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Abstract

One of the laboratory design challenges is the balls-in-tubes experiment. In it, there are four tubes
that each have a ball riding in them that is pushed up and down the tube by thrust generated by a fan.
Here, we generate a simple model of a ball in a tube and show how feedback linearization allows for the
application of linear control (e.g., PID control).

First, under a lift-coefficient hypothesis, assume that the thrust is proportional to the square of the
voltage applied to the motor. That is,

T = Cv2

in
(1)

where T is the thrust generated by a van driven by voltage vin. So long as the output impedance of the
amplifier generated vin is sufficiently low, we can assume that electrical resistance effects are negligible.

Next, use an overly simple point-mass model for the ball, as shown in Figure 1.

T = Cv2

in

W = mg

F = T − W = Cv2

in
− mg

F = ma

a

Figure 1: Simple point-mass model of a ball. Thrust T drives ball of mass m (weight W )
with upward acceleration a.

In this model, the ball of mass m is driven upward by thrust T and pulled downward by gravity with weight
W = mg. So the net upward force on the ball is T − W , which is equal to ma by Newton’s second law,
where a is the magnitude of the ball’s upward acceleration. Hence, the ball’s motion is modeled by

F
︷︸︸︷
ma =

T
︷︸︸︷

Cv2

in
−

W
︷︸︸︷
mg , (2)

but a = v̇ = ẍ, where x is the ball’s relative position. Using position x as an output, Equation (2) is
{

ẋ = v

v̇ = C

m
v2

in
− g.

(3)

For simplicity, force vin ≥ 0 and use vin =
√

u where u ≥ 0. Hence, Equation (3) becomes
{

ẋ = v

v̇ = −g + C

m
u

(i.e., α(x, v) , −g and β(x, v) ,
C

m
) (4)

This system is already in normal form. Hence, without any coordinate transformation, it is immediately
clear that this second-order system has relative degree 2 when position x is used as an output. So the control

u =
m

C
(w + g) (i.e., u =

w − α(x, v)

β(x, v)
)

with w ≥ −g renders Equation (4) into the double-integrator LTI system
{

ẋ = v

v̇ = w.
(5)

The parameter g is known (9.8 m/s/s), the parameter m can be measured (e.g., with a scale), and the
parameter C can be estimated from system data (e.g., by analyzing the acceleration of the ball when input
u is constant). So the control

vin =

√
m

C
(w + g) with w ≥ −g (6)

linearizes the w–x system (and needs no feedback in this simple case). Of course, the point-mass and

lift-coefficient approximations may be overly näıve for this system.

Copyright c© 2007–2009 by Theodore P. Pavlic

Creative Commons Attribution-Noncommercial 3.0 License Page 1 of 1

http://www.ece.osu.edu/~passino/designchallenges.pdf
http://www.ece.osu.edu/~passino/tubesmanual.pdf
http://en.wikipedia.org/wiki/Lift_coefficient
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

