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Abstract— Monte Carlo simulations are used to compute
average direct surface thermal emission and reflected atmo-
spheric radiation using the “active” small slope approximation
of Voronovich. The surfaces considered are realizations of an
ocean-like spectrum, and contain features ranging from 64 to 0.5
electromagnetic wavelengths. The parallel computing approach of
the study is described, and results are compared with predictions
from the commonly applied “two-scale” theory of sea emission.
Results show a reasonable level of agreement in a small height
surface case, which degrades as the surface height is increased.

I. INTRODUCTION

Interest in the computation of microwave polarimetric ther-
mal emission from the sea surface has recently increased due
to the greater availability of satellite data from the WindSAT
mission [1]. Accurate and efficient “forward models” of sea
emission are required in order to perform “physically based”
retrievals of sea surface wind vector through an optimization
process. A theory of sea emission can be developed based
on existing theories of scattering from the sea surface in
combination with Kirchhoff’s law of thermal emission. The
“two-scale” theory of scattering from the sea surface extended
in [2] to compute polarimetric sea brightnesses has become
the most commonly applied method. The “passive” small-
slope approximation (SSA) [3]-[5] is an alternate approach
based on use of the small perturbation method (SPM) for
computing surface scattering coefficients. Although the SPM is
a series in surface height for scattering coefficients, a fortuitous
cancellation occurs when computing emission that results in a
small slope theory of surface brightness temperatures [3].

A final theory of scattering from the sea surface is the
“active” small-slope approximation of Voronovich [6]. The
active SSA expresses surface scattering cross sections as a
series in surface “quasi-slope”; at present, two terms in the
scattered field series are known for three dimensional scatter-
ing problems with penetrable surfaces. When both terms in
the SSA series are included, it has been shown that the active
SSA reproduces the basic form of the active two-scale model
in appropriate limits, without requiring choice of a “cutoff”
wavenumber to divide long and short surface length scales as
in the two-scale theory [7]. The active SSA is attractive for this
reason, but computation of the second series term is extremely
expensive compared to the two-scale model. For this reason,

no previous studies have reported on use of the active SSA
for computing sea surface emission through Kirchhoff’s Law.

Because all of these models are approximate theories of
sea emission, establishing the accuracy of each is difficult.
Although comparison with numerically exact theories of sea
emission [8]-[9] could be applied for such an assessment, such
methods have limited accuracy as well due to computational
issues and have exponentially larger computational require-
ments. An incomplete assessment can be obtained through
intercomparison of approximate theories so that the level of
agreement can be observed. Note that results from all of these
models are dependent on the forms used for the sea surface
spectrum as well as the sea water permittivity.

In this paper, the active SSA is applied to compute direct
sea surface emission and reflected atmospheric emission. The
formulation of the method is described in the next section,
and the numerical procedure developed for this computation
is discussed in Section III. Section IV presents results and
comparisons with predictions of the two-scale and passive SSA
models.

II. ACTIVE SSA FORMULATION

The computation of surface brightness temperatures through
Kirchhoff’s Law requires an integration over surface bistatic
scattering cross sections. When two terms in the SSA field
series are used, the resulting bistatic cross sections contain
three terms, involving the power in each SSA term and the
correlation between fields in the two terms. These expressions
can be analytically averaged to obtain results in terms of a two-
dimensional integration over space that contains the surface
correlation function [10]. The second and third terms in the
series also include inner integrations over the surface spectrum
[10]. When these cross section expressions are applied in
Kirchhoff’s Law, the final result for surface brightness tem-
peratures is a 6- or 8-fold integration depending on whether
two or three series terms are retained. Although such scattering
coefficient expressions have been evaluated for surfaces with
a Gaussian correlation function [10], use of a multi-scale sea
surface model further complicates the computations.

Due to this complexity, an alternate approach was pursued
based on a Monte Carlo simulation of the SSA using periodic
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surfaces, as in [11]. Because fields, rather than powers, are
computed in this approach, the scattering coefficient integra-
tions required are only 4 dimensional for a single surface
realization. Furthermore, a highly efficient algorithm can be
developed based on use of the fast-Fourier-transform (FFT),
as will be described later. While repeated computations over
multiple realizations are required, averages will be shown to
converge to an acceptable accuracy with a moderate number of
surface realizations. The use of periodic surfaces also results in
a discretized scattered field (i.e. the “Floquet modes”), so that
the Kirchhoff’s Law integration over scattered angles becomes
discretized.

Use of a Monte Carlo simulation with deterministic sur-
faces, however, limits the range of surface scales that can be
considered, as surface profiles must be discretized into a finite
set of points. Because resolution of the “Bragg” portion of
the sea spectrum is important for brightness computations,
the surface must be sampled on a sub-wavelength scale,
and the range of “large-scale” surface features that can be
resolved becomes limited by computational requirements. The
discretization of scattered fields is also an issue, although
when surface periods large compared to wavelength are used,
the discretization becomes sufficiently fine to approximate
scattering from a continuous surface.

A. Basic formulation

Consider a deterministic periodic surface profile, z =
f(x, y), with periods Px and Py in the x and y directions
respectively, which separates free space (permittivity ε0, per-
meability µ0) for z > f(x, y) from a homogeneous non-
magnetic dielectric medium with permittivity εd = εε0 for
z < f(x, y). This periodic surface can also be expressed in
terms of its Fourier series coefficients,

f(x, y) =

∞
∑

n=−∞

∞
∑

m−∞

exp

(

i
2πnx

Px

)

exp

(

i
2πmy

Py

)

hn,m

(1)
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1
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1

Py

∫ Px

0
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0
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exp

(

−i
2πnx
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)

exp

(

−i
2πmy

Py

)

f(x, y). (2)

Henceforth it will be assumed that all sums are from −∞ to
∞ unless otherwise notated.

Consider an incident electromagnetic plane wave which
illuminates this periodic surface from the free space region,
with an electric field given by

E
i = êi exp (iki · r) (3)

where êi represents the polarization vector of the incident
electric field,

ki = k0k̂i = x̂kxi + ŷkyi − ẑkzi (4)

represents the propagation vector of the incident plane wave
with wavenumber k0 = 2π/λ, and

r = x̂x + ŷy + ẑz (5)

is a position vector in Cartesian space. Note an exp (−iωt)
time convention is assumed.

Under the Rayleigh hypothesis, the scattered field consists
of a sum of up-going plane waves (or “Floquet modes”) which
can be written as

E
s =

∑

m

∑

n

[

ĥn,m
s αn,m + v̂n,m

s βn,m

]

exp (ikn,m
s · r)

(6)

Here α and β are the unknown complex amplitudes of the
scattered Floquet modes in horizontal and vertical polariza-
tions, respectively. Scattered plane wave propagation vectors
are defined by the Floquet theorem as

k
n,m
s = x̂kxn + ŷkym + ẑkznm (7)

where

kxn = kxi +
2πn

Px

(8)

kym = kyi +
2πm

Py

(9)

kρnm =
√

k2
xn + k2

ym (10)

kznm =
√

k2
0 − k2

ρnm (11)

kz1nm =
√

k2
0ε − k2

ρnm (12)

Modes for which kρnm becomes greater than k0 or k1 have
kznm and kz1nm respectively defined so that attenuation
occurs as fields propagate away from the surface boundary.
The definition of kz1nm above involves the vertical component
of the propagation vector below the interface, and is required
in evaluating the SPM kernels described below. Because only
propagating Floquet modes contribute to the surface bright-
ness, and because scattered modes above the surface become
evanescent when kρnm > k0, it is clear in the above equations
that a larger number of propagating scattered modes ((n,m)
pairs) is obtained as the surface periods become larger.

Orthogonal horizontal and vertical polarization vectors for
the incident and scattered fields are defined as

ĥi = x̂
kyi

kρi

− ŷ
kxi

kρi

(13)

ĥn,m
s = x̂

kym

kρnm

− ŷ
kxn

kρnm

(14)

v̂i = x̂
kxikzi

k0kρi

+ ŷ
kyikzi

k0kρi

+ ẑ
kρi

k0
(15)

v̂n,m
s = −x̂

kxnkznm

k0kρnm

− ŷ
kymkznm

k0kρnm

+ ẑ
kρnm

k0
(16)

B. SSA fields

The SSA field series for Floquet mode complex amplitudes
γn,m = αn,m or βn,m has the form γn,m = γ

(1)
n,m+γ

(2)
n,m+ · · ·,
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with

γ(1)
n,m =

i g
(1)
spm

kdz Px Py

∫ Px

0

dx

∫ Py

0

dy e−ikd·r

(17)

γ(2)
n,m =

i

2 kdz Px Py

∫ Px

0

dx

∫ Py

0

dy e−ikd·r

∑

n′

∑

m′

ei(kxn′x+kym′y)hn′,m′gssa (kxn′ , kym′)

(18)

as the first two series terms. Here

kd = x̂kdx + ŷkdy + ẑkdz (19)

= x̂ (kxn − kxi) + ŷ (kym − kxi) + ẑ (kznm + kzi)

(20)

and z = f(x, y) is used in the integration. The term g
(1)
spm is the

first order polarization coefficient from the SPM solution, as
defined in [12], and is applied for the appropriate polarization
when computing γ

(1)
n,m. The term gssa is the SSA kernel

function, and is defined as

gssa(kxn′ , kym′) = g(2)
spm(kxi + kxn′ , kyi + kym′) +

g(2)
spm(kxn − kxn′ , kym − kym′) +

ikdzg
(1)
spm (21)

where g
(2)
spm is the second order polarization coefficient from

the SPM solution, as defined in [12], and again is applied for
the appropriate polarization when computing γ

(2)
n,m. Finally, the

primed wave number quantities are defined as

kxn′ =
2πn′

Px

(22)

kym′ =
2πm′

Py

(23)

The above formulation applies for both horizontally and
vertically polarized incident fields. However, in computing
polarimetric brightness temperatures, γ values for horizontal
and vertical incidence must be considered simultaneously. For
this reason, it is convenient to introduce a new notation for
Floquet mode complex amplitudes as follows, with s = 1 and
2,

fhh,(s)
n,m = α(s)

n,m (24)

fvh,(s)
n,m = β(s)

n,m (25)

with a horizontally polarized incident field, and

fhv,(s)
n,m = α(s)

n,m (26)

fvv,(s)
n,m = β(s)

n,m (27)

with a vertically polarized incident field.

C. Power formulation

Following [12], the fraction of incident power reflected into
one polarization of a single Floquet mode can be expressed as

Re

{

kznm

kzi

}

∣

∣fqr
n,m

∣

∣

2
, (28)

where qr refers to the polarization superscript. The “Real”
operator on the left hand side serves to exclude evanescent
modes, and will be neglected in what follows assuming that
only propagating modes are considered. Given the SSA series
solution for fn,m, the corresponding fractional power is
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Collecting terms of identical order yields
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(30)

The total power reflected in a particular polarization can be
obtained by summing the above over all propagating scattered
modes. Separating this into three terms yields

P2 =
∑

n

∑

m

kznm

kzi

∣

∣

∣
fqr,(1)
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∣
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∣

2

(31)
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∑
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m
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(32)
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From the above, it is clear that there are three contributions
to the scattered fractional power that result from the first and
second SSA field series terms. The first term will be labeled as
“SSA2” in what follows (since it is a first order term squared),
while the sum of the first and second terms (P2 + P3) will
be labeled “SSA3”, and the sum of all three terms (P2 +
P3 + P4) “SSA4”. Note that the final term properly includes
contributions from both the second and third SSA field series
terms; however the third SSA field series term is not known at
present for penetrable surfaces, and is therefore not considered
in this study. Due to this limitation, comparisons of SSA4 and
SSA3 power results can provide only incomplete information
on convergence of the SSA series.

D. Brightness temperatures

Applying Kirchhoff’s Law for the computation of polari-
metric brightness temperatures [2],[13], and using a procedure
similar to that of the previous section yields:

T
(2)
h = Ts − Ts
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∣

∣
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U (2) = Ts

∑

n

∑

m
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at second order, with

T
(3)
h = −Ts

∑
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m
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}
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at third order, and fourth order results identical to those of
equations (34) to (37) except that f

qr,(2)
n,m quantities are used

in place of f
qr,(1)
n,m , and the constant Ts term is neglected in

the linear channels. Here Th and Tv refer to brightness tem-
peratures in the horizontally and vertically polarized channels,
respectively, while U and V refer to the real and imaginary
parts of the correlations between horizontal and vertical re-
ceived fields, respectively. The U and V brightnesses will also
be referred to as the third and fourth Stokes brightnesses in
what follows. Ts indicates the physical temperature of the sea
surface, assumed to be 285 K throughout the remainder of this
study. The terms “SSA2”, “SSA3”, and “SSA4” again will be
used to refer to partial sums of the three brightness terms.

Typical models of the sea surface spectrum include only
constant and second azimuthal harmonic variations in azimuth.
It has been shown [4] that the resulting brightness temperatures
are of the form









Th

Tv

U
V









≈









Th0 + Th2 cos 2φi

Tv0 + Tv2 cos 2φi

U2 sin 2φi

V2 sin 2φi









(42)

where φi denotes the azimuth angle between the radiometer
look direction and wind direction. Although a first azimuthal
harmonic variation is also observed in experimental data,
simple Gaussian random process models of the sea surface

cannot capture the associated up/down wind asymmetries of
the surface. Because a Gaussian random process model of the
sea surface is used in this study, only the zeroth (i.e. Th0

and Tv0) and second (i.e. Th2, Tv2, U2, and V2) azimuthal
harmonics are of interest. The second azimuthal harmonics
typically capture brightness variations due to any up/cross
wind asymmetries of the surface.

E. Reflected atmospheric power

In addition to the computation of direct surface emis-
sion, prediction of reflection of the downwelling atmospheric
brightness is also of interest [14]-[15]. Because downwelling
atmospheric brightness is incident upon the surface from the
entire upper hemisphere, the observed reflected atmospheric
brightness is obtained by integrating over angle the down-
welling brightness times surface bistatic scattering coefficients
so that reflection into the radiometer observation direction is
achieved. The resulting expressions are very similar to those of
equations (34)-(41), with a few modifications. In particular, the
constant Ts terms in the T

(2)
h and T

(2)
v equations are removed,

the factor Ts multiplying all sums over n and m is replaced
by −1, and the factor kznm/kzi inside all sums is replaced by
(kznm/kzi)Tatm(θ). Here Tatm(θ) refers to the downwelling
atmospheric brightness at zenith angle

θ = cos−1(kznm/k0) (43)

In the results of Section IV, a simple one-layer model of
downwelling atmospheric brightness is used:

Tatm(θ) = TA (1 − exp [−τ sec θ]) (44)

Here TA is set to 285 K, and τ represents the zenith opacity of
the atmosphere in Nepers. Results will be shown for τ values
ranging from 0.01 to 0.5; specular atmospheric brightnesses
(i.e. Tatm(θi)) then range from 4.9 to 165.8 K with θi = 55◦.

A simple approximation of reflected downwelling atmo-
spheric effects can be developed by modeling the downwelling
brightness as independent of angle

Tatm(θ) ≈ Tatm(θi) (45)

In this case, the reflected atmosphere equations become very
similar to the direct surface emission equations, with the
exception that Ts is replaced by −Tatm(θi) and the constant
Ts terms in the linear channels are omitted. Because surface
emitted second azimuthal harmonics are not affected by the
constant Ts term in the linear channels, the simple approxi-
mation indicates that reflected atmospheric brightness should
produce second azimuthal harmonics of opposite sign to those
in direct surface emission. Results in Section IV will examine
the accuracy of this prediction when the more complete model
of the downwelling atmospheric brightness of equation (44) is
used.

III. COMPUTATIONAL ISSUES

Computation of the active SSA brightness for a single sur-
face realization requires evaluation of equations (17) and (18)
to determine the polarimetric Floquet mode amplitudes f

qr,(s)
n,m
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for the four polarimetric quantities of equations (24)-(27), for
s = 1 and 2, and for all propagating Floquet modes n,m. Once
these quantities are known, equations (34)-(41) are used to find
the brightnesses, and the modified versions described in the
previous section are used to determine reflected atmospheric
brightnesses. The entire process is repeated for the multiple
realizations in the Monte Carlo simulation. When surface
periods large compared to the electromagnetic wavelength are
used (as is desirable for simulating multi-scale sea surfaces),
the number of propagating Floquet modes can become large,
making efficient computations necessary.

When the integrations over the surface profile are dis-
cretized, equations (17) and (18) require computation of 2
and 4-fold sums, respectively; an examination of the inner
sum in equation (18) shows it to have the form of a Fourier
transform, so that the fast-Fourier-transform (FFT) algorithm
can be used for efficient computations. This FFT operation
involves the SSA kernel function for a particular mode n,m
and the surface Fourier coefficients. Because evaluation of the
SSA kernel function itself requires substantial CPU time, it is
highly desirable to store this function in memory as multiple
surface realizations are considered. An algorithm with an outer
loop over Floquet modes and an inner loop over surface
realizations is thus more efficient; surface realizations can be
re-generated as needed by restoring an initial seed value to the
random number generator used in surface generation.

Even when these methods are used, the large number of
Floquet modes involved still makes computations problem-
atic for a single processor when large surface periods are
considered. A parallel implementation of the algorithm was
developed to overcome these limitations. In this algorithm, the
set of Floquet modes is divided among 16 processors; again
the surfaces considered by each processor are identical through
control of the random number generator seed value. To capture
brightness variations with azimuthal angle, computations were
performed for azimuth observation angles of 0, 30, 60, and 90
degrees; the results were then used to extract the zeroth and
second azimuthal harmonic terms when necessary. The final
parallel simulation used 64 processors, composed of groups
of 16 processors used for each of the four azimuthal angles
considered.

To facilitate atmospheric reflection computations for multi-
ple τ values, the parallel algorithm was developed to output
the polarimetric amplitudes f

qr,(s)
n,m for each surface realization;

although the resulting files are large, reflected atmospheric
brightnesses can be obtained for multiple τ values in a post-
processing evaluation of equations (34)-(41). The stored set
of f

qr,(s)
n,m values can be applied in other studies of bistatic

scattering from rough surfaces as well.

A. Specific cases considered

The results considered here used surfaces of 64λ by 64λ,
where λ is the electromagnetic wavelength, sampled into
256 by 256 points. This surface size was selected as a
compromise between the computational resources available
and the desire to simulate as large an ocean-like surface as
possible. Surface length scales shorter than λ/2 were also

removed in the simulation, in order to avoid aliasing issues
in the SSA computation. When considering true sea surfaces,
64λ at microwave frequencies captures only a small portion
of the “long-wave” region; however this portion should be
sufficient to produce some of the long-wave “tilting” effects
predicted by the two-scale model, so that the basis of this
two-scale approximation can be investigated. Simulations were
also performed for a second set of 64λ by 64λ surfaces, in
which surface length scales larger than 4λ were additionally
removed. In this case, large scale “tilting” effects should be
minimized, and total surface height will be small compared
to the wavelength. This set of surfaces will be termed the
“small height” case, while the former set will be termed the
“large height” case in what follows. The use of 64λ surface
periods resulted in approximately 12800 propagating Floquet
modes for the cases of interest; each processor in the parallel
simulations thus considered approximately 800 Floquet modes.

The surfaces used were Gaussian random processes gener-
ated using the “Durden-Vesecky” spectrum described in [2]
and [16]. This spectrum was selected because it has been
applied in numerous studies of ocean-like surface thermal
emission, although of course there are numerous sea spectral
models that could be considered, none of which has been
validated as a complete description of true sea surfaces. The
spectrum parameters a0 = 0.008, d = 0.4789, and b0 = a0

[2] were used. A fixed wind speed of U19.5 = 10 m/sec is
considered in the results of Section IV; note the limitation
of surface length to 64λ results in a much smaller surface
rms height than a true sea surface at 10 m/sec windspeed.
For this reason, investigating variations with wind speed in
this simulation is not realistic. A fixed observation angle of
55 degrees (similar to many satellite radiometers) is used,
along with a frequency of 19.35 GHz and a sea water relative
permittivity of 29.41 + i35.98.

The results of Section IV were obtained using supercom-
puting resources at the Maui High Performance Computing
Center (MHPCC) [17]. A typical 64 processor run utilized 10
surface realizations; the computing time required was on the
order of 2 CPU hours for each node. A total of 100 realizations
were included in computing the final averages shown, with
brightness results showing standard deviations typically less
than 0.12 K.

IV. RESULTS

A. Direct surface emission

Figure 1 examines direct surface emission predictions in
the “small height” surface case from SSA2, SSA3, and SSA4.
Variations with azimuthal angle in the four polarimetric quan-
tities are illustrated in the four sub-plots. Results show a
significant change between SSA2 and SSA3 predictions even
in this small-height case, and a much smaller change from
SSA3 to SSA4. Note the fourth order contribution to direct
surface emission presented in [18] was incorrectly computed
and underestimated; the plots shown correct this error. The
SSA2 theory dramatically over-predicts the U brightness, and
produces an incorrect sign in the azimuthal variation of the
horizontal brightness. Average values of the linear brightnesses
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also change significantly from SSA2 to SSA4. Similar trends
with even larger changes are observed for the large height
case in Figure 2. These results demonstrate that use of at
least 2 SSA field series terms is critical for predicting surface
polarimetric brightnesses; this might be expected given the
fact that the second order SPM kernel (here part of gssa)
must be included in computing rough surface brightnesses
in the SPM theory in order to obtain a realistic prediction.
The reasonable agreement between SSA4 and SSA3 results
suggests that SSA3 may be sufficient for many cases, but
again the absence of the third SSA field series term in the
computations makes the present SSA4 prediction incomplete.
Note the current SSA4 prediction results always in a decrease
in horizontal and vertical brightness temperatures from SSA3
due to the absence of the correlation term involving the third
field series correction. Due to the incompleteness of the SSA4
computations, only SSA3 results are used in the following
discussions.

