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The small-perturbation method (SPM) for rough surface scattering, originally derived by Rice [Commun. Pure
Appl. Math. 4, 361 (1951)], has been applied extensively to problems in optics, remote sensing, and propaga-
tion. Typical uses of the theory involve only the first- or second-order scattered fields in surface height, owing
to increasing complexity of the SPM equations as order increases. The SPM equations are solved in a sys-
tematic manner that permits third order in surface-height terms to be determined apparently for the first time
for scattering from a dielectric surface rough in two directions. Sample results for both periodic and non-
periodic surfaces show that third-order field terms can contribute to fourth-order scattered power and also to
a third-order specular-reflection coefficient correction for surfaces with nonvanishing bispectra. The latter
case is of particular interest in passive remote sensing of the ocean, since these third-order terms contribute to
the first prediction of a first azimuthal harmonic of ocean brightness temperatures. © 1999 Optical Society of
America [S0740-3232(99)01911-0]

OCIS code: 290.5880.
1. INTRODUCTION
Scattering from rough surfaces, both deterministic or sto-
chastic and periodic or nonperiodic, is of interest in many
fields of applied optics and electromagnetics. Although a
general solution does not exist, numerous approximate
analytical methods have been developed and have been
successful for analyzing scattering from certain classes of
surfaces. One of the most widely used methods is the
small-perturbation method (SPM) originally developed in
Ref. 1. The SPM approximation requires that surface
heights be small in terms of the electromagnetic wave-
length, and a perturbation series in surface height is used
to determine scattered fields at a specified order in sur-
face height. The method has been studied and applied
extensively2–18 to problems in optics, remote sensing, and
propagation and yields the Bragg scatter phenomenon of
rough-surface scattering when only first-order terms are
considered. Scattered fields up to second order in surface
height were considered in the original paper,1 but solu-
tions increase in complexity as order increases, so third-
order terms for a general three-dimensional dielectric
surface scattering problem have apparently not been pre-
viously presented. Second-order terms have only rarely
been applied, and then primarily only to study the SPM
correction to the flat-surface reflection coefficient5,13,14 or
cross-polarized backscatter from a Gaussian random pro-
cess surface.2

Although third-order scattered fields from the SPM are
expected to be complex and to require a numerical inte-
gration for their evaluation, recent developments in the
study of thermal emission from rough surfaces have mo-
tivated new interest in higher-order SPM solutions. In
particular, consideration of thermal emission from the
ocean surface has shown some limitations of a model
based on the second-order SPM alone.13,16 The problems
0740-3232/99/112720-17$15.00 ©
stem from the fact that second-order emission predictions
are expressed entirely in terms of the surface power spec-
trum, which by definition is a symmetric quantity with re-
spect to a 180° shift in azimuth. However, measure-
ments of ocean surface emission clearly show first-
harmonic azimuthal variations (i.e., having variations
with respect to a 180° shift in azimuth). A third-order
description of the surface-height profile is necessary to
capture these properties, and consequently a third-order
SPM model for surface emission is necessary if a consis-
tent first-harmonic prediction is to be obtained. Further
motivation for use of the SPM in studying surface emis-
sion comes from Ref. 15, which shows that the SPM pro-
duces an expansion in surface slope, not surface height,
for the total power reflected or emitted from a rough sur-
face.

In this paper, SPM scattered fields are derived to third
order in surface height, and expressions for scattered and
transmitted powers are developed for deterministic and
stochastic, periodic and nonperiodic surfaces. The origi-
nal formulation of Ref. 1 is followed, in which the Ray-
leigh hypothesis is applied to determine reflected and
transmitted Floquet-mode amplitudes scattered from a
periodic surface. Scattering cross sections per unit area
for a nonperiodic surface are obtained following Refs. 1
and 2 in the limit as the surface periods approach infinity.
Although alternative SPM studies have begun with the
nonperiodic-surface case and have avoided the Rayleigh
hypothesis,7,9 in all comparisons made to date it has been
shown that these approaches yield identical results. Use
of the Rayleigh hypothesis can be qualitatively justified
by realizing that it should hold under the same conditions
for which the SPM is applicable, so an SPM derivation us-
ing the Rayleigh hypothesis should be valid. Further
discussions on use of Rayleigh hypothesis can be found in
Ref. 12.
1999 Optical Society of America
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Use of the Rayleigh hypothesis with a periodic surface
simplifies the analysis considerably, and a systematic
procedure for solving the SPM equations at any order re-
sults. The resulting equations can be implemented on a
computer to permit numerical solution of the SPM equa-
tions to arbitrary order, but this procedure does not yield
the insight that is available from an analytical solution.
Analytical results are presented for scattered and trans-
mitted fields to third order, and the systematic nature of
the procedure permits higher-order terms to be found
without extensive additional effort. Although SPM field
solutions to second order are available in the literature,
solutions at each order are revisited to illustrate the de-
velopment and application of the new systematic solution.

Section 2 presents the basic formulation of the prob-
lem, and field solutions at zeroth through third order are
considered in Sections 3–6. Reflected and transmitted
powers are discussed in Section 7, and some example re-
sults illustrate higher-order SPM contributions in Section
8. Conclusions are presented in Section 9.

2. FORMULATION
Consider a deterministic periodic surface profile, z
5 f(x, y), with periods Px and Py in the x and y direc-
tions respectively, that separates free space (permittivity
e0 , permeability m0) for z . f(x, y) from a homogeneous
nonmagnetic dielectric medium with permittivity ed
5 ee0 for z , f(x, y). This periodic surface can also be
expressed in terms of its Fourier series coefficients,
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Denoting the operator in Eq. (2) as F, that is,
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it can be shown for N an integer greater than 1 that
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These relationships will be useful in considering higher-
order terms in the SPM equations.

Consider an incident electromagnetic plane wave that
illuminates this periodic surface from the free-space re-
gion, with electric and magnetic fields given by

Ei 5 ê i exp~iki • r !, (9)

Hi 5
k̂ i 3 ê i

h0
exp~iki • r!, (10)

where ê i represents the polarization vector of the incident
electric field,

ki 5 k0k̂ i 5 x̂kxi 1 ŷkyi 2 ẑkzi (11)

represents the propagation vector of the incident plane
wave with wave number k0 5 2p/l,

r 5 x̂x 1 ŷy 1 ẑz (12)

is a position vector in Cartesian space, and h0 5 Am0 /e0
is the impedance of free space. Note that an exp(2ivt)
time convention is assumed.

Under the Rayleigh hypothesis, the scattered field con-
sists of a sum of upgoing plane waves (or Floquet modes),
which can be written as
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while transmitted fields consist only of downgoing plane
waves, which can be written as
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where h1 5 h0 /Ae is the impedance of the lower medium
and a, b, g, and d are the unknown complex amplitudes of
the scattered and transmitted Floquet modes. Scattered
and transmitted plane-wave propagation vectors are de-
fined by the Floquet theorem as

ks
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Modes for which krnm becomes greater than k0 or k1 have
kznm and kz1nm , respectively, defined so that attenuation
occurs as fields propagate away from the surface bound-
ary. Orthogonal horizontal and vertical polarization vec-
tors for the incident, scattered, and transmitted fields are
defined as
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kxi

kri
, (24)

ĥs
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where k1 5 k0Ae is the wave number in the lower me-
dium.

