illustrated 
in Figure S2. In the example, a sampling signal 
with a 9-MHz repetition (LO) frequency is used 
to sample a 1 GHz input RF signal with two 
harmonics. In the frequency domain, this sampling 
signal corresponds to a frequency comb with a 
9 MHz tone spacing, which extends, typically, up 
to 50 GHz due to the very short pulse duration. 
In this example the 111th, 222nd, and 333rd 
harmonics of the LO frequency are used to 
down-convert the input RF signal to IF signals at 1, 
2, and 3 MHz, respectively: 

1 GHz tone: 1000 MHz2 111 3 9 MHz5 1 MHz
3 GHz tone: 2000 MHz2 222 3 9 MHz5 2 MHz
3 GHz tone: 3000 MHz2 333 3 9 MHz5 3 MHz.

The RF signals can be pulsed or periodically modulated. 
The LO frequency is then carefully selected so that 
none of the harmonics and sideband frequencies 
overlap, once down-converted to the IF bandwidth of 
the receiver. A one-to-one mapping of the RF tones 
in the IF band is then established, which essentially 
preserves the relative linear phase relation between the 
measured tones independent of the power level, as 
long as any distortion is avoided in the LSNA itself. 

As in a normal network analyzer, a relative phase 
calibration is used to account for the phase shifts, losses 
and leakage exhibited by the couplers of the test set. 
This relative calibration determines the error correction 
matrix up to an arbitrary complex constant Kn for each 
harmonic nv. A power calibration with a power meter at 
each harmonic tone of interest is used next to determine 
the amplitude |Kn|, so that the absolute power level is 
measured for each harmonic. Finally, a harmonic phase 
reference (HPR) is used to measure the relative phase 
between the harmonics and the fundamental in order 
to establish the phase of the correction constant Kn for 
the harmonics (n . 1). See [2] for a more detailed 
discussion of the calibration of the sampler-based NVNA.
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 measurement, the isothermal RF response of a transis-
tor can be obtained and the effect of traps mitigated. 
See [8] for a discussion of the measurement of pulsed-
RF (small-signal) S-parameters with a vector network 
analyzer (VNA). Large-signal pulsed-RF measure-
ments can also be pursued with NVNAs. Note that 
even though traps will not normally respond instan-
taneously to an RF signal, the average trap occupation 

will still depend on the dynamic load-line trajectory 
for large-signal excitations [9] due to cyclostationary 
effects. As was demonstrated in [10], the trap occu-
pation is dependent on the time average (over an RF 
cycle) of the bias-dependent emission and capture 
rates along the periodic load-line trajectory.

An example of a pulsed-bias, pulsed-RF test bed is 
shown in Figure 3. Using an NVNA, a large  fraction of 

Figure S2. Sampling with a sampler-based nonlinear vector network analyzer. A 1 GHz signal with two 
harmonics (2 and 3 GHz) is down converted by sampling with a 9-MHz sampling pulse to an intermediate 
frequency signal at 1 MHz with two harmonics (at 2 and 3 MHz). 
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the RF spectrum of the pulsed-RF signal can be acquired. 
The amplitude and phase acquired around the funda-
mental frequency for such a measurement are shown in 
Figure 4 [11]. The amplitudes take the shape of a sinc 
function. One can verify that 90.3% of the RF power is 
included in the center lobe of the sinc spectrum.

A key issue when measuring pulsed-RF signals is 
the desensitization of the test equipment. The desensi-
tization can be defined as the ratio of the peak power 
of the pulsed-RF signal to the power of the signal actu-
ally measured by the test equipment:

Desensitization 1dB 2

5 10 log 
Peak Power

Average Measured Power
.

The desensitization is a measure of the effective reduc-
tion of the dynamic range of the test equipment. The 
attenuation level in the test equipment should be set 
such that the peak power of the measured signal does 
not exceed the damage level of the test equipment 
front end. Under pulsed operation, the dynamic range 
is therefore reduced by the desensitization:

Pulse Dynamic Range 1dB 2

5CW Dynamic Range 1dB 2  2  Desensitization 1dB 2 .

Note that maintaining a high dynamic range is criti-
cal for detection of weak components (intermodulation 

products, spectral regrowth) of the signal and reduc-
tion of noise corruption.

Relative to the peak power, the average power for a 
pulsed signal is intrinsically reduced by a desensitiza-
tion factor of 2 10 log 3Duty Cycle 4. When measuring 
only the main lobe (90.3% of the average power) with 
the NVNA, the desensitization is then

Desensitization 1dB 2 5 2 10 log 3Duty Cycle 42 30.903 4.

For a pulse duty cycle of 0.3%, this corresponds to 
a desensitization of 25.44 dB. If only the center tone is 
acquired with a conventional network analyzer, the 
desensitization is instead:

Desensitization 1dB 2 5 10 log 
Peak Power

Center Tone Power

 5 2 10 log 3Duty Cycle2 4
 5 2 20 log 3Duty Cycle 4.