Figures 3 and 4 compare direct surface emitted SSA3
brightnesses with predictions of the two-scale theory of [2],
for the small and large height cases respectively. Two-scale
model predictions (analytically averaged) were computed for
continuous surfaces, but using identical parameters to the SSA
simulation, including truncation of surface length scales to
a maximum of 64λ. In the small height case of Figure 3,
the absence of any large-scale waves makes the two-scale
model identical to the passive SSA theory, and no “cutoff”
wavenumber issues are involved. Good agreement between
the two predictions is observed, and brightnesses are all
within 0.1K. A slight underprediction of two-scale model U
brightnesses by the SSA theory is observed, as well as a slight
underprediction of the horizontal channel second azimuthal
harmonic. The large azimuthal harmonic variations obtained
by considering short scale sea waves only is directly related to
the strong azimuthal asymmetry of short waves in the Durden-
Vesecky spectrum.

The large height case of Figure 4 requires choice of a cutoff
wavenumber kd in evaluating two-scale model predictions.
Portions of the sea spectrum below this wavenumber are
classified as “large scale” and influence the long-wave slope
variance only. Choices of kd = k0/2, k0/4, k0/5, and
k0/10 were evaluated: two-scale model predictions with the
k0/4, k0/5, and k0/10 choices are illustrated in the Figure.
In addition results from the passive SSA theory (labeled
“SPM”) are included; this is essentially using the two-scale
model with a kd value of zero. Results show the choice
of cutoff wavenumber to have a significant impact on two-
scale model predictions in the linear polarizations, with no
choice yielding a match to active SSA3 predictions for both
linear channels. All cutoff wavenumber choices underpredict
horizontal brightnesses, while vertical polarization is matched
well only by the k0/5 choice. Two-scale model predictions
of U and V brightnesses are more insensitive to the cutoff
wavenumber, and here significantly overpredict U results of
the active SSA3 model. In order to examine the difference
between maximum U brightness predictions, SSA results at 45
degrees azimuthal angle were also computed, and are included
in the plots. Overall, these results make choice of an “ideal”

cutoff wavenumber difficult, although the k0/10 choice can be
classified as uninteresting as it yields predictions very similar
to the passive SSA theory. Results for the k0/2 choice show
even larger differences from the active SSA values.

B. Reflected atmospheric brightness

Because reflected atmospheric brightnesses were computed
as both a function of azimuth angle and the zenith attenuation
τ , it is most convenient to plot reflected brightness zeroth
and second azimuthal harmonics versus τ . Figure 5 illustrates
two-scale model predictions (kd = k0/5) of reflected zeroth
azmithual harmonics for the small and large height surfaces
in both linear polarizations. The large range of atmospheric
brightnesses obtained as τ is varied makes plotting differences
between model predictions most effective. Figures 6 and 7
illustrate SSA3 reflected atmospheric zeroth harmonics minus
predictions of the two-scale model with kd = k0/5, in the
small and large height cases, respectively. Differences between
the two models are found to be within 0.2 K over the
entire range of attenuation values for the small height case,
again showing a high degree of agreement between the two
theories. Differences in the large surface height case are up to
approximately 2 K, with the SSA3 model under- and slightly
over- predicting the two-scale theory in horizontal and vertical
polarizations, respectively. Results for the two-scale theory
with kd = k0/4 and the SPM model are also illustrated in Fig-
ure 7; the kd = k0/4 choice shows a sometimes similar level
of disagreement to k0/5 as the SSA3, although the signs of
the difference are opposite for horizontal polarization. Again
choice of an “ideal” two-scale model cutoff wavenumber is
not possible from these results, although a disagreement of
only ≈ 2 K out of atmospheric reflected brightnesses ranging
up to 165K can be considered very good agreement between
these theories.