Boundary conditions on the interface specify that tan-
gential electric and magnetic fields must be continuous:
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since a vector normal to the surface can be written as ẑ
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5 2ẑ 3 Ei 1 ] f 3 Ei 1 ] f 3 Es 2 ] f 3 Et, (32)
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Equations (32) and (33) are evaluated on the surface
boundary, where z 5 f(x, y). Substituting in the Ray-
leigh hypothesis fields (13)–(16) and considering only the
x and y components of the above equations, two two-
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At this point, a small height expansion is used by expanding the exponentials in Eqs. (34) and (35) in power series:
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Note that when N 5 0, terms involving N 2 1 are not in-
cluded.

These equations hold in the space (i.e., x –y) domain.
Defining the right-hand sides of Eqs. (38) and (39) (which
by definition have only x and y components) as SE

(N)(x, y)
and SH

(N)(x, y), respectively, the equations are
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where the (n8, m8) index of the F operators has been
dropped for convenience. Since SE

(N) and SH
(N) depend

only on solutions of order less than N and on the known
incident field, the above equations represent the unknown
field amplitudes at order N in terms of known quantities.
These equations can be easily implemented on a computer
through use of the fast Fourier transform for the F opera-
tor, permitting solution of the SPM equations to arbitrary
order. However, only analytical solutions are considered
in this paper.

3. ZEROTH-ORDER SOLUTION
The solution at zeroth order is particularly simple since
the sums over l in the definition of SE

(N) and SH
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specularly reflected and transmitted plane waves. Field
amplitude results are
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To simplify the solution at higher than zeroth order,

these zeroth order field solutions can be combined with
the incident fields to produce a new l 5 0 term in SE
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and SH
(N) . Contributions from these new terms to field
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coefficients at order N can then be computed following Eqs. (44)–(47) and are found to be
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for a horizontally polarized incident field, where

R1h 5 GH~kzi!
N 1 ~2kzi!

N 2 ~1 1 GH!~2kz1i!
N, (62)

R2h 5 GH~kzi!
N 2 ~2kzi!

N 1
kz1i

kzi
~1 1 GH!~2kz1i!

N, (63)

R3h 5 2
kri

k0
~~2kzi!

N21 1 GH~kzi!
N21 2 ~1 1 GH!~2kz1i!

N21!, (64)

and the (N, 0) notation refers to the fact that the above quantities are the new l 5 0 term contributions to the field
amplitudes at order N. Again in Eqs. (58)–(61) the indices (n8, m8) have been dropped after the F operators for conve-
nience, and a new notation for sine and cosine functions has been introduced:

ci,n8 5
kxikxn8 1 kyikym8

krikrn8m8

, (65)

si,n8 5
kxikym8 2 kyikxn8

krikrn8m8

. (66)

This notation will be generalized and used throughout the paper: The first subscript in the cn1 ,n2
or sn1 ,n2

functions
refers to the subscript to be applied to the first kxn1

quantity, and the second subscript refers to the subscript type to be

applied to the quantity multiplying the first kxn1
. Note that the kr terms in the denominator also contain the appropri-

ate subscripts.
For a vertically polarized incident field,

an8,m8
~N, 0 !

5
iN

N! S 2k0

kzn8m8 1 kz1n8m8
D F2F $zN%si,n8S kzikz1n8m8

k0
2 R1v 1 R2vD

1
kz1n8m8

k0
X kym8

krn8m8

F H ]f

]x
zN21J 2

kxn8

krn8m8

F H ]f

]y
zN21J C~2iN !R3vG , (67)
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bn8,m8
~N, 0 !

5
iN

N! S k0

ekzn8m8 1 kz1n8m8
D F2F $zN%ci,n8S ekzi

k0
R1v 1

kz1n8m8
k0

R2vD
1 eX kym8

krn8m8
F H ]f

]y
zN21J 1

kxn8
krn8m8

F H ]f
]x

zN21J C~2iN !R3vG , (68)

gn8,m8
~N, 0 !

5
iN

N! S k0

kzn8m8 1 kz1n8m8
D F2F $zN%si,n8S kzikzn8m8

k0
2 R1v 2 R2vD

1
kzn8m8

k0
X kym8

krn8m8

F H ]f

]x
zN21J 2

kxn8

krn8m8

F H ]f

]y
zN21J C~2iN !R3vG , (69)

d n8,m8
~N, 0 !

5
iN

N! S k1

ekzn8m8 1 kz1n8m8
D F2F $zN%ci,n8S kzi

k0
R1v 2

kzn8m8

k0
R2vD

1 X kym8

krn8m8

F H ]f

]y
zN21J 1

kxn8

krn8m8

F H ]f

]x
zN21J C~2iN !R3vG , (70)
where

R1v 5 GV~kzi!
N 2 ~2kzi!

N 1
kz1i

ekzi
~1 1 GV!~2kz1i!

N,

(71)

R2v 5 GV~kzi!
N 1 ~2kzi!

N 2 ~1 1 GV!~2kz1i!
N, (72)

R3v 5
kri

k0
F ~2kzi!

N21 1 GV~kzi!
N21

2
1 1 GV

e
~2kz1i!

N21G . (73)

Equations (6)–(8) with indices n8 and m8 can be applied
to simplify the F operators once the order N is specified.

4. FIRST-ORDER SOLUTION
Substituting N 5 1 into Eqs. (44)–(47) shows that knowl-
edge of SE

(1) and SH
(1) is required. Examination of Eqs.

(38)–(39) reveals that the an8,m8
(N, 0) through d n8,m8

(N, 0) terms de-
scribed above are sufficient to determine field amplitudes
at first order, and all terms are found to be directly pro-
portional to hn8,m8 . A general form for first-order solu-
tions is

zn8,m8
~1 !

5 hn8,m8gz
~1 !~kxn8 , kym8!, (74)

where z 5 a, b, g, or d and gz
(1) is a corresponding func-

tion. Solutions for a horizontally polarized incident field
are

ga
~1 ! 5

22ikzi~k0
2 2 k1

2!

~kzn8m8 1 kz1n8m8!~kzi 1 kz1i!
ci,n8 , (75)

gb
~1 ! 5

22ikzi~k0
2 2 k1

2!

~ekzn8m8 1 kz1n8m8!~kzi 1 kz1i!
S kz1n8m8

k0
D si,n8 ,

(76)

gg
~1 ! 5 ga

~1 ! , (77)
gd
~1 ! 5 2gb

~1 !S kzn8m8k1

kz1n8m8k0
D , (78)

and

ga
~1 ! 5

22ikzi~k0
2 2 k1

2!

~kzn8m8 1 kz1n8m8!~ekzi 1 kz1i!
S kz1i

k0
D si,n8 ,

(79)

gb
~1 ! 5

22ikzi~k0
2 2 k1

2!

