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The small-perturbation method (SPM) for rough surface scattering, originally derived by Rice [Commun. Pure
Appl. Math. 4, 361 (1951)], has been applied extensively to problems in optics, remote sensing, and propaga-
tion. Typical uses of the theory involve only the first- or second-order scattered fields in surface height, owing
to increasing complexity of the SPM equations as order increases. The SPM equations are solved in a sys-
tematic manner that permits third order in surface-height terms to be determined apparently for the first time
for scattering from a dielectric surface rough in two directions. Sample results for both periodic and non-
periodic surfaces show that third-order field terms can contribute to fourth-order scattered power and also to
a third-order specular-reflection coefficient correction for surfaces with nonvanishing bispectra. The latter
case is of particular interest in passive remote sensing of the ocean, since these third-order terms contribute to
the first prediction of a first azimuthal harmonic of ocean brightness temperatures. © 1999 Optical Society of

Joel T. Johnson

America [S0740-3232(99)01911-0]
OCIS code: 290.5880.

1. INTRODUCTION

Scattering from rough surfaces, both deterministic or sto-
chastic and periodic or nonperiodic, is of interest in many
fields of applied optics and electromagnetics. Although a
general solution does not exist, numerous approximate
analytical methods have been developed and have been
successful for analyzing scattering from certain classes of
surfaces. One of the most widely used methods is the
small-perturbation method (SPM) originally developed in
Ref. 1. The SPM approximation requires that surface
heights be small in terms of the electromagnetic wave-
length, and a perturbation series in surface height is used
to determine scattered fields at a specified order in sur-
face height. The method has been studied and applied
extensively?>8 to problems in optics, remote sensing, and
propagation and yields the Bragg scatter phenomenon of
rough-surface scattering when only first-order terms are
considered. Scattered fields up to second order in surface
height were considered in the original paper,* but solu-
tions increase in complexity as order increases, so third-
order terms for a general three-dimensional dielectric
surface scattering problem have apparently not been pre-
viously presented. Second-order terms have only rarely
been applied, and then primarily only to study the SPM
correction to the flat-surface reflection coefficient>'34 or
cross-polarized backscatter from a Gaussian random pro-
cess surface.?

Although third-order scattered fields from the SPM are
expected to be complex and to require a numerical inte-
gration for their evaluation, recent developments in the
study of thermal emission from rough surfaces have mo-
tivated new interest in higher-order SPM solutions. In
particular, consideration of thermal emission from the
ocean surface has shown some limitations of a model
based on the second-order SPM alone.***¢ The problems
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stem from the fact that second-order emission predictions
are expressed entirely in terms of the surface power spec-
trum, which by definition is a symmetric quantity with re-
spect to a 180° shift in azimuth. However, measure-
ments of ocean surface emission clearly show first-
harmonic azimuthal variations (i.e., having variations
with respect to a 180° shift in azimuth). A third-order
description of the surface-height profile is necessary to
capture these properties, and consequently a third-order
SPM model for surface emission is necessary if a consis-
tent first-harmonic prediction is to be obtained. Further
motivation for use of the SPM in studying surface emis-
sion comes from Ref. 15, which shows that the SPM pro-
duces an expansion in surface slope, not surface height,
for the total power reflected or emitted from a rough sur-
face.

In this paper, SPM scattered fields are derived to third
order in surface height, and expressions for scattered and
transmitted powers are developed for deterministic and
stochastic, periodic and nonperiodic surfaces. The origi-
nal formulation of Ref. 1 is followed, in which the Ray-
leigh hypothesis is applied to determine reflected and
transmitted Floquet-mode amplitudes scattered from a
periodic surface. Scattering cross sections per unit area
for a nonperiodic surface are obtained following Refs. 1
and 2 in the limit as the surface periods approach infinity.
Although alternative SPM studies have begun with the
nonperiodic-surface case and have avoided the Rayleigh
hypothesis,”® in all comparisons made to date it has been
shown that these approaches yield identical results. Use
of the Rayleigh hypothesis can be qualitatively justified
by realizing that it should hold under the same conditions
for which the SPM is applicable, so an SPM derivation us-
ing the Rayleigh hypothesis should be valid. Further
discussions on use of Rayleigh hypothesis can be found in
Ref. 12.
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Use of the Rayleigh hypothesis with a periodic surface
simplifies the analysis considerably, and a systematic
procedure for solving the SPM equations at any order re-
sults. The resulting equations can be implemented on a
computer to permit numerical solution of the SPM equa-
tions to arbitrary order, but this procedure does not yield
the insight that is available from an analytical solution.
Analytical results are presented for scattered and trans-
mitted fields to third order, and the systematic nature of
the procedure permits higher-order terms to be found
without extensive additional effort. Although SPM field
solutions to second order are available in the literature,
solutions at each order are revisited to illustrate the de-
velopment and application of the new systematic solution.

Section 2 presents the basic formulation of the prob-
lem, and field solutions at zeroth through third order are
considered in Sections 3-6. Reflected and transmitted
powers are discussed in Section 7, and some example re-
sults illustrate higher-order SPM contributions in Section
8. Conclusions are presented in Section 9.

2. FORMULATION

Consider a deterministic periodic surface profile, z
= f(x,y), with periods P, and Py in the x and y direc-
tions respectively, that separates free space (permittivity
€9, permeability wg) for z > f(x, y) from a homogeneous
nonmagnetic dielectric medium with permittivity eq4
= e€¢y for z < f(x,y). This periodic surface can also be
expressed in terms of its Fourier series coefficients,
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2mmy
X exp| —i f(x,y). 2)
y

Henceforth it will be assumed that all sums are from —c
to « unless otherwise notated. With this description the
surface derivatives are
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Denoting the operator in Eq. (2) as F, that is,
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it can be shown for N an integer greater than 1 that

Vol. 16, No. 11/November 1999/J. Opt. Soc. Am. A 2721
F{f(x, y)N}(n, m)

- EZ)IE el E 2

np My Nz my IN-1 MN-1
P, m M, m, " m Phon,—n,—-n m-my—my—--—m
1 22 N-1""'N-1 1 2 N-1" 1 2 N-1
(6)
of
Fi—fx, )Nt (n, m)
X
- [EZ)EE)elZ 2
np m nz m NN-1 MN-1
P, m M, m, P m Pnon,—n,—-n m-m;—my—--—m
1M 2012 N-1""'N-1 1 2 N-1" 1 2 N-1
2
X IP_(n7n17n27"'7nN—l) (7)
X
of
Fi—f, )N (n, m)
Iy
- E3)EZ el E 2
Ny my N my MN-1 MN-1
hnm Py m, M m Nh—n,—n,——n m-m;—m,---—m
1 22 N-1""IN-1 1 2 N-1" 1 2 N-1
2T
X |P—(m—m1—m2— - My-1) |- (8)
y

These relationships will be useful in considering higher-
order terms in the SPM equations.

Consider an incident electromagnetic plane wave that
illuminates this periodic surface from the free-space re-
gion, with electric and magnetic fields given by

E' = & exp(ik; - 1), 9)
) IA(i X &
H' = exp(ik; - 1), (10)
70

where &; represents the polarization vector of the incident
electric field,

ki = koki = Rk + Jkyi — 2Ky (11)

represents the propagation vector of the incident plane
wave with wave number kg = 27/\,

r=3Xx+9yy + 2z (12)

is a position vector in Cartesian space, and 7, = Vuo/e€g
is the impedance of free space. Note that an exp(—iwt)
time convention is assumed.

Under the Rayleigh hypothesis, the scattered field con-
sists of a sum of upgoing plane waves (or Floquet modes),
which can be written as

ES

> > ANy + OB, nlexp(iKI™ - 1), (13)

1 R
HS = — > > [0 May o + hD™B, o ]exp(ikD™ - 1),
70 m n
(14)

while transmitted fields consist only of downgoing plane
waves, which can be written as
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where 7, = 7,/4/€ is the impedance of the lower medium
and «, B, v, and é are the unknown complex amplitudes of
the scattered and transmitted Floquet modes. Scattered
and transmitted plane-wave propagation vectors are de-
fined by the Floquet theorem as

kg'm = KKy, + S\/kym + 2K;nm 17)
kP'm = RKkyn + ykym = ZK;10m (18)
where

2mn
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Konm = VKZ, + K2, (21)
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Modes for which k,,, becomes greater than k, or k; have
K,nm and k,,nm , respectively, defined so that attenuation
occurs as fields propagate away from the surface bound-
ary. Orthogonal horizontal and vertical polarization vec-
tors for the incident, scattered, and transmitted fields are
defined as
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where k; = ko\/e is the wave number in the lower me-
dium.

Boundary conditions on the interface specify that tan-
gential electric and magnetic fields must be continuous:

(2 - af) x (E'+ E%) = (2 — af) X E',  (30)

(2—af) X (H' + H) = (2 — af) x H',  (31)

since a vector normal to the surface can be written as 2
— of, where of = X(of/9x) + §(df/dy). These equations
can be rewritten as

X ES—2 X E!
=2 XE +afxX E'+df X ES—9fxX E!, (32

N>

X HS — 2 x H
=—2XH +dfXH + gfx H — gf x H.. (33)

N>

Equations (32) and (33) are evaluated on the surface
boundary, where z = f(x,y). Substituting in the Ray-
leigh hypothesis fields (13)—(16) and considering only the
x and y components of the above equations, two two-
component vector equations are obtained:

_2mnXx _2mmy . ) )
E E expj 1 expi 1 ( (z % hg'm)[an,m exp(ik;nmz) = ¥n,m eXp(—ik,1nm2)]
m n

Py v

kOkzlnm

+(z2 X Vg’m){ﬁn,m exp(ikznmz) + ———
klkznm

= —(2 X &;)exp(—ikyiz) + (9F X &)exp(—ikyiz) + 2>, >, exp(i

X [(81: X vg'm)[ﬁn,m exp(ik,nmz) —

5n,m exp(_ikzlan)H

2mNnX )
|

2m7my
exp

X y

Ko
k_én,m eXp(ikzlnmz)Hv (34)
1



Joel T. Johnson Vol. 16, No. 11/November 1999/J. Opt. Soc. Am. A 2723
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At this point, a small height expansion is used by expanding the exponentials in Eqgs. (34) and (35) in power series:

“(xik,z)?
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q=0 q!
and by substituting a perturbation series for the unknowns
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with similar definitions for 8, y, and 8. Perturbation series terms are defined so that the Ith term is of order ' or equiva-
lent combinations of f and its derivatives, since df/9x and df/dy are assumed to be the same order as f.
Substituting these expansions and collecting terms of order zN (or V), Egs. (34) and (35) simplify to
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Note that when N = 0, terms involving N — 1 are not in-
cluded.

These equations hold in the space (i.e., x—y) domain.
Defining the right-hand sides of Eqgs. (38) and (39) (which
by definition have only x and y components) as Sg\')(x, y)
and SN (x, y), respectively, the equations are
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Applying the F operator to both sides of this equation and
using the orthogonality properties of complex exponen-
tials yields
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Yormr = (kmt—(’klm) @ F{SE )
- h2" ™ F S, v}, (46)
S = ( i )(ﬁ;‘”m' - F{sM(x, )}
eKynrmr + Kzinrme

+ 00 ™ F S (x, v, 47)

where the (n’, m’) index of the F operators has been
dropped for convenience. Since S and S{\) depend
only on solutions of order less than N and on the known
incident field, the above equations represent the unknown
field amplitudes at order N in terms of known quantities.
These equations can be easily implemented on a computer
through use of the fast Fourier transform for the F opera-
tor, permitting solution of the SPM equations to arbitrary
order. However, only analytical solutions are considered
in this paper.

3. ZEROTH-ORDER SOLUTION

The solution at zeroth order is particularly simple since
the sums over | in the definition of S and S{\) vanish,
leaving only

SO = -7 X g, (48)

S = —2 x k; X &. (49)
Fourier series coefficients (i.e., after applying the F op-
erator) for these functions are simply Kronecker delta
functions, indicating that the field amplltudes a(o)
through 5(O)m, are nonzero only for n” = m’ = 0, the
specularly reflected and transmitted plane waves. Field
amplitude results are

agg = o K Th, (50)
' Kyi + Ky
B4o = 0, (51)
Y8 =1+ Th, (52)
5% =0, (53)
for a horizontally polarized incident field (i.e., & = ﬁi)
and
ayy = 0, (54)
P (55)
' eK,i + Ky
Y60 = 0, (56)
Ko
558 = 1+ T, (57)

for a vertically polarized incident field.

To simplify the solution at higher than zeroth order,
these zeroth order field solutions can be combined with
the incident fields to produce a new | = 0 term in SV
and S{\). Contributions from these new terms to field
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coefficients at order N can then be computed following Egs. (44)—(47) and are found to be
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and the (N, 0) notation refers to the fact that the above quantities are the new | = 0 term contributions to the field

amplitudes at order N. Again in Egs. (58)—(61) the indices (n’, m’) have been dropped after the F operators for conve-
nience, and a new notation for sine and cosine functions has been introduced:

KyiKynt + KyiKym:

o = , (65)
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kxikym’ - kyikxn’
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This notation will be generalized and used throughout the paper: The first subscript in the Cn,.n, OF Sn_ n, functions
refers to the subscript to be applied to the first kXn quantity, and the second subscript refers to the subscript type to be
1

applied to the quantity multiplying the first k, . Note that the k, terms in the denominator also contain the appropri-
n

ate subscripts.
For a vertically polarized incident field,
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4. FIRST-ORDER SOLUTION ) , 2 2
Substituting N = 1 into Egs. (44)—(47) shows that knowl- gb — —2ik,i(ky — k1) Ve
edge of S&) and S{{ is required. Examination of Egs. ® (€Kyyrmt + Kpinrme)(€Kgi + Kypi)
(38)—(39) reveals that the aﬁl“,"'n?? through 5&1’\,'5?? terms de- K Kk K-k
scribed above are sufficient to determine field amplitudes ( pilpn'm’ Tzlimzn'm’ n,) , 82)
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portional to h,, ,,». A general form for first-order solu-

tions is
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where { = a, B, ¥, or sand g!) is a corresponding func-
tion. Solutions for a horizontally polarized incident field
are
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for a vertically polarized incident field. These results il-
lustrate the “Bragg scatter” phenomenon of first-order
perturbation theory, since scattered fields at a particular
angle [i.e., (n’, m")] are directly proportional to the am-
plitude of a particular surface Fourier component.

5. SECOND-ORDER SOLUTION

For N = 2, S&) and S{?) are required and contain the |
= 0 contributions described above and contributions
froman | = 1 term. Recognizing that the | > 0 terms at
any order N consist of the product of two functions of
space [i.e., zN " and the sums over m and n in Egs. (38)
and (39)], the convolution theorem can be applied to de-
termine the |1 > 0 term contributions to o™ through
5™ The general equations that result are
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where the (N, r) notation refers to the fact that these are the contributions from the remaining | > 0 terms to the field

amplitudes at order N. Equations (83)—(86) hold for both horizontally and vertically polarized incident fields. The sum

of a™: 9 through 6N 9 from Egs. (58)—(70) for the incident field and | = 0 terms with o' ? through §™N: 7 from Eqgs.

(83)—(86) for the | > 0 terms therefore completes the solution for the unknown fields a™™) through §™). The systematic

nature of this procedure makes determination of unknown field amplitudes possible up to third or higher order.
Applying the procedure yields solutions for second-order fields, which can be written as

(nZ)m’ 2 Z hn'fn m'fm n mgg (kxn’! ym’ s xn! kym) (87)
where { = a, B, y, or §and g(§2) is a corresponding function. For a horizontally polarized incident field,
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where

Kinm = Kznm = Kzinm (92)
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For a vertically polarized incident field,
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Equations (88)—(89) and (95)—(96) reduce to the second-order specular reflection coefficient corrections described in Ref.
13 when n’ = 0 and m’ = 0, except for a minus sign difference in cross-polarized terms due to differing coordinate

systems.

) K3nm T

6. THIRD-ORDER SOLUTION

The solution for third-order fields proceeds similarly. Equations (58)—(70) with N = 3 yield the incident field and |
= 0 terms, and Egs. (83)—(86) with N = 3 are used to obtainthel = 1 and | = 2 terms. Solutions are found to be of the
form

f)m’ 2 2 2 2 hn m ny,my n’fn ng,m’ —-m- mlg(gs)(kxn’ ’ kym" kxn‘ I(ym| I(xnlv kyml)s (99)

n m; ng

where { = a, B, y, or §and g{ is a corresponding function. For a horizontally polarized incident field,
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and the g(f) functions referenced are for horizontal incidence and are evaluated with arguments
922)(kxn + kxnl - kxiv kym + kym1 - I(yi ’ kxnlv kyml) (110)

as specified in Egs. (87)—(91).
For a vertically polarized incident field,
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+ 28,iSnr,nr kpnmkpn"mlllz(un,m’km) - (ekiﬂgkpi
0 0
‘n k#
S(—km(df 2i

le) + kzln m’kzl|(€kzll - kgl))} - Ekpn’m'kpn”m”( g,(BZ)

Vol. 16, No. 11/November 1999/J. Opt. Soc. Am. A 2731

)(kpnlm/ - Cn/’nﬂkpn//mﬂ)

- g1a

+ Sprnr(Kpinm G — €koGR)) + Cnr nr(Kprnrm G + ekoeﬁ)], (112)

kzli

Ch.n'Sn i(
) ) kO

g ( i )[(ku(k% - ki))
7 Kzmm' + Koznrme €kyi + Kyaj

)(kzn’m'Klnm — Kokanm)

I(zli
~ Sn.n'Cn,iK2nm K (—ksnm + Kznrme) + Sn.n’
0

+

kzlikpnm
ZSn i k—
0

" Sn',iko kzn’m’(Eku kzl|)
3(kp — ki) kg

2 2 2
- kpn’m’kpn”m”(ggx) - g(y)) + Cn’,n"(_koc':‘(lv

I(zli K kzn’m’
~ Cnhn'Cn ik2nm 0o~ Ksnm
Ko Ko

k3 k2
Cnri
- m( ekzi — Kj1i —

2
- Sn’,n”(kzn’m’GELv)

where the G, through G,, functions are defined analo-
gously to those for horizontal polarization except that the
9% functions are for vertical incidence and are evaluated
with arguments

(2)(kxn + kxn - kxi ) I(ym + kyml - kyi1 kxnlv kyml)

(115)
as specified in Egs. (95)—(98).

7. REFLECTED AND TRANSMITTED
POWER

Given the field solution to third order in surface height,
reflected and transmitted powers can also be derived to
third order. Since the power in a particular Floquet
mode is directly proportional to its amplitude squared,
and since distinct polarizations are orthogonal, the rel-
evant quantities to consider are

0 1 2
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where { represents «, 3, ¥, or 6. Collecting terms of iden-
tical order yields

[Zormr? = (407 2 + (2Re{g 6 )

nm’

+ (¢ |2+2Re{§<°)* @b

n’,m’

+ (2Re (g d) y + 2Re (g0 d D

(10 2 + 2Re g o )

n’,m’ n ,m’

+ 2Re{f% o) b+ (117)

n ,m
where individual orders are grouped inside parentheses,
and a fourth-order term has been included as well, even
though ¢ has not yet been derived. Immediately it can
be recognized that the zeroth-order term represents the
reflectivity of a flat surface, and also that terms multiply-
ing g(o)m, are evaluated only with n” = m’ = 0 since
g( )m, vanishes for all other indices; these terms represent
corrections to the flat-surface reflectivity. |If it is as-
sumed that the surface has a zero spatial average value
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(i.e., hgo = 0) then the first-order term vanishes since it
is directly proportional to hyo. All other terms exist in-
the general case and contribute to reflected and transmit-
ted powers. Fractions of the incident power reflected into
a specific polarization of a Floquet mode (n’, m’) can be
shown to be

kznlm! 2

Re 1212, (118)
kzi

where { = « or B, and the fraction of power transmitted

into a specific polarization of Floquet mode (n’, m’) in a

lossless medium can be shown to be

kzln’m’ P
Re 1%, (119)
I(zi

where { = yor 4.

Since the small-perturbation method is frequently
applied in the analysis of stochastic surfaces, it is also
of interest to consider scattered and transmitted coherent
and incoherent powers. In this case, the results are con-
siderably simplified by assuming that each point on the
surface profile z(x,y) is a zero mean random variable
[i.e., (z(x,y)) = 0] so that ¢(h, ) = 0 also, as shown
in Eq. (2).

<|§n’,m’ - <§n’,m’>|>2 = |g(§1)(kxn’ ) kym’)|2<|hn’,m’|2>
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tion can be derived for the effective transmission coeffi-
cient in a lossless medium. Note an expansion of the co-
herent power |(F‘Zﬁ)\2 similar to equation (117) is required
to group coherent power terms to third order consistently.
Note also that the second and third order terms above in-
volve the surface power spectrum (|h, |?) and the sur-
face bi-spectrum (hy hy m h-n_n, —m-m,) respectively.
If it is further assumed that the surface is a Gaussian
random process, the bispectrum vanishes and there is no
third-order contribution to the effective reflection coeffi-
cient. Calculation of the fourth-order coherent reflected
power requires knowledge of ¢ and is not considered
here.
The expansion for incoherent powers produces

<|§n’,m’ - <{n’,m’>|2>
= ) + 2 Re (L 1)
F (2 = (€2 D) + 2 Re (0%, 0 (122)

to fourth order; note that the third-order solution for
fields is sufficient to determine incoherent scattered and
transmitted powers to fourth order. Equation (122) can
be rewritten as

+ 2 Re[z E (h:/,mfhn,mhn’fn,m’7m>g(gl>*(kxn’ ) kym’)g({Z)(kxn’ ’ kym’ ’ kxn: kym)
m n

+ 2 2 2 2 [<hn’fn,m’fmhn,mh:w7nl,m'fmlhzl,m1> - <hn’fn,m’fmhn,m>
m

n o m; ng

X <h:1"—nl,m’—mlhzl,mlﬂg(f)(kxn’v kym’ ’ kxn: kym)g(gZ)*(kxn’ ) kym’ [l kxnlv kyml)

+ ZRE[Z z E E <hn,mhn1,mlhn’—n—nl,m’—m—mlh—n’ﬁm»
m

n m; ng

X g(gg>(kxn’ ’ kym’ ’ kxna kymv kxnlv kyml)g(gl)*(kxn’ ’ kym’) ’ (123)

In this case, the coherent reflectivity,

KOI? = (TEHI? (120)
with ¢ = « or B is found to exist only in the specular di-

rection n’ = m’ = 0 up to third order, and the effective
reflection coefficient (Ffff) is given by

<F§ﬁ> = F{ + E 2 <|hn,m|2>g(§2)(kxi ’ I(yiv kxn1 kym)
m n

+ 2 2 2 2 (Namho, mNonn, —mem,)
m

n m; ng

X 9(43)(kxi ) kyi ’ kxnv kymv kxnlv kyml) (121)

to third order in surface height. A corresponding equa-

showing the dependencies of incoherent power at second
order on the surface spectrum, at third order on the sur-
face bispectrum, and at fourth order on quantities that
can be related to the surface trispectrum, power spec-
trum, and correlations between Fourier coefficients.
Again for a Gaussian random process the bispectrum and
third-order power terms vanish, while the fourth order
power term can be expressed in terms of the surface
power spectrum only.?

Incoherent scattering cross sections per unit area for a
nonperiodic surface (whose dimensions must be large
compared with the electromagnetic wavelength and any
surface features, and neglecting edge scattering effects)
can also be derived from these results by considering the
limit as the surface periods approach infinity following
Ref. 2. The scattering cross section per unit area at a
particular scattering angle [related to (n’, m’)] and in a
particular polarization can be shown to be
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(1%
Sk ok,
where ok, = (2m)/L, and dk, = (2m)/L, are differential
quantities that cancel when h,, ., terms are related to

their continuous counterparts.
The definitions

o, = 4wk} cos? 6 (124)

<|hn',m’|2>
Sk, Sk,

= W(kxn/ - kXi , kymr - kyi), (125)
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and
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= T(kyn — Kyis kym’ - I(yiv Kyn = Kyis
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where W, B, and T represent the continuous surface
power spectrum, bispectrum, and a quantity that can be
related to the trispectrum, respectively, allow the sums
over n and m variables in the coherent and the incoherent
power expressions to be converted into integrals over the
corresponding wave numbers. For a continuous Gauss-
ian random process, o, up to fourth order can be simpli-
fied to

o (Kynr, Kym') = 417kgcoszasOgg“(kxn,,kym,HZVV(kxn

+f dkan' dkym{W(kyn —

+ g(§2)(kxn’ ’ kym’ ’ kxnv kym)g(§2)*(kxn’ ’ kym’ ’ kxn’ -
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vanishes whenever the ¢ ¢M* term vanishes. Since
cross-polarized g(gl) vanishes in the plane of incidence, the
(@ ¢ @* term alone is sufficient for calculation of cross-
polarized backscattering as in Ref. 2.

A final quantity of interest is the total fraction of power
reflected from a surface in all scattered polarizations,
which is defined as the total surface reflectivity and which
can be related to the surface emissivity to determine sur-
face thermal emission. It has been shown in Ref. 15 that
the small-perturbation method produces an expansion in
surface slope and not in surface height for this quantity,
making the preceding equations sufficient for determin-
ing the surface total reflectivity up to third order in sur-
face slope. Calculation of the total surface reflectivity re-
quires inclusion of both coherent and incoherent terms,
and powers in all scattered Floquet modes are summed.
Application of these results to the computation of surface
thermal emission will be discussed in a future paper.

8. SAMPLE RESULTS

Example SPM results for both periodic and nonperiodic
surfaces are considered in this section. Results will be
compared at second, third, and fourth order to determine
the influence of higher-order terms, and fourth-order pre-
dictions are also compared with predictions of other scat-
tering theories: the small-slope approximation'? (SSA)
and a Monte Carlo simulation with the method of
moments®2® (MOM) in the nonperiodic case, and the ex-
tended boundary condition (EBC) numerical method®! in
the periodic-surface case.

The first surface type considered is a nonperiodic,
Gaussian random-process surface with an isotropic
Gaussian correlation function, completely characterized

kxi ) kym - kyi)W(kxn' -

- kxivkym’ - I(yi)

kxna kym’ - kym)[|g(gZ)(kxn’ ' I(ym' ' kxn: kym)|2

kxn + kxi ) kym’ - kym + kyi)]}

+ 2 Re{W(kxn’ - kxi ) kym’ - kyi)g(gl)*(kxn’ ) kym’)J' dkxnj dkymw(kxn - kxi ) kym - kyi)

X [g(g3)(kxn’ ) kym’ ’ kxnr kym: kxn’ ’ kym’) + g(g3)(kxn’v I(ym’ ) kxn’ ) kym’ ’ kxnr kym)

X g(gs)(kxn’ ’ kym’ vkxn: kym ’ 2kxi - kxn ’ 2kyi - kym)]])- (128)

The first line of Eqg. (128) represents the second-order
(W MW* term, and the following two integrals are the
fourth-order ¢®;@* (considered previously in Ref. 2)
and {®¢M* (not considered previously) terms, respec-
tively. Note that the ®¢®* term is directly propor-
tional to g&* (Kyns , Kym )W(Kynr = Kyi Kymr — kyi) and

by the rms surface height h and correlation length | pa-
rameters. Again for this surface type, third-order power
terms vanish, and Eq. (128) was used to calculate cross
sections per unit area up to fourth order. Fourth-order
terms required a numerical evaluation of the integrals in
Eqg. (128), which was performed with Gauss—Legendre
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Fig. 1. In plane, HH bistatic scattering cross sections per unit

area for a Gaussian correlation function surface with h = 0.06A
and | = \, 6; = 10°, and € = 3.
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Fig. 2. Comparison of SPM, SSA, and MOM bistatic scattering
cross sections per unit area for a Gaussian correlation function
surface with h = 0.06N and | = \, §; = 10°, and e = 3. (a) HH,
(b) VV.

quadrature. In-plane, horizontally polarized (HH) bi-
static scattering cross sections at second and fourth order
are compared in Fig. 1 for h = 0.06N, | = A, and € = 3
and with a horizontally polarized plane wave incident at
10° from normal incidence. The definition of 65 in this
figure results in forward scattering occurring at 6
= 10°, while backscattering occurs at 6; = —10°.
Curves for the (¢ @* and ¢®¢®* contributions to
fourth-order results are also included and illustrate that
both terms contribute to the total results. The ¢ ()¢ M*
terms reduce second-order cross sections primarily at
near-specular angles, whereas the ¢@®¢®@* terms are
more important at nonspecular angles. Second- and
fourth-order HH and VV SPM predictions are compared
with the zeroth-order SSA in Fig. 2, and fourth-order
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SPM results are observed to be in good agreement with
the SSA. Results from a 50-realization Monte Carlo
MOM simulation are also included in Fig. 2 and confirm
the accuracy of the SSA and the fourth-order SPM for this
case. Monte Carlo results were calculated with the
canonical-grid technique!® in a four-scalar-function-
unknown MOM for a penetrable surface?® to improve
computational efficiency and were obtained for surfaces
size 16N X 16N sampled in 128 X 128 points. The ta-
pered incident field described in Ref. 19 with g = 5 was
used to eliminate edge scattering effects, but it causes in-
accuracies for large bistatic scattering angles, so MOM re-
sults are included only for scattering angles within 70° of
normal in Fig. 2. Further comparisons of the SSA and
the fourth-order SPM were performed for several differ-
ent h and | values, and fourth-order predictions were
found to provide improved agreement with the SSA for
surfaces with small slopes, h < 0.06\, and | < \.

To demonstrate a surface for which there is a third-
order power contribution, a periodic asymmetric pyrami-
dal surface is considered next, as shown in Fig. 3. This
surface is essentially a square-based pyramid, but the
peak of the pyramid is shifted to an off-center position
along the y axis. The surface is defined to have zero
mean, and in addition it is passed through a low-pass fil-
ter that removes all Fourier coefficients with (n?
+ m?¥ > 8. This low-pass filter is used to avoid the
slope discontinuity that occurs at the peak of the ideal
pyramid. Reflection from a grating with P, = P, = 8\,
pyramid peak-to-peak amplitude A = 0.2\, peak location
at y = 6.5\, and € = 10 + i10 is considered for a hori-
zontally polarized plane wave incident at 40° from normal
incidence and at azimuthal angle 25° from the x axis.
Percent reflectivities in HH and VH polarizations from
the SPM at second, third, and fourth orders are listed in
Tables 1 and 2, respectively for near-specular modes with
n’ and m’ indices ranging from —1 to 1. Note that the
flat-surface reflectivity |I',|? has been removed from the
n’ = m’ = 0 mode of the HH results. Numerical EBC
results are also included in the table, and the percent dif-
ference from SPM predictions at each order are provided.
Since it can be shown that the bispectrum of this surface
does not vanish, a third-order correction is present in

o

o

a
1

Surface height (m)
o
|

o

=)

a
|

8
y?m) ° ° ! X (m)

Fig. 3. Asymmetric pyramidal surface.



