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Abstract— High frequency approximations to the physical
optics (PO) theory of scattering from exponentially correlated
rough surfaces are examined and used to interpret the expected
accuracy of the PO theory.

As an introduction, a review of the PO theory for Gaussian
correlated surfaces is provided, and in this process an analytical
summation of the PO series for specular scattering from Gaussian
correlated surfaces is obtained. A similar form is then derived
for specular scattering from exponentially correlated surfaces and
contrasted to the Gaussian case. These series allow the accuracy
of the leading order term (i.e. the geometrical optics (GO)
limit) in the high frequency approximation of physical optics
scattering for Gaussian or exponentially correlated surfaces to
be investigated analytically.

The leading order term in the high frequency expansion for
general physical optics scattering from exponentially correlated
surfaces (Hagfors’ Law) is then reviewed and interpreted in terms
of a recently published theory of physical optics for surfaces
with infinite rms slopes. The approximate “cutoff” wavenumber
from Hagfors’ Law at which the high frequency portion of the
spectrum of an exponentially correlated surface can be truncated
without producing large errors in PO predicted scattering is also
discussed.

Using this cutoff wavenumber, an approximate region of
validity of the complete physical optics theory for exponentially
correlated surfