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ABSTRACT

We compare the numerical evolution of one-dimensional gravity waves in response to a traveling

surface pressure pulse using a highly accurate boundary integral method and two relatively efficient

approximate models (West et al and Benney–Luke). In both water of finite-depth and in the

deep-water limit the steady state effect of the decaying pressure ramp is to create a profile which

approximates a Stokes wave. Moreover, the transient surface profile appears to evolve through a

series of Stokes waves of time varying amplitude. Results show all three models to yield similar

predictions for lower amplitude waves, while the West et al and boundary integral predictions differ

from the Benney–Luke model at higher amplitudes.

Keywords: Water waves, boundary integral method, numerical hydrodynamics
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1 Introduction

Despite significant advances in high performance computing, the direct numerical simulation of

water waves remains impractical. The alternative is to develop simplified approximate models that

still capture the important nonlinear aspects of water waves. Here we consider two such models

(West et al and Benney–Luke) which seem to offer great promise in that they accurately capture

wave-wave interactions and are also amenable to numerical solution by spectral methods. To make

such models truly useful, however, we must investigate the range of wave amplitudes for which

these models are reliable. In this paper, we compare results from a direct numerical simulation of

one-dimensional gravity waves in response to a traveling surface pressure pulse to results from the

two approximate models to investigate their ranges of validity.

The evolution of gravity waves on an inviscid, irrotational, and incompressible fluid of depth

H is described by the velocity potential φ(x, y, z, t) and free surface displacement η(x, y, t) and is

governed by Laplace’s equation and three boundary conditions:

φxx + φyy + φzz = 0 z < H + η (1)

φz = 0 z = 0 (2)

ηt + ηxφx + ηyφy − φz = 0 z = H + η (3)

φt +
1

2
(∇φ)2 +

1

2
φ2
z + gη = 0 z = H + η (4)

Alternatively, these equations can be written in dimensionless form by choosing g = H = 1 or,

more formally, by introducing scales for each variable. In the deep-water limit, the origin of the

vertical axis is shifted to the undisturbed fluid level and the bottom boundary condition becomes

|∇φ| → 0, z → −∞. In this study, we consider both the finite-depth and deep-water cases, but

restrict our attention to the one-dimensional version of these equations, ignoring all terms involving

the y spatial coordinate.
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While analytically intractable, solutions to these equations can be found numerically using

a boundary integral (vortex sheet) technique (Baker et al, 1982). In this method, the velocity

potential φ is expressed as an integral of a dipole distribution of strength µ along the free surface,

thus satisfying Laplace’s equation. The potential generated by the dipole distribution must match

the potential at the surface. Thus, using the surface coordinate p and surface profile η̄(p), we must

have at any time t

φ(p) =
µ(p)

2
+

∫

µ(q)
∂G

∂n(q)
(η̄(p), η̄(q)) dS(q) (5)

in which ∂G
∂n

is the normal derivative of the Laplace equation Green’s function G taken with respect

to the integration variable, and the integral is taken as a principal-value. For deep-water, the

Green’s function that of free-space; for water of finite-depth, an image surface contribution is

added to ensure no vertical flow at z = 0.

Given initial values of φ(p) and η̄(p), Equation (5) can be solved for µ; the vector-potential can

then be computed as

A(p) =

∫

µ(q)n(p)×∇G (η̄(p), η̄(q)) dS(q) (6)

With the restriction to a one-dimensional surface, the vector potential reduces to an expression

for the streamfunction. By differentiating both the potential and the vector-potential, the velocity

at the interface is determined and the free surface η̄ can be updated. Finally, φ is updated using

the dynamic boundary equation (Equation (4)) at the surface. The computational complexity of

the current implementation is O(N 2), where N is the number of grid points sampling the surface

profile, due to use of an iterative algorithm for solving Equation (5). The parametric representation

of the surface in terms of p results in a grid spacing which is not necessarily uniform horizontally;

the grid density typically increases in profile regions with more rapid spatial variations.

If the ratio of amplitude to depth is assumed to be small, an asymptotic expansion about the

undisturbed fluid level allows the two surface boundary conditions to be reduced to a single equation

for the velocity potential, from which the surface profile η can be found. The expansion is expressed

in terms of parameter ε = a
H
<< 1, in which a is the scale for the surface profile η. Benney and

Luke (1964) derived such an equation for waves in shallow water, although this type of expansion
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was used earlier by Hasselmann (1961) to describe wave-wave interactions. Recently, Milewski and

Keller (1998) derived a similar evolution equation for water of finite-depth; the extension to deep-

water is straightforward. The one-dimensional, finite-depth version of the Benney–Luke equation,

in which O(ε3) terms are ignored, is given as follows:

utt + Lu+ εN1(u, u) + ε2N2(u, u, u) = 0 (7)

with quadratic terms

N1(u, u) = 2uxuxt + 2LuLut + utuxx − utLutt (8)

and cubic terms

N2(u, u, u) = utLut(uxx − L2u) + 2ut(uxxtLu− uxtLux − uxLuxt)