~ekzn8m8 1 kz1n8m8!~ekzi 1 kz1i!

3 S ekrikrn8m8

k0
2 2

kz1ikz1n8m8

k0
2 ci,n8D , (80)

gg
~1 ! 5 ga

~1 ! , (81)

gd
~1 ! 5

22ikzi~k0
2 2 k1

2!Ae

~ekzn8m8 1 kz1n8m8!~ekzi 1 kz1i!

3 S krikrn8m8

k0
2 1

kz1ikzn8m8

k0
2 ci,n8D , (82)

for a vertically polarized incident field. These results il-
lustrate the ‘‘Bragg scatter’’ phenomenon of first-order
perturbation theory, since scattered fields at a particular
angle [i.e., (n8, m8)] are directly proportional to the am-
plitude of a particular surface Fourier component.

5. SECOND-ORDER SOLUTION
For N 5 2, SE

(2) and SH
(2) are required and contain the l

5 0 contributions described above and contributions
from an l 5 1 term. Recognizing that the l . 0 terms at
any order N consist of the product of two functions of
space [i.e., z (N2l) and the sums over m and n in Eqs. (38)
and (39)], the convolution theorem can be applied to de-
termine the l . 0 term contributions to a (N) through
d (N). The general equations that result are
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an8,m8
~N, r !

5
2k0

kzn8m8 1 kz1n8m8
X2(

l51

N21 iN2l

~N 2 l !! (m (
n

F $zN2l%~n8 2 n, m8 2 m !

3 H cn,n8F2an,m
~l ! ~kznm!N2lS kz1n8m8 1 kznm

k0
D 1 gn,m

~l ! ~2kz1nm!N2lS kz1n8m8 2 kz1nm

k0
D G

1 sn,n8Fbn,m
~l ! ~kznm!N2lS k0

2 1 kz1n8m8kznm

k0
2 D 1 d n,m

~l ! ~2kz1nm!N2lS 2k1
2 1 kz1n8m8kz1nm

k1k0
D G J

1 (
l51

N21 iN2l21

~N 2 l 2 1 !! (m (
n

krnm

k0
H F kym8

krn8m8

F H ]f

]x
zN2l21J ~n8 2 n, m8 2 m !

2
kxn8

krn8m8

F H ]f

]y
zN2l21J ~n8 2 n, m8 2 m !G S kz1n8m8

k0
D Fbn,m

~l ! ~kznm!N2l21 2
k0

k1
d n,m

~l ! ~2kz1nm!N2l21G
2 F kym8

krn8m8

F H ]f

]y
zN2l21J ~n8 2 n, m8 2 m ! 1

kxn8

krn8m8

F H ]f

]x
zN2l21J ~n8 2 n, m8 2 m !G

3 @an,m
~l ! ~kznm!N2l21 2 gn,m

~l ! ~2kz1nm!N2l21#JC, (83)

bn8,m8
~N, r !

5
k0

ekzn8m8 1 kz1n8m8

X2(
l51

N21 iN21

~N 2 l !! (m (
n

F $zN21%~n8 2 n, m8 2 m !

3 H sn,n8Fan,m
~l ! ~kznm!N2lS k1

2 1 kz1n8m8kznm

k0
2 D 1 gn,m

~l ! ~2kz1nm!N2lS 2k1
2 1 kz1n8m8kz1nm

k0
2 D G

1 cn,n8Fbn,m
~l ! ~kznm!N2lS ekznm 1 kz1n8m8

k0
D 1 d n,m

~l ! ~2kz1nm!N2lS e
kz1nm 2 kz1n8m8

k1
D G J

1 (
l51

N21 iN2l21

~N 2 l 2 1 !! (m (
n

krnm

k0
HF kym8

krn8m8

F H ]f

]x
zN2l21J ~n8 2 n, m8 2 m !

2
kxn8

krn8m8

F H ]f

]y
zN2l21J ~n8 2 n, m8 2 m !G kz1n8m8

k0
@an,m

~l ! ~kznm!N2l21 2 gn,m
~l ! ~2kz1nm!N2l21#

1 F kym8

krn8m8

F H ]f

]y
zN2l21J ~n8 2 n,m8 2 m ! 1

kxn8

krn8m8

F H ]f

]x
zN2l21J ~n8 2 n, m8 2 m !G

3 eFbn,m
~l ! ~kznm!N2l21 2

k0

k1
d n,m

~l ! ~2kz1nm!N2l21G J C, (84)

gn8,m8
~N, r !

5
k0

kzn8m8 1 kz1n8m8

X2(
l51

N21 iN2l

~N 2 l !! (m (
n

F $zN2l%~n8 2 n,m8 2 m !

3 H cn,n8Fan,m
~l ! ~kznm!N2lS kznm 2 kzn8m8

k0
D 1 gn,m

~l ! ~2kz1nm!N2lS kzn8m8 1 kz1nm

k0
D G

1 sn,n8Fbn,m
~l ! ~kznm!N2lS 2k0

2 1 kzn8m8kznm

k0
2 D 1 d n,m

~l ! ~2kz1nm!N2lS k1
2 1 kzn8m8kz1nm

k1k0
D G J

1 (
l51

N21 iN2l21

~N 2 l 2 1 !! (m (
n

krnm

k0
HF kym8

krn8m8

F H ]f

]x
zN2l21J ~n8 2 n, m8 2 m !

2
kxn8

krn8m8

F H ]f

]y
zN2l21J ~n8 2 n, m8 2 m !G S kzn8m8

k0
D Fbn,m

~l ! ~kznm!N2l21 2
k0

k1
d n,m

~l ! ~2kz1nm!N2l21G
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1 F kym8
krn8m8

F H ]f
]y

zN2l21J ~n8 2 n, m8 2 m ! 1
kxn8

krn8m8
F H ]f

]x
zN2l21J ~n8 2 n, m8 2 m !G

3 @an,m
~l ! ~kznm!N2l21 2 gn,m

~l ! ~2kz1nm!N2l21#JC, (85)

d n8,m8
~N, r !

5
k1

ekzn8m8 1 kz1n8m8

X2(
l51

N21 iN2l

~N 2 l !! (m (
n

F $zN2l%~n8 2 n, m8 2 m !

3 H sn,n8Fan,m
~l ! ~kznm!N2lS k0

2 2 kzn8m8kznm

k0
2 D 2 gn,m

~l ! ~2kz1nm!N2lS k0
2 1 kzn8m8kz1nm

k0
2 D G

1 cn,n8Fbn,m
~l ! ~kznm!N2lS kznm 2 kzn8m8

k0
D 1 d n,m

~l ! ~2kz1nm!N2lS kz1nm 1 ekzn8m8

k1
D G J

1 (
l51

N21 iN2l21

~N 2 l 2 1 !! (m (
n

krnm

k0
HF kym8

krn8m8

F H ]f

]x
zN2l21J ~n8 2 n, m8 2 m !