This corresponds to a desensitization of 50 dB for 
a duty cycle of 0.3%. It is greatly advantageous to 
acquire and use all the tones in the center lobe to 
avoid degrading the dynamic range of the sampler-
based NVNA. 

With this direct NVNA measurement technique, 
we can use all of the modulated RF tones (ampli-
tudes and phases) acquired for the fundamental 
frequency band and harmonics to calculate the 
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time-response of the device at the center of the RF 
pulses. As an example of the application of pulsed-
RF pulsed-bias measurements, let us consider 
the acquisition of the dynamic RF load-lines of a 

GaN high electron mobility transistor (HEMT) with 
strong memory effects.

First, let us reproduce the CW experiment con-
ducted by [14]. A GaN transistor suffering from strong 
knee walk-out (increasing knee voltage with increas-
ing dc drain bias) is measured using pulsed-IV mea-
surements. The pulsed-IV characteristics for the same 
pulsed gate voltage (vGS5 0 V) are plotted in Figure 
5 for different dc bias points (triangles with VGS5

22.5 V and VDS varying from 5, 7.5, and 12.5 V). The RF 
dynamic load-lines measured by an LSNA at 2 GHz for 
the same bias points are also shown. As the bias drain 

voltage VDS  increases, the RF 
drain current swing is seen 
to reduce and only reach the 
maximum current predicted 
by the pulsed IV characteris-
tics with the same dc biasing 
point. Note that the RF gate 
voltage swing is from 25 V to 
0 V in all these experiments.

Let us inspect now the 
response of the device under 
pulsed-bias, pulsed-RF exci-
tation. The device is resting 
at VGS 5 0 and VDS 5 0 and is 
briefly pulsed to the various 
bias points (blue triangles on 
Figure 6). A 1% duty rate with 
1 µs pulse duration is used for 
the bias voltage. An RF excita-
tion with 0.3% duty rate and 
0.3 µs pulse duration is then 
applied at the transistor input 
such that the gate voltage 
swing is again from 25 V to 0 
V. The resulting RF dynamic 
load-lines [15] obtained from 
pulsed-bias/RF measurements 
are compared with those of the 
CW-RF case in Figure 6. In con-
trast to the CW-RF load-lines 
featuring a reduced current 
swing, the pulsed-bias, pulsed-
RF dynamic load-lines exhibit 
a much larger current swing. 
Using the current swing as a 
metric, the IV knee walk-out is 
actually effectively suppressed. 
In this GaN HEMT on a sap-
phire substrate, the knee walk-
out actually originates from 
self-heating. This can be veri-
fied since the undesirable IV 
knee walk-out, which is effec-
tively suppressed in the pulsed-
bias, pulsed-RF  measurements, 

Figure 4. Measured sinc spectrum associated with pulsed-RF signals measured at the 
fundamental frequency: (a) black stems are for the amplitudes and red squares for the 
phases. 90% of the RF power is located in the center lobe (From [13] with permission, 
©2011 Cambridge University Press).
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It is possible, under appropriate 
conditions, to further increase the 
modulation bandwidth by a proper 
selection of the measurement 
parameters of the NVNA.
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is reintroduced if the substrate tempera ture is set to the 
surface temperature of the device in  CW  operation [15].

Pulsed-RF Measurements 
Using Multiple Recording Techniques
In the broadband measurement method discussed in 
the previous section, all of the tones within the main 
lobe of the signal (90% of the power) were acquired, 
enabling one to partially compensate for the loss of 
dynamic range by decreasing the desensitization by 
approximately half (in decibels). However, this method 
is still limited in practice to 
duty cycles equal or above 
0.3%. As the number of tones 
increases for decreasing duty 
cycles, the peak RF power is 
spread among more tones, 
owing to the lower repetition 
frequency, and so the power 
level of the individual tones 
will eventually fall below the 
minimum detectable power 
level of the sampler-based 
NVNA, assuming the peak RF 
power is kept the same.

Recently, an alternative 
time-domain technique devel-
oped at XLIM [16]–[18] was 
reported for the sampler-
based NVNA that allows for 
very low duty-cycles without 
any reduction in the dynamic 
range. This time-domain 
technique relies on the mul-
tiple recording capability of 
modern ADCs to control the 
acquisition of the sample 
data. A dedicated pulse control board was developed 
at XLIM to control the ADC acquisition such that the 
sampled, down-converted RF data from the sampler-
based NVNA are only acquired at times where the RF 
pulse is applied. The principle of operation is illus-
trated in Figure 7. In this example, an RF signal with 
three harmonics is down-converted by subsampling 
to the IF signal represented by the red dots. Multiple 
recording is used to acquire this IF signal in four dif-
ferent records. In this example, the records are sepa-
rated by one IF period. In practice, a large number of 
IF periods can be used without any spectral leakage 
to achieve very small duty-cycles, e.g., 0.01%. Also, to 
sample a narrow region of the RF/IV pulse, a small 
number of samples (one or two) is typically used. 