+
1

2
uxx

(

3u2
x − (Lu)2

)

+
1

2
L2u

(

u2
x + (Lu)2

)

+ 2uxLuLux

(9)

In this dimensionless equation u(x, t) = φ(x, 1, t) is the velocity potential at the undisturbed free

surface and L is the pseudo-differential operator L = (−∂xx)
1

2 tanh
[

(−∂xx)
1

2

]

. The water surface

is given by 1 + εη(x, t), where

η = −ut + εT1(u, u) + ε2T2(u, u, u) + ... (10)

with

T1(u, u) = utLut −
1

2

(

u2
x + (Lu)2

)

(11)

and

T2(u, u, u) = ut(uxLux − uxxLu+
1

2
utuxxt)− ut(Lut)

2 +
1

2
Lut

(

u2
x + (Lu)2

)

(12)

The same equations apply for gravity waves in deep-water except that L = (−∂xx)
1

2 . Equation (7)

can not be integrated numerically in the form given because of the quadratic term −utLutt in theN1

term . If we replace utt with −Lu− εN1(u, u)+O(ε2) in this term, we obtain utL
2u in the equation
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for N1(u, u), and we must add the additional cubic term utL[N1(u, u)] to N2. Because all nonlinear

terms in this formulation can be calculated pseudospectrally, the computational complexity of

the solution is O(N logN) when a uniform grid is employed. In principle, the expansion can be

continued beyond the O(ε3) terms described above, but the required analytic derivation of the

expressions becomes very tedious.

Another major approach to analyzing the water wave equations, due to Zakharov (for example,

Zakharov 1999), is to rewrite the two free-surface boundary conditions in terms of the velocity

potential at the surface φs(x, y, t) and note that the resulting equations are derivable from a single

Hamiltonian. By expanding this Hamiltonian in orders of η, Zakharov has derived the coefficients

governing wave interactions for both the finite-depth and deep-water regimes. Following the Za-

kharov approach, West et al (1987) use an expansion of φs in orders of η and an expansion of φz

about the undisturbed fluid level to derive an efficient algorithm for the evolution of η and the veloc-

ity potential at the surface. Defining the velocity potential at the surface as φs(x, t) = φ(x, η(x, t), t)

and lettingW (x, t) = φz(x, η(x, t), t), the surface boundary conditions may be rewritten as follows:

ηt = −ηxφ
s
x +W (1 + η2

x) (13)

φst = −gη −
1

2
(φsx)

2 +
1

2
W 2(1 + η2

x) (14)

The unique aspect of the West et al method lies in the computation of W , which is difficult since

φ is known only at the surface. By expanding φs in orders of η and also expanding φz about the

undisturbed fluid level, W can be expressed as a series in terms of pseudo-spectral products of η

and φs. The expansion is easily automated to allow calculation of arbitrary order contributions,

and the algorithm is O(N logN) when a uniform grid is employed. The “high order spectral

method” (Dommermuth and Yue, 1987) for hydrodynamic evolution of a surface is an equivalent

hydrodynamic technique based on a similar expansion. In the results to be illustrated, terms up

to 6th order in η were included. However, as discussed in (West et al, 1987), the higher–order

products of η and φs encountered in computing W result in an oversampling requirement in order

to retain a specified spectral content for the profile; this requirement will be shown to influence the

number of surface profile grid points needed in the comparison between methods.
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2 Simulation parameters

In our experiments, the generation of waves is initiated by a traveling surface pressure pulse of

decaying amplitude with the form:

P (x, t) = a(t)ei(kox−ωot) + ∗ (15)

where ∗ refers to the complex conjugate and the complex amplitude is given by

a(t) = α
A

ω2
0

e−αt
2

(2αt2 − 1 + 2iωot) (16)

This form of the pressure was chosen so that a traveling wave of wavenumber ko, frequency ωo, and

steady state amplitude A is a solution to the linearized water wave equations. Here α controls the

rate of decay of the pressure as well as the time to reach the steady state wave height. When the

above pressure-forcing term is included on the left-hand-side of the dynamic boundary condition,

each of the three water wave models must be modified accordingly. This modification is straight-

forward in the Vortex and West et al methods as the pressure term enters the equations directly.

For Benney–Luke, the addition of the pressure term P results in the forcing term

−Pt(kox− ωot) + ε
(

PtLut − Pxux − P (uxx + L2u)
)

(17)

on the right-hand side of Equation (7).