2
kxn8

krn8m8

F H ]f

]y
zN2l21J ~n8 2 n, m8 2 m !G S 2

kzn8m8

k0
D @an,m

~l ! ~kznm!N2l21 2 gn,m
~l ! ~2kz1nm!N2l21#

1 F kym8

krn8m8

F H ]f

]y
zN2l21J ~n8 2 n, m8 2 m ! 1

kxn8

krn8m8

F H ]f

]x
zN2l21J ~n8 2 n, m8 2 m !G

3 Fbn,m
~l ! ~kznm!N2l21 2

k0

k1
d n,m

~l ! ~2kz1nm!N2l21G J C, (86)

where the (N, r) notation refers to the fact that these are the contributions from the remaining l . 0 terms to the field
amplitudes at order N. Equations (83)–(86) hold for both horizontally and vertically polarized incident fields. The sum
of a (N, 0) through d (N, 0) from Eqs. (58)–(70) for the incident field and l 5 0 terms with a (N, r) through d (N, r) from Eqs.
(83)–(86) for the l . 0 terms therefore completes the solution for the unknown fields a (N) through d (N). The systematic
nature of this procedure makes determination of unknown field amplitudes possible up to third or higher order.

Applying the procedure yields solutions for second-order fields, which can be written as

zn8,m8
~2 !

5 (
m

(
n

hn82n,m82mhn,mgz
~2 !~kxn8 , kym8 , kxn , kym! (87)

where z 5 a, b, g, or d and gz
(2) is a corresponding function. For a horizontally polarized incident field,

ga
~2 ! 5

22kzi~k0
2 2 k1

2!

~kzn8m8 1 kz1n8m8!~kzi 1 kz1i!
F cn,n8cn,i~k1nm 1 kz1n8m8! 1 sn,n8sn,i~kz1n8m8 1 k2nm! 1

cn8,i

2
~kz1i 2 kz1n8m8!G ,

(88)

gb
~2 ! 5

22kzi~k0
2 2 k1

2!

~ekzn8m8 1 kz1n8m8!~kzi 1 kz1i!
F sn,n8cn,iS ek0 1

kz1n8m8

k0
k1nmD 2 cn,n8sn,iS ek0 1

kz1n8m8

k0
k2nmD

1 sn,i

ekrn8m8

k0
k3nm 1

sn8,i

2 S ek0 2
kz1n8m8

k0
kz1iD G , (89)

gg
~2 ! 5

22kzi~k0
2 2 k1

2!

~kzn8m8 1 kz1n8m8!~kzi 1 kz1i!
F cn,n8cn,i~k1nm 2 kzn8m8! 1 sn,n8sn,i~2kzn8m8 1 k2nm! 1

cn8,i

2
~kz1i 1 kzn8m8!G ,

(90)

gd
~2 ! 5

22kzi~k0
2 2 k1

2!Ae

~ekzn8m8 1 kz1n8m8!~kzi 1 kz1i!
Fsn,n8cn,iS k0 2

kzn8m8
k0

k1nmD 2 cn,n8sn,iS k0 2
kzn8m8

k0
k2nmD 1 sn,i

krn8m8
k0

k3nm

1
sn8,i

2 S k0 1
kzn8m8

k0
kz1iD G , (91)

where

k1nm 5 kznm 2 kz1nm , (92)
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k2nm 5
kznmkz1nm~k0

2 2 k1
2!

k0
2~ekznm 1 kz1nm!

, (93)

k3nm 5
krnmk0

2

krnm
2 1 kznmkz1nm

. (94)

For a vertically polarized incident field,

ga
~2 ! 5

22kzi~k0
2 2 k1

2!

~kzn8m8 1 kz1n8m8!~ekzi 1 kz1i!
F2cn,n8sn,iS kz1i

k0
D ~k1nm 1 kz1n8m8! 1 sn,n8cn,iS kz1i

k0
D ~kz1n8m8 1 k2nm!

2 sn,n8S ekri

k0
D k3nm 2

sn8,i

2 S ek0 2
kz1n8m8

k0
kz1iD G , (95)

gb
~2 ! 5

22kzi~k0
2 2 k1

2!

~ekzn8m8 1 kz1n8m8!~ekzi 1 kz1i!
F2sn,n8sn,iS kz1i

k0
D S ek0 1

kz1n8m8

k0
k1nmD 2 cn,n8cn,iS kz1i

k0
D S ek0 1

kz1n8m8

k0
k2nmD

1 cn,n8S ekrikz1n8m8

k0
2 D k3nm 1 S ekrn8m8k3nm

k0
2 D S kz1icn,i 1

krnmkri

k0
2 k1nmD 1

cn8,i

2
~ekz1i 2 ekz1n8m8!G , (96)

gg
~2 ! 5

22kzi~k0
2 2 k1

2!

~kzn8m8 1 kz1n8m8!~ekzi 1 kz1i!
F2cn,n8sn,iS kz1i

k0
D ~k1nm 2 kzn8m8! 1 sn,n8cn,iS kz1i

k0
D ~2kzn8m8 1 k2nm!

2 sn,n8S ekri

k0
D k3nm 2

sn8,i

2 S ek0 1
kzn8m8

k0
kz1iD G , (97)

gd
~2 ! 5

22kzi~k0
2 2 k1

2!Ae

~ekzn8m8 1 kz1n8m8!~ekzi 1 kz1i!
F2sn,n8sn,iS kz1i

k0
D S k0 2

kzn8m8

k0
k1nmD 2 cn,n8cn,iS kz1i

k0
D S k0 2

kzn8m8

k0
k2nmD

2 cn,n8S ekrikzn8m8

k0
2 D k3nm 1 S krn8m8k3nm

k0
2 D S kz1icn,i 1

krnmkri

k0
2 k1nmD 1

cn8,i

2
~kz1i 1 ekzn8m8!G . (98)

Equations (88)–(89) and (95)–(96) reduce to the second-order specular reflection coefficient corrections described in Ref.
13 when n8 5 0 and m8 5 0, except for a minus sign difference in cross-polarized terms due to differing coordinate
systems.

6. THIRD-ORDER SOLUTION
The solution for third-order fields proceeds similarly. Equations (58)–(70) with N 5 3 yield the incident field and l
5 0 terms, and Eqs. (83)–(86) with N 5 3 are used to obtain the l 5 1 and l 5 2 terms. Solutions are found to be of the
form

zn8,m8
~3 !

5 (
m

(
n

(
m1

(
n1

hn,mhn1 ,m1
hn82n2n1 ,m82m2m1

gz
~3 !~kxn8 , kym8 , kxn , kym , kxn1

, kym1
!, (99)

where z 5 a, b, g, or d and gz
(3) is a corresponding function. For a horizontally polarized incident field,

ga
~3 ! 5 S i

kzm8n8 1 kz1n8m8
D H S kzi~k0

2 2 k1
2!

kzi 1 kz1i
D F2cn,n8cn,i~kz1n8m8k1nm 1 k0k4nm! 2 sn,n8sn,ik2nm~k5nm 1 kz1n8m8!

1 ~2cn,ikrnm 2 kri!~krn8m8 2 krn9m9cn8,n9! 2
cn8,i

3
~kz1n8m8kz1i 2 kzi

2 2 kz1i
2 !G 1 krn8m8krn9m9~ ga

~2 ! 2 gg
~2 !!

1 cn8,n9~k0G1h
~2 ! 2 kz1n8m8G2h

~2 !! 2 sn8,n9~k0G3h
~2 ! 1 kz1n8m8G4h

~2 !!J , (100)

gb
~3 ! 5 S 2i

ekzm8n8 1 kz1n8m8
D H S kzi~k0

2 2 k1
2!

kzi 1 kz1i
D F sn,n8cn,i~ek0k1nm 1 kz1n8m8k4nm! 2 cn,n8sn,ik2nmS ek0 1

kz1n8m8

k0
k5nmD

2 sn8,n9~2cn,ikrnm 2 kri!S krn9m9kz1n8m8

k0
D 2

sn8,i

3
S k1

2kz1i 2 kz1n8m8~kzi
2 1 kz1i

2 !

k0
D G

2 ekrn8m8krn9m9~ gb
~2 ! 2 gd

~2 !/Ae! 1 sn8,n9~kz1n8m8G1h
~2 ! 2 ek0G2h

~2 !! 1 cn8,n9~kz1n8m8G3h
~2 ! 1 ek0G4h

~2 !!J , (101)
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gg
~3 ! 5 S 2i

kzm8n8 1 kz1n8m8
D H S kzi~k0

2 2 k1
2!

kzi 1 kz1i
D F2cn,n8cn,i~kzn8m8k1nm 2 k0k4nm! 2 sn,n8sn,ik2nm~2k5nm 1 kzn8m8!

2 ~2cn,ikrnm 2 kri!~krn8m8 2 krn9m9cn8,n9! 2
cn8,i

3
~kzn8m8kz1i 1 kzi

2 1 kz1i
2 !G 2 krn8m8krn9m9~ ga

~2 ! 2 gg
~2 !!

1 cn8,n9~2k0G1h
~2 ! 2 kzn8m8G2h

~2 !! 2 sn8,n9~2k0G3h
~2 ! 1 kzn8m8G4h

~2 !!J , (102)

gd
~3 ! 5 S 2iAe

ekzm8n8 1 kz1n8m8
D H S kzi~k0

2 2 k1
2!

kzi 1 kz1i
D F sn,n8cn,i~k0k1nm 2 kzn8m8k4nm! 2 cn,n8sn,ik2nmS k0 2

kzn8m8

k0
k5nmD

1 sn8,n9~2cn,ikrnm 2 kri!S krn9m9kzn8m8

k0
D 2

sn8,i

3
S k0

2kz1i 1 kzn8m8~kzi
2 1 kz1i

2 !

k0
D G

2 krn8m8krn9m9~ gb
~2 ! 2 gd

~2 !/Ae! 1 sn8,n9~2kzn8m8G1h
~2 ! 2 k0G2h

~2 !! 1 cn8,n9~2kzn8m8G3h
~2 ! 1 k0G4h

~2 !!J , (103)

where n9 5 n 1 n1 , m9 5 m 1 m1 ,

k4nm 5
kznm

2 2 kznmkz1nm 1 kz1nm
2

k0
, (104)

k5nm 5
kznm 1 ekz1nm

1 2 e
, (105)

G1h
~2 ! 5 k0~egg

~2 ! 2 ga
~2 !!, (106)

G2h
~2 ! 5 kzn9m9ga

~2 ! 1 kz1n9m9gg
~2 ! , (107)

G3h
~2 ! 5 kzn9m9gb

~2 ! 1 Aekz1n9m9gd
~2 ! , (108)

G4h
~2 ! 5 k0~ gb

~2 ! 2 Aegd
~2 !!, (109)

and the gz
(2) functions referenced are for horizontal incidence and are evaluated with arguments

gz
~2 !~kxn 1 kxn1

2 kxi , kym 1 kym1
2 kyi , kxn1

, kym1
! (110)

as specified in Eqs. (87)–(91).

For a vertically polarized incident field,

ga
~3 ! 5 S i

kzm8n8 1 kz1n8m8
D H S kzi~k0

2 2 k1
2!

ekzi 1 kz1i
D F cn,n8sn,iS kz1i

k0
D ~kz1n8m8k1nm 1 k0k4nm!

2 sn,n8cn,ik2nmS kz1i

k0
D ~k5nm 1 kz1n8m8! 1 sn,n8S krikrnm

k0
D S k1

2~k0
2 2 k1

2! 1 kz1n8m8~ekznm
3 1 kz1nm

3 !

k0
2~ekznm 1 kz1nm!

D
2 2sn,iS kz1ikrnm

k0
D ~krn8m8 2 krn9m9cn8,n9! 2 sn8,n9krn9m9S kz1n8m8krikrnm

2

k0
3 D

1
sn8,ik0

3~k0
2 2 k1

2!
S kz1n8m8~ekzi

4 2 kz1i
4 !

k0
2 1 kz1i~ekz1i

2 2 kzi
2 !D G

1 krn8m8krn9m9~ ga
~2 ! 2 gg

~2 !! 1 cn8,n9~k0G1v
~2 ! 2 kz1n8m8G2v

~2 !! 2 sn8,n9~k0G3v
~2 ! 1 kz1n8m8G4v

~2 !!J , (111)

gb
~3 ! 5 S 2i

ekzm8n8 1 kz1n8m8
D H S kzi~k0

2 2 k1
2!

ekzi 1 kz1i
D F2sn,n8sn,iS kz1i

k0
D ~ek0k1nm 1 kz1n8m8k4nm!

2 cn,n8cn,ik2nmS kz1i

k0
D S ek0 1

kz1n8m8

k0
k5nmD 1 cn,n8S ekrikrnm

k0
2 D S ekznm

3 1 kz1nm
3 1 kz1n8m8~k0

2 2 k1
2!

ekznm 1 kz1nm
D
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1 2sn,isn8,n9S krnmkrn9m9kz1n8m8kz1i

k0
2 D 2 S ekrnm

2 kri

k0
2 D ~krn8m8 2 cn8,n9krn9m9!

2
cn8,i

3~k0
2 2 k1

2!
~e~ekzi

4 2 kz1i
4 ! 1 kz1n8m8kz1i~ekz1i

2 2 kzi
2 !!G 2 ekrn8m8krn9m9~ gb

~2 ! 2 gd
~2 !/Ae!

1 sn8,n9~kz1n8m8G1v
~2 ! 2 ek0G2v

~2 !! 1 cn8,n9~kz1n8m8G3v
~2 ! 1 ek0G4v

~2 !!J , (112)

gg
~3 ! 5 S 2i

kzm8n8 1 kz1n8m8
D H S kzi~k0

2 2 k1
2!

ekzi 1 kz1i
D F cn,n8sn,iS kz1i

k0
D ~kzn8m8k1nm 2 k0k4nm!