Since the average power of the signal acquired is 
now the peak power of the pulsed signal, this modi-
fied LSNA data acquisition does not, theoretically, 
exhibit any degradation in dynamic range for decreas-
ing pulse duty cycles.
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Figure 7. Multiple recordings of a RF signal with three 
harmonics in four records with one IF period skipped. 
The blue circles represent the multiple recording samples 
and the red dots represent the IF signal being acquired. 
Smaller duty cycles can be obtained by skipping multiple 
IF periods. In pulsed-bias, pulsed-RF measurements, the 
input RF signal and dc bias are only applied during the 
recording period (blue circles) (from [13] with permission, 
©2011 Cambridge University Press).
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With the advent of NVNAs, new 
measurement techniques have 
become available for characterizing 
nonlinear RF devices and circuits. 
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This is demonstrated in 
Figure 8, where CW and 
pulsed-RF waves measured 
are compared. The resulting 
0 dB desensitization is, how-
ever, achieved at the price of 
a longer measurement time 
and requires additional trig-
gering hardware for the syn-
chronization of the ADC data 
acquisition (Figure S1). Also, a 
relatively large latency 500 ns 
is observed in the LSNA IF fil-
ter/amplifier which currently 
prevents the measurement of 
RF pulses below 700 ns. New 
sampler-based NVNAs will 
remove this limitation. For 
example, in the SWAP, the 
latency is reduced to 50 ns.

Large-signal measurements 
can be conducted with the 
multiple recording scheme 
with increased time resolu-
tion (LSNA 40 ns, SWAP: 10 
ns). For example, as is shown 

Figure 9, the time variation of the power gain of a 
GaN HEMT power amplifier (PA) has been measured 
using an LSNA shortly after an RF pulse at 2 GHz is 
applied to reveal the memory effects of the PA [18]. In 
this experiment, the drain voltage was pulsed to 25 V 
and a high input power level was used to drive the 
transistor into its nonlinear regime. The gain decrease 
was found to depend upon the level of the gain com-
pression (6 and 10 dB) and the initial dc bias condition 
(0 or 40 V).

In addition, pulsed-RF small-signal measure-
ments can be conducted using multiple recordings. 
The method was recently used with the cold-field 
effect transistor (FET) technique to extract the device 
parasitics as a function of dc biasing conditions in a 
transistor exhibiting  memory effects [19].

Real-Time Active-Load-Pull 
with the Sampler-Based NVNA
Passive load-pull and active load-pull measure-
ments are traditionally used by microwave engi-
neers to design power amplifiers. See [8] for an 
excellent discussion on this topic and related power 
transistor characterization. Recently, a real-time 
active-load-pull technique using the NVNA has 
been introduced [20] which has the potential for 
drastically reducing the PA design cycle. Figure 10 
shows a conceptual implementation for the first 
harmonic. An RF signal with an offset frequency 
Df5Dv / 12p 2  from the frequency v0 of the input RF 
signal is injected at the output.
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The resulting load reflection coefficient GL 1v0, t 2  
becomes effectively modulated in time and can be 
evaluated from the modulated incident A2 1v0, t 2  and 
reflected B2 1v0, t 2   waves measured at port 2:

GL 1v0, t 2 ;
A2 1v0, t 2
B2 1v0, t 2

5 a
M

m52M
a2 1v01mDv 2ejmDvt^

a
M

m52M
b2 1v01mDv 2ejmDvt, 

where a2 1v01mDv 2  and b2 1v01mDv 2  are, respec-
tively, the incident and reflected waves at the side-
band tones v01mDv around the fundamental 
frequency v0. The resulting loci of the modulated 
reflection coefficients are shown on Figure 11 for a 
65 nm metal-oxide semiconductor FET (MOSFET) 
for several real-time active-load-pull measurements 
with different output power levels. Real-time active 
load-pull permits one to rapidly map the Smith 
Chart in a few 10 ms measurements. 

The resulting constant output power contours for 
this 65 nm MOSFET are shown in Figure 12 for the 
fundamental frequency. One of the potential draw-
backs of real-time active load-pull is that the imped-
ance sweeping may trigger memory effects (trapping 
and self-heating) in the transistors. The memory 
effects can be detected by performing measurements 
with different modulation frequencies. The accuracy 
of the real-time active load-pull measurements can 
also be verified by using a conventional active load-
pull around the optimum point predicted by the real-
time active load-pull. Alternately, we shall see in the 
following that real-time active load-pull can be com-
bined with pulsed-RF measurements to reduce, if not 
eliminate, memory effects.