In all of our experiments we pick a spatial domain, assumed periodic, of length L = 2π. The

initial condition is an undisturbed fluid surface η(x, 0) = 0, φ(x, z, 0) = 0. Our choice for the

pressure parameters are α = 1
(400)2

, A = 0.3, ko = 1 and ω2
o = |ko| tanh(|ko|) for finite-depth and

ω2
o = |ko| for deep-water. This choice of A should produce a final profile for which nonlinear effects

are observable, while the value of α used will ensure that temporal variations in the pressure ramp

occur over the scale of several wave periods in the linear dynamics case (i.e. the Gaussian function

multiplying the pressure reaches e−1 at T=400, while the linear wave period is less than 8 time

units.)

The Benney–Luke model is evolved in time using a 4th-order Runge-Kutta scheme (∆t = 0.01)

while the West et al and boundary integral models use a 4th-order predictor–corrector scheme
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(∆t = 0.01). These choices of time step values are sufficient so that the amplitudes presented are

accurate within approximately 10−6 for all the times considered. The number of gridpoints for each

method is chosen such that the change in the amplitudes a1, a2, and a3 is less than 10−6 when the

number of gridpoints is doubled. For the West et al method, Nx = 64 gridpoints were used for both

the deep-water and finite-depth cases, while Nx = 32 points were used in the Benney–Luke and

boundary integral methods for all experiments. The higher sampling rate required for the West

et al method is a consequence of the higher order products inherent in the method, as discussed

previously.

3 Results

Figures 1 and 2 plot the temporal evolution of the first four modes of a cosine transform of the

surface profile for the deep-water and finite-depth cases, respectively. Curves are included for all

three methods up to a final time of T = 1200; results from the boundary integral code are interpo-

lated to a regular grid to allow simple computation of the cosine transform. In both the deep-water

and finite-depth cases, increasing mode amplitudes are observed for times less than 400, while re-

laxation to lower steady state amplitudes follows at later times. Note the steady state amplitude

obtained for mode one is significantly less than the linear value of 0.3, indicating that non-linear

interactions are playing an important role in the temporal evolution. Good general agreement is

observed among the three methods for all cases, with the West et al and boundary integral code

amplitudes remaining within 0.1% for all times and all amplitudes considered. These small differ-

ences make the boundary integral and West et al results indistinguishable in the plots illustrated.

Larger differences between the West et al and boundary integral methods are observed for higher

mode numbers, but these amplitudes are sufficiently small to make comparisons susceptible to

other errors. The Benney-Luke method shows a somewhat larger error for modes one through four,

particularly at larger mode amplitudes and for the fourth mode in the deep-water case. These

errors are due to the lower order used in the Benney-Luke code implemented (third-order versus

sixth-order terms in the West et al results). Moreover, the calculation of η in Equation (10) for
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the Benney–Luke is also only third-order. Adding more terms to this latter expansion is relatively

easy, but is meaningless unless higher-order terms are included in the Benney–Luke equation itself.

This is a daunting task (and a limitation of the method) as the number of terms at each successive

order grows very rapidly.

Since the mode amplitudes plotted in Figures 1 and 2 converge to a steady state, comparison

with Stokes’ wave solutions is considered in Figures 3 and 4 for the deep-water and finite-depth

cases, respectively. The time evolution of mode |a2| versus |a1| and mode |a3| versus |a1| every t = 1

for each method is plotted in these figures, as well as a similar comparison for the exact Stokes’

wave over the given range of amplitudes. Note that the density of data points in these graphs is

lowest near the origin where the pressure function is increasing most rapidly. The exact Stokes’

wave is computed using a method outlined by Schwartz (1974) for water at any depth, and checked

with the method of Longuet-Higgins (1985) for water of infinite depth. Results show the boundary

integral and West et al methods to track the exact Stokes’ wave curve well as the pressure function

changes even through the increasing, relaxation, and steady state portions of the time evolution.

The Benney-Luke curve shows some deviations, again primarily at higher amplitudes.

4 Conclusion

The results of this study show the West et al method to provide highly accurate computations for

Stokes waves up to ka1 products of approximately 0.18 in deep water and 0.13 in finite depth (the

maximum values obtained in response to the traveling pressure pulse considered.) The Benney-Luke

approach also provides generally accurate computations, but shows some errors particularly in the

finite depth case and in the fourth and higher modes for deep water. The particular simulation

considered demonstrates the formation of an approximately “adiabatically evolving” Stokes wave

in response to a slowly varying traveling pressure pulse.
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Figure 1: Evolution of modes |a1|, |a2|, |a3|, and |a4| for the deep–water case. Vortex and West et
al results are indistinguishable in the plots shown.
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Figure 2: Evolution of modes |a1|, |a2|, |a3|, and |a4| for the finite-depth case. Vortex and West et
al results are indistinguishable in the plots shown.
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Figure 3: Evolution of modes |a2| versus |a1| and |a3| versus |a1| for the deep–water ca se. Vortex
and West et al results are indistinguishable in the plots shown.
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Figure 4: Evolution of modes |a2| versus |a1| and |a3| versus |a1| for the finite-depth case. Vortex
and West et al results are indistinguishable in the plots shown.
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