2 sn,n8cn,ik2nmS kz1i

k0
D ~2k5nm 1 kzn8m8! 1 sn,n8S krikrnm

k0
D S k1

2~k1
2 2 k0

2! 1 kzn8m8~ekznm
3 1 kz1nm

3 !

k0
2~ekznm 1 kz1nm!

D
1 2sn,iS kz1ikrnm

k0
D ~krn8m8 2 krn9m9cn8,n9! 2 sn8,n9krn9m9S kzn8m8krikrnm

2

k0
3 D

1
sn8,ik0

3~k0
2 2 k1

2!
S kzn8m8~ekzi

4 2 kz1i
4 !

k0
2 2 kz1i~ekz1i

2 2 kzi
2 !D G

2 krn8m8krn9m9~ ga
~2 ! 2 gg

~2 !! 1 cn8,n9~2k0G1v
~2 ! 2 kzn8m8G2v

~2 !! 2 sn8,n9~2k0G3v
~2 ! 1 kzn8m8G4v

~2 !!J , (113)

gd
~3 ! 5 S 2iAe

ekzm8n8 1 kz1n8m8
D H S kzi~k0

2 2 k1
2!

ekzi 1 kz1i
D F2sn,n8sn,iS kz1i

k0
D ~k0k1nm 2 kzn8m8k4nm!

2 cn,n8cn,ik2nmS kz1i

k0
D S k0 2

kzn8m8

k0
k5nmD 1 cn,n8S krikrnm

k0
2 D S ekznm

3 1 kz1nm
3 2 ekzn8m8~k0

2 2 k1
2!

ekznm 1 kz1nm
D

2 2sn,isn8,n9S krnmkrn9m9kzn8m8kz1i

k0
2 D 2 S krnm

2 kri

k0
2 D ~krn8m8 2 cn8,n9krn9m9!

2
cn8,i

3~k0
2 2 k1

2!
~ekzi

4 2 kz1i
4 2 kzn8m8kz1i~ekz1i

2 2 kzi
2 !!G 2 krn8m8krn9m9~ gb

~2 ! 2 gd
~2 !/Ae!

2 sn8,n9~kzn8m8G1v
~2 ! 1 k0G2v

~2 !! 1 cn8,n9~2kzn8m8G3v
~2 ! 1 k0G4v

~2 !!J , (114)
where the G1v through G4v functions are defined analo-
gously to those for horizontal polarization except that the
gz

(2) functions are for vertical incidence and are evaluated
with arguments

gz
~2 !~kxn 1 kxn1

2 kxi , kym 1 kym1
2 kyi , kxn1

, kym1
!

(115)
as specified in Eqs. (95)–(98).

7. REFLECTED AND TRANSMITTED
POWER
Given the field solution to third order in surface height,
reflected and transmitted powers can also be derived to
third order. Since the power in a particular Floquet
mode is directly proportional to its amplitude squared,
and since distinct polarizations are orthogonal, the rel-
evant quantities to consider are

uzn8,m8u
2 5 uzn8,m8

~0 !
1 zn8,m8

~1 !
1 zn8,m8

~2 !
1 zn8,m8

~3 !
1 ¯u2,

(116)
where z represents a, b, g, or d. Collecting terms of iden-
tical order yields

uzn8,m8u
2 5 ~ uzn8,m8

~0 ! u2! 1 ~2 Re$zn8,m8
~0 !* zn8,m8

~1 ! % !

1 ~ uzn8,m8
~1 ! u2 1 2 Re $zn8,m8

~0 !* zn8,m8
~2 ! % !

1 ~2 Re $zn8,m8
~1 !* zn8,m8

~2 ! % 1 2 Re $zn8,m8
~0 !* zn8,m8

~3 ! % !

1 ~ uzn8,m8
~2 ! u2 1 2 Re $zn8,m8

~1 !* zn8,m8
~3 ! %

1 2 Re $zn8,m8
~0 !* zn8,m8

~4 ! % ! 1 ¯ (117)

where individual orders are grouped inside parentheses,
and a fourth-order term has been included as well, even
though z (4) has not yet been derived. Immediately it can
be recognized that the zeroth-order term represents the
reflectivity of a flat surface, and also that terms multiply-
ing zn8,m8

(0) are evaluated only with n8 5 m8 5 0 since
zn8,m8

(0) vanishes for all other indices; these terms represent
corrections to the flat-surface reflectivity. If it is as-
sumed that the surface has a zero spatial average value
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(i.e., h0,0 5 0) then the first-order term vanishes since it
is directly proportional to h0,0 . All other terms exist in-
the general case and contribute to reflected and transmit-
ted powers. Fractions of the incident power reflected into
a specific polarization of a Floquet mode (n8, m8) can be
shown to be

ReH kzn8m8

kzi
J uzu2, (118)

where z 5 a or b, and the fraction of power transmitted
into a specific polarization of Floquet mode (n8, m8) in a
lossless medium can be shown to be

ReH kz1n8m8

kzi
J uzu2, (119)

where z 5 g or d.
Since the small-perturbation method is frequently

applied in the analysis of stochastic surfaces, it is also
of interest to consider scattered and transmitted coherent
and incoherent powers. In this case, the results are con-
siderably simplified by assuming that each point on the
surface profile z(x, y) is a zero mean random variable
[i.e., ^z(x, y)& 5 0] so that ^hn8,m8& 5 0 also, as shown
in Eq. (2).
tion can be derived for the effective transmission coeffi-
cient in a lossless medium. Note an expansion of the co-
herent power u^Gz

eff &u2 similar to equation (117) is required
to group coherent power terms to third order consistently.
Note also that the second and third order terms above in-
volve the surface power spectrum ^uhn,mu2& and the sur-
face bi-spectrum ^hn,mhn1 ,m1

h2n2n1 ,2m2m1
& respectively.

If it is further assumed that the surface is a Gaussian
random process, the bispectrum vanishes and there is no
third-order contribution to the effective reflection coeffi-
cient. Calculation of the fourth-order coherent reflected
power requires knowledge of z0,0

(4) and is not considered
here.

The expansion for incoherent powers produces

^uzn8,m8 2 ^zn8,m8&u
2&

5 ^uzn8,m8
~1 ! u2& 1 2 Re $^zn8,m8

~1 !* zn8,m8
~2 ! &%

1 ^uzn8,m8
~2 !

2 ^zn8,m8
~2 ! &u2& 1 2 Re $^zn8,m8

~1 !* zn8,m8
~3 ! &% (122)

to fourth order; note that the third-order solution for
fields is sufficient to determine incoherent scattered and
transmitted powers to fourth order. Equation (122) can
be rewritten as
^uzn8,m8 2 ^zn8,m8&u&
2 5 ugz

~1 !~kxn8 , kym8!u
2^uhn8,m8u

2&

1 2 ReH(
m

(
n

^hn8,m8
* hn,mhn82n,m82m&gz

~1 !* ~kxn8 , kym8!gz
~2 !~kxn8 , kym8 , kxn , kym!J

1 (
m

(
n

(
m1

(
n1

@^hn82n,m82mhn,mhn82n1 ,m82m1
* hn1 ,m1

* & 2 ^hn82n,m82mhn,m&

3 ^hn82n1 ,m82m1
* hn1 ,m1

* &#gz
~2 !~kxn8 , kym8 , kxn , kym!gz

~2 !* ~kxn8 , kym8 , kxn1
, kym1

!