Multiharmonic Real-Time Active Load-Pull
The real-time active-load-pull technique which was 
first demonstrated for the fundamental frequency 
can also be extended to higher-harmonic load-pull 
measurements for the interactive design of high-
efficiency, class F (see [21]) power amplifiers [22], 
[23]. A test-bed implementation for the fundamen-
tal and the second and third harmonics is shown in 
Figure 13. An example of second-harmonic real-time 
active load-pull results is shown in Figure 14 for the 
 optimization of the output power of a negative resis-
tance oscillator [24].

Device Modeling Using 
Real-Time Active-Load-Pull
Returning to the 65 nm complimentary MOSFET 
(CMOSFET), it is interesting to note that within a 
single LSNA measurement of 10 ms (100 Hz resolu-
tion frequency), the dynamic load-line experienced 
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A dedicated pulse control board was 
developed at XLIM to control the ADC 
acquisition such that the sampled, 
down-converted RF data from the 
sampler-based NVNA are only 
acquired at times where the RF 
pulse is applied.
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by the transistor for a single output power level can 
map a wide region of the IV characteristics as is 
 demonstrated in Figure 15. Note that the inset figure 
in Figure 15 shows the loci of the output reflection 
coefficient during real-time active-load-pull. Using 
such large-signal measurements, the direct extrac-
tion of the nonlinear device model (IV characteristic 
and device charges) has also been reported [25]–[27]. 
A similar effect was also reported using multisine 
excitations [3], [28] and used for the development of 
behavioral models. 

Pulsed-RF Real-Time Active-Load-Pull
As we have seen, the multiple recording technique 
allows the acquisition of periodic pulsed RF signals 
with zero desensitization because the pulsed signal is 
only measured for a short duration when the RF power 
is applied. Multiple recordings can also be used to 
acquire signals which are both pulsed and modulated 
[28]. As a result, ultrafast real-time active load-pull 
can now also be used to characterize the nonlinear 
response of transistors driven by pulsed-RF, pulsed-
bias signals. 

As an example, results of a pulsed-RF, real-time 
active-load-pull for an on-wafer GaN transistor are 
shown in Figure 16. Both the output power and input 
power are swept in the real-time active-load-pull mea-
surement to generate the 1dB gain compression contour 
and associated P1dB output power shown in Figure 
16(a) and (b), respectively. Note that the peak gain at 

1dB compression occurs in 
an unstable region, whereas 
the peak P1dB output power 
takes place in a stable region. 
Note also that for each input 
power level, 14 different 
output power levels were 
measured. The P1dB calcula-
tions were then based on 16 
different input power levels. 
Overall, 14 3 165 224 mea-
surements were performed by 
the LSNA. For CW load-pull 
measurements, the acquisition 
time for each measurement is 
typically of 10 ms. The limita-
tion for these CW measure-
ments becomes, then, the 
signal processing done by the 
computer that is managing the 
measurements, rather than the 

sampler-based NVNA measurements themselves. For 
pulsed-RF measurements, the measurement duration 
will be longer and depend on the duty cycle. Neverthe-
less, the resulting pulsed-RF real-time active-load-pull 
can greatly reduce the measurement time and accelerate 
the design of pulsed-RF power amplifiers compared to 
the pulsed-RF active load-pull technique [30]. 

Conclusion
In this article, we have reviewed various advanced 
broadband and pulsed measurement techniques which 
have been developed for sampler-based NVNAs. We 
have seen that the RF modulation capability of sampler-
based NVNAs was not limited by the IF bandwidth of 
its receiver. Two methods for pulsed-RF,  pulsed-bias 
measurements were also presented. The method 
based on the concept of multiple recordings enables 
one to achieve pulsed-RF measurements with 0 dB 
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 desensitization (no dynamic range degradation) even 
for very low duty cycles. Real-time active load-pull 
techniques for the rapid design of microwave power 
amplifiers were also presented. Finally, it was demon-
strated that pulsed-RF real-time active-load-pull could 
also be performed for the rapid design of pulsed-RF 
PAs or the characterization of transistors with reduced 
memory effects. These various measurements with 
sampler-based NVNAs were made possible thanks to 
the use of advanced ADC triggering techniques. 

Due to its inherently wide input bandwidth and 
its speed of acquisition, the sampler-based NVNA 
exhibits a smaller dynamic range (typically around 
70dB) for CW measurements when compared to high-
performance mixer-based NVNAs.  Nevertheless, 
with recently commercialized solutions (VTD, 
Mesuro), oscilloscope-based and sampler-based 
NVNAs may offer a lower-cost alternative for large-
signal measurements when a dedicated nonlinear 
test bed is desired.
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Figure 15. The load-line experienced by a complementary metal-oxide semiconductor field-effect transistor (CMOSFET) 
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providing maximum output power in Figure 12.
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