SPM predictions in Figure 7 are more similar to SSA3
at low opacities, but more similar to the two-scale model
in horizontal polarization at higher attenuation values. SPM
reflected brightnesses were computed using equations similar
to those of the SSA, but based on the first order SPM solution
for non-specular bistatic scattering cross sections and the
second order SPM solution for specular reflection. The degree
of agreement between the SSA3 and SPM results is remarkable
in the large surface height case, because, unlike the case of
direct surface emission, there is no guarantee of a “small
slope” behavior for reflected atmosphere computations from
the SPM.

Figures 8 and 9 plot second azimuthal harmonics of the
reflected brightnesses in the small and large height cases.
Results from the simple approximate method based on the
two-scale model (kd = k0/5) described in Section II-E
for estimating atmospheric contributions to second azimuthal
harmonics are also included in these Figures, and labeled
“approx”. Again the small height case shows an excellent
agreement between SSA3 and two-scale predictions (choice
of kd is not required for this case), with differences remaining
within 0.1 K. The simple approximation in Figure 8 provides
reasonable predictions of U and V brightnesses, but has large
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errors in the linear brightness channels. In particular, the sign
of linear channel second azimuthal harmonics is incorrectly
predicted by this approximation. An unusual feature in the
H channel second harmonic is observed in Figure 8 when
the generally decreasing trend is replaced by an increase at
large τ values. A complete physical explanation of this effect
is difficult at present, but it is not unreasonable given the
inclusion of both atmospheric and surface scattering cross
section variations with angle. Note the curves were computed
at the discrete values indicated by the symbols, so that a
smoother curve would result if finer sampling were used.

Results in Figure 9 for the large height case show two-scale
and SSA3 predictions to be similar in most respects. Again no
choice of cutoff wavenumber produces a match between two-
scale and SSA3 results over all polarizations, especically for
the small values of U second harmonics predicted by SSA3.
Note that second harmonic contributions of the reflected atmo-
spheric brightness are comparable at large attenuation values to
those of the direct surface emission. The simple approximation
again yields poor estimation of linear channel results. The op-
posite sign in linear polarization channels between predictions
of all models and those of the simple approximation indicates
that atmospheric contributions increase, rather than decrease,
total brightness azimuthal variations for these channels.

V. CONCLUSIONS

The results of this study show that the active SSA, two-
scale, and passive SSA models produce qualitatively similar
predictions of polarimetric thermal emission and atmospheric
reflection from the sea surfaces considered. The high level
of agreement between the methods in the small height case
serves to validate the procedure used for computing active
SSA predictions. The level of error observed in the larger
height case is significant, so that questions remain regarding
the absolute accuracy of the three theories. Two-scale and SSA
predictions showed the largest discrepancies in prediction of
direct surface emitted U brightness, where the SSA predicted
much smaller values, as well as the zeroth harmonic of the
horizontal brightness, where the SSA predicted larger values.
The large change in the predicted U brightness of direct
surface emission from the SSA2 to SSA3 and SSA4 models
suggests that convergence of this prediction should not be
necessarily assumed. No choice of cutoff wavenumber in the
two-scale model was found to produce a complete agreement
with the active SSA predictions. Of course, these conclusions
likely depend on the particular sea surface simulated, as well
as the particular observation angle (55◦) used.

Although the active SSA does not require use of a cutoff
wavenumber, the overall accuracy of the theory for scattering
cross sections is not established, particularly as grazing scat-
tering angles are approached in vertical polarization. Further
studies will be required to address the absolute accuracy of
these theories, and as numerically exact predictions become
more available progress should be possible. A related project
devoted to improving the number of series terms available in
the passive SSA theory [19]-[20] may also contribute to resolv-
ing accuracy questions. It should be noted that uncertainties

in the sea surface spectrum, sea water permittivity, and other
geophysical parameters may result in errors that dominate
those from the electromagnetic model when applied to satellite
data; model “tuning” based on matching satellite data will
be required to develop effective spectrum and permittivity
models. The basic qualitative agreement between the three
electromagnetic methods indicates that such tuning based on
any of the three methods should produce at least a reasonably
accurate physically based forward model.
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Fig. 1. Comparison of SSA2, SSA3, and SSA4 predictions for small height surface emission
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Fig. 3. Comparison of active SSA3 and two-scale predictions, small height case
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