1 2 ReH(
m

(
n

(
m1

(
n1

^hn,mhn1 ,m1
hn82n2n1 ,m82m2m1

h2n8,2m8&

3 gz
~3 !~kxn8 , kym8 , kxn , kym , kxn1

, kym1
!gz

~1 !* ~kxn8 , kym8!J , (123)
In this case, the coherent reflectivity,

u^z&u2 5 u^Gz
eff &u2 (120)

with z 5 a or b is found to exist only in the specular di-
rection n8 5 m8 5 0 up to third order, and the effective
reflection coefficient ^Gz

eff & is given by

^Gz
eff & 5 Gz 1 (

m
(

n
^uhn,mu2&gz

~2 !~kxi , kyi , kxn , kym!

1 (
m

(
n

(
m1

(
n1

^hn,mhn1 ,m1
h2n2n1 ,2m2m1

&

3 gz
~3 !~kxi , kyi , kxn , kym , kxn1

, kym1
! (121)

to third order in surface height. A corresponding equa-
showing the dependencies of incoherent power at second
order on the surface spectrum, at third order on the sur-
face bispectrum, and at fourth order on quantities that
can be related to the surface trispectrum, power spec-
trum, and correlations between Fourier coefficients.
Again for a Gaussian random process the bispectrum and
third-order power terms vanish, while the fourth order
power term can be expressed in terms of the surface
power spectrum only.2

Incoherent scattering cross sections per unit area for a
nonperiodic surface (whose dimensions must be large
compared with the electromagnetic wavelength and any
surface features, and neglecting edge scattering effects)
can also be derived from these results by considering the
limit as the surface periods approach infinity following
Ref. 2. The scattering cross section per unit area at a
particular scattering angle [related to (n8, m8)] and in a
particular polarization can be shown to be
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sz 5 4pk0
2 cos2 us

^uzu2&

dkxdky
, (124)

where dkx 5 (2p)/Lx and dky 5 (2p)/Ly are differential
quantities that cancel when hn8,m8 terms are related to
their continuous counterparts.

The definitions

^uhn8,m8u
2&

dkxdky

5 W~kxn8 2 kxi , kym8 2 kyi!, (125)

^hn8,m8hn,mh2n82n,2m82m&

~dkx!2~dky!2

5 B~kxn8 2 kxi , kym8 2 kyi , kxn 2 kxi , kym 2 kyi!,

(126)
and

^hn8,m8hn,mhn1 ,m1
h2n82n2n1 ,2m82m2m1

&

~dkx!3~dky!3

5 T~kxn8 2 kxi , kym8 2 kyi , kxn 2 kxi ,

kym 2 kyi , kxn1
2 kxi , kym1

2 kyi!, (127)

where W, B, and T represent the continuous surface
power spectrum, bispectrum, and a quantity that can be
related to the trispectrum, respectively, allow the sums
over n and m variables in the coherent and the incoherent
power expressions to be converted into integrals over the
corresponding wave numbers. For a continuous Gauss-
ian random process, sz up to fourth order can be simpli-
fied to
vanishes whenever the z (1)z (1)* term vanishes. Since
cross-polarized gz

(1) vanishes in the plane of incidence, the
z (2)z (2)* term alone is sufficient for calculation of cross-
polarized backscattering as in Ref. 2.

A final quantity of interest is the total fraction of power
reflected from a surface in all scattered polarizations,
which is defined as the total surface reflectivity and which
can be related to the surface emissivity to determine sur-
face thermal emission. It has been shown in Ref. 15 that
the small-perturbation method produces an expansion in
surface slope and not in surface height for this quantity,
making the preceding equations sufficient for determin-
ing the surface total reflectivity up to third order in sur-
face slope. Calculation of the total surface reflectivity re-
quires inclusion of both coherent and incoherent terms,
and powers in all scattered Floquet modes are summed.
Application of these results to the computation of surface
thermal emission will be discussed in a future paper.

8. SAMPLE RESULTS
Example SPM results for both periodic and nonperiodic
surfaces are considered in this section. Results will be
compared at second, third, and fourth order to determine
the influence of higher-order terms, and fourth-order pre-
dictions are also compared with predictions of other scat-
tering theories: the small-slope approximation12 (SSA)
and a Monte Carlo simulation with the method of
moments19,20 (MOM) in the nonperiodic case, and the ex-
tended boundary condition (EBC) numerical method21 in
the periodic-surface case.

The first surface type considered is a nonperiodic,
Gaussian random-process surface with an isotropic
Gaussian correlation function, completely characterized
sz~kxn8 , kym8! 5 4pk0
2 cos2 usXugz

~1 !~kxn8 , kym8!u
2W~kxn8 2 kxi , kym8 2 kyi!

1 E
2`

`

dkxnE
2`

`

dkym$W~kxn 2 kxi , kym 2 kyi!W~kxn8 2 kxn , kym8 2 kym!@ ugz
~2 !~kxn8 , kym8 , kxn , kym!u2

1 gz
~2 !~kxn8 , kym8 , kxn , kym!gz

~2 !* ~kxn8 , kym8 , kxn8 2 kxn 1 kxi , kym8 2 kym 1 kyi!#%

1 2 ReH W~kxn8 2 kxi , kym8 2 kyi!gz
~1 !* ~kxn8 , kym8!E

2`

`

dkxnE
2`

`

dkymW~kxn 2 kxi , kym 2 kyi!

3 @gz
~3 !~kxn8 , kym8 , kxn , kym , kxn8 , kym8! 1 gz

~3 !~kxn8 , kym8 , kxn8 , kym8 , kxn , kym!

3 gz
~3 !~kxn8 , kym8 ,kxn , kym , 2kxi 2 kxn , 2kyi 2 kym!#J C. (128)
The first line of Eq. (128) represents the second-order
z (1)z (1)* term, and the following two integrals are the
fourth-order z (2)z (2)* (considered previously in Ref. 2)
and z (3)z (1)* (not considered previously) terms, respec-
tively. Note that the z (3)z (1)* term is directly propor-
tional to gz

(1)* (kxn8 , kym8)W(kxn8 2 kxi , kym8 2 kyi) and
by the rms surface height h and correlation length l pa-
rameters. Again for this surface type, third-order power
terms vanish, and Eq. (128) was used to calculate cross
sections per unit area up to fourth order. Fourth-order
terms required a numerical evaluation of the integrals in
Eq. (128), which was performed with Gauss–Legendre
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quadrature. In-plane, horizontally polarized (HH) bi-
static scattering cross sections at second and fourth order
are compared in Fig. 1 for h 5 0.06l, l 5 l, and e 5 3
and with a horizontally polarized plane wave incident at
10° from normal incidence. The definition of us in this
figure results in forward scattering occurring at us
5 10°, while backscattering occurs at us 5 210°.
Curves for the z (2)z (2)* and z (3)z (1)* contributions to
fourth-order results are also included and illustrate that
both terms contribute to the total results. The z (3)z (1)*
terms reduce second-order cross sections primarily at
near-specular angles, whereas the z (2)z (2)* terms are
more important at nonspecular angles. Second- and
fourth-order HH and VV SPM predictions are compared
with the zeroth-order SSA in Fig. 2, and fourth-order

Fig. 1. In plane, HH bistatic scattering cross sections per unit
area for a Gaussian correlation function surface with h 5 0.06l
and l 5 l, u i 5 10°, and e 5 3.