Joel T. Johnson

Vol. 16, No. 11/November 1999/J. Opt. Soc. Am. A 2735

Table 1. HH Percent Reflectivities in Near-Specular Modes for an Asymmetric Pyramidal Grating

n’ m’ 2nd Order % Error 3rd Order % Error 4th Order % Error EBC
-1 -1 0.4179 12.1026 0.5313 11.7512 0.4864 2.3203 0.4754
-1 0 1.8678 16.4719 1.8687 16.5297 1.5803 1.4544 1.6036
-1 1 0.3703 47.0581 0.2765 9.8100 0.2407 4.4029 0.2518
0 -1 1.5182 14.1400 1.9825 12.1124 1.8150 2.6402 1.7683
0 0 —9.5415 9.5528 —9.5390 9.5236 —9.0517 3.9289 —8.7095
0 1 1.4223 53.4238 1.0175 9.7531 0.8786 5.2270 0.9271
1 -1 0.3476 12.0005 0.4306 9.0083 0.4020 1.7676 0.3950
1 0 1.5900 12.0881 1.5890 12.0178 1.4032 1.0782 1.4185
1 1 0.3246 35.3334 0.2564 6.9021 0.2336 2.5837 0.2398

Table 2. VH Percent Reflectivities in Near-Specular Modes for an Asymmetric Pyramidal Grating

n’ m’ 2nd Order % Error 3rd Order % Error 4th Order % Error EBC
-1 -1 0.0077 9.5123 0.0095 11.5730 0.0087 1.7186 0.0085
-1 0 0.0223 14.1052 0.0226 15.4892 0.0195 0.0952 0.0195
-1 1 0.0382 50.9989 0.0275 8.8139 0.0239 5.4594 0.0253
0 -1 0.0710 11.9212 0.0900 11.7378 0.0825 2.3427 0.0806
0 0 0.0000 100.0000 —0.0000 100.0003 0.0000 1.1943 0.0000
0 1 0.0542 65.0593 0.0360 9.6698 0.0304 7.3185 0.0328
1 -1 0.0288 9.4042 0.0347 9.4267 0.0322 1.5075 0.0317
1 0 0.0123 16.0286 0.0122 15.1979 0.0106 0.5083 0.0106
1 1 0.0032 54.8619 0.0022 5.7218 0.0020 4.3421 0.0021

these tables. Third-order power contributions are com-

of thermal emission makes these higher-order terms very

posed primarily of the 2 Re{a{J*a@} terms, although a
small correction to the specular-reflection coefficient is ob-
tained from the third-order field expressions. A similar
level of corrections is obtained at fourth order in these
tables, although the fourth-order specular term is not in-
cluded for reasons previously discussed. Again, the com-
parison with EBC results is not exact for this moderately
rough surface, but it shows the improvement obtained as
higher-order SPM terms are included.

9. CONCLUSIONS

A systematic procedure for determining higher-order
terms in the small-perturbation method has been pre-
sented and has been applied to determine SPM scattered
fields up to third order in surface height. Although the
procedure is based on the Rayleigh hypothesis for deter-
ministic, periodic surfaces, the results can be generalized
to the nonperiodic and stochastic surface cases as well.
Sample results that illustrated the utility of these new
terms were presented; in particular it was shown that
third-order field terms can contribute to scattered powers
at fourth order even for surfaces with vanishing bispectra
and to a specular-reflection coefficient correction at third
order if the surface has a nonvanishing bispectrum, im-
plying a horizontal or vertical skewness in the surface
profile. The final case is of particular interest for passive
remote sensing of the ocean, since it is the horizontal
skewness of the ocean surface that gives rise to first azi-
muthal harmonic variations of brightness temperatures.
In addition, the fact that the SPM produces a series in
surface slope, not height, when applied to the calculation

applicable to the emission problem. Such applications
will be considered in future work.
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