Ball-in-Tube Linearization Example

Lab 5: Nonlinear Control for a Flexible Joint

ECE 758: Control System Implementation Laboratory

Abstract

One of the laboratory design challenges is the balls-in-tubes experiment. In it, there are four tubes that each have a ball riding in them that is pushed up and down the tube by thrust generated by a fan. Here, we generate a simple model of a ball in a tube and show how feedback linearization allows for the application of linear control (e.g., PID control).

First, under a lift-coefficient hypothesis, assume that the thrust is proportional to the square of the voltage applied to the motor. That is,

$$
\begin{equation*}
T=C v_{\mathrm{in}}^{2} \tag{1}
\end{equation*}
$$

where T is the thrust generated by a van driven by voltage v_{in}. So long as the output impedance of the amplifier generated $v_{\text {in }}$ is sufficiently low, we can assume that electrical resistance effects are negligible.

Next, use an overly simple point-mass model for the ball, as shown in Figure 1.

Figure 1: Simple point-mass model of a ball. Thrust T drives ball of mass m (weight W) with upward acceleration a.
In this model, the ball of mass m is driven upward by thrust T and pulled downward by gravity with weight $W=m g$. So the net upward force on the ball is $T-W$, which is equal to $m a$ by Newton's second law, where a is the magnitude of the ball's upward acceleration. Hence, the ball's motion is modeled by

$$
\begin{equation*}
\overbrace{m a}^{F}=\overbrace{C v_{\mathrm{in}}^{2}}^{T}-\overbrace{m g}^{W}, \tag{2}
\end{equation*}
$$

but $a=\dot{v}=\ddot{x}$, where x is the ball's relative position. Using position x as an output, Equation (2) is

$$
\left\{\begin{align*}
\dot{x} & =v \tag{3}\\
\dot{v} & =\frac{C}{m} v_{\mathrm{in}}^{2}-g
\end{align*}\right.
$$

For simplicity, force $v_{\text {in }} \geq 0$ and use $v_{\text {in }}=\sqrt{u}$ where $u \geq 0$. Hence, Equation (3) becomes

$$
\begin{cases}\dot{x}=v \tag{4}\\ \dot{v}=-g+\frac{C}{m} u & \text { i.e., } \left.\alpha(x, v) \triangleq-g \quad \text { and } \quad \beta(x, v) \triangleq \frac{C}{m}\right)\end{cases}
$$

This system is already in normal form. Hence, without any coordinate transformation, it is immediately clear that this second-order system has relative degree 2 when position x is used as an output. So the control

$$
u=\frac{m}{C}(w+g) \quad\left(\text { i.e., } u=\frac{w-\alpha(x, v)}{\beta(x, v)}\right)
$$

with $w \geq-g$ renders Equation (4) into the double-integrator LTI system

$$
\left\{\begin{align*}
\dot{x} & =v \tag{5}\\
\dot{v} & =w
\end{align*}\right.
$$

The parameter g is known $(9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s})$, the parameter m can be measured (e.g., with a scale), and the parameter C can be estimated from system data (e.g., by analyzing the acceleration of the ball when input u is constant). So the control

$$
\begin{equation*}
v_{\mathrm{in}}=\sqrt{\frac{m}{C}(w+g)} \quad \text { with } \quad w \geq-g \tag{6}
\end{equation*}
$$

linearizes the $w-x$ system (and needs no feedback in this simple case). Of course, the point-mass and lift-coefficient approximations may be overly naïve for this system.