Fig. 2. Comparison of SPM, SSA, and MOM bistatic scattering
cross sections per unit area for a Gaussian correlation function
surface with h 5 0.06l and l 5 l, u i 5 10°, and e 5 3. (a) HH,
(b) VV.
SPM results are observed to be in good agreement with
the SSA. Results from a 50-realization Monte Carlo
MOM simulation are also included in Fig. 2 and confirm
the accuracy of the SSA and the fourth-order SPM for this
case. Monte Carlo results were calculated with the
canonical-grid technique19 in a four-scalar-function-
unknown MOM for a penetrable surface20 to improve
computational efficiency and were obtained for surfaces
size 16l 3 16l sampled in 128 3 128 points. The ta-
pered incident field described in Ref. 19 with g 5 5 was
used to eliminate edge scattering effects, but it causes in-
accuracies for large bistatic scattering angles, so MOM re-
sults are included only for scattering angles within 70° of
normal in Fig. 2. Further comparisons of the SSA and
the fourth-order SPM were performed for several differ-
ent h and l values, and fourth-order predictions were
found to provide improved agreement with the SSA for
surfaces with small slopes, h < 0.06l, and l < l.

To demonstrate a surface for which there is a third-
order power contribution, a periodic asymmetric pyrami-
dal surface is considered next, as shown in Fig. 3. This
surface is essentially a square-based pyramid, but the
peak of the pyramid is shifted to an off-center position
along the y axis. The surface is defined to have zero
mean, and in addition it is passed through a low-pass fil-
ter that removes all Fourier coefficients with (n2

1 m2)1/2 . 8. This low-pass filter is used to avoid the
slope discontinuity that occurs at the peak of the ideal
pyramid. Reflection from a grating with Px 5 Py 5 8l,
pyramid peak-to-peak amplitude A 5 0.2l, peak location
at y 5 6.5l, and e 5 10 1 i10 is considered for a hori-
zontally polarized plane wave incident at 40° from normal
incidence and at azimuthal angle 25° from the x axis.
Percent reflectivities in HH and VH polarizations from
the SPM at second, third, and fourth orders are listed in
Tables 1 and 2, respectively for near-specular modes with
n8 and m8 indices ranging from 21 to 1. Note that the
flat-surface reflectivity uGhu2 has been removed from the
n8 5 m8 5 0 mode of the HH results. Numerical EBC
results are also included in the table, and the percent dif-
ference from SPM predictions at each order are provided.
Since it can be shown that the bispectrum of this surface
does not vanish, a third-order correction is present in

Fig. 3. Asymmetric pyramidal surface.
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Table 1. HH Percent Reflectivities in Near-Specular Modes for an Asymmetric Pyramidal Grating

n8 m8 2nd Order % Error 3rd Order % Error 4th Order % Error EBC

21 21 0.4179 12.1026 0.5313 11.7512 0.4864 2.3203 0.4754
21 0 1.8678 16.4719 1.8687 16.5297 1.5803 1.4544 1.6036
21 1 0.3703 47.0581 0.2765 9.8100 0.2407 4.4029 0.2518

0 21 1.5182 14.1400 1.9825 12.1124 1.8150 2.6402 1.7683
0 0 29.5415 9.5528 29.5390 9.5236 29.0517 3.9289 28.7095
0 1 1.4223 53.4238 1.0175 9.7531 0.8786 5.2270 0.9271
1 21 0.3476 12.0005 0.4306 9.0083 0.4020 1.7676 0.3950
1 0 1.5900 12.0881 1.5890 12.0178 1.4032 1.0782 1.4185
1 1 0.3246 35.3334 0.2564 6.9021 0.2336 2.5837 0.2398

Table 2. VH Percent Reflectivities in Near-Specular Modes for an Asymmetric Pyramidal Grating

n8 m8 2nd Order % Error 3rd Order % Error 4th Order % Error EBC

21 21 0.0077 9.5123 0.0095 11.5730 0.0087 1.7186 0.0085
21 0 0.0223 14.1052 0.0226 15.4892 0.0195 0.0952 0.0195
21 1 0.0382 50.9989 0.0275 8.8139 0.0239 5.4594 0.0253

0 21 0.0710 11.9212 0.0900 11.7378 0.0825 2.3427 0.0806
0 0 0.0000 100.0000 20.0000 100.0003 0.0000 1.1943 0.0000
0 1 0.0542 65.0593 0.0360 9.6698 0.0304 7.3185 0.0328
1 21 0.0288 9.4042 0.0347 9.4267 0.0322 1.5075 0.0317
1 0 0.0123 16.0286 0.0122 15.1979 0.0106 0.5083 0.0106
1 1 0.0032 54.8619 0.0022 5.7218 0.0020 4.3421 0.0021
these tables. Third-order power contributions are com-
posed primarily of the 2 Re $anm

(1)*anm
(2) % terms, although a

small correction to the specular-reflection coefficient is ob-
tained from the third-order field expressions. A similar
level of corrections is obtained at fourth order in these
tables, although the fourth-order specular term is not in-
cluded for reasons previously discussed. Again, the com-
parison with EBC results is not exact for this moderately
rough surface, but it shows the improvement obtained as
higher-order SPM terms are included.

9. CONCLUSIONS
A systematic procedure for determining higher-order
terms in the small-perturbation method has been pre-
sented and has been applied to determine SPM scattered
fields up to third order in surface height. Although the
procedure is based on the Rayleigh hypothesis for deter-
ministic, periodic surfaces, the results can be generalized
to the nonperiodic and stochastic surface cases as well.
Sample results that illustrated the utility of these new
terms were presented; in particular it was shown that
third-order field terms can contribute to scattered powers
at fourth order even for surfaces with vanishing bispectra
and to a specular-reflection coefficient correction at third
order if the surface has a nonvanishing bispectrum, im-
plying a horizontal or vertical skewness in the surface
profile. The final case is of particular interest for passive
remote sensing of the ocean, since it is the horizontal
skewness of the ocean surface that gives rise to first azi-
muthal harmonic variations of brightness temperatures.
In addition, the fact that the SPM produces a series in
surface slope, not height, when applied to the calculation
of thermal emission makes these higher-order terms very
applicable to the emission problem. Such applications
will be considered in future work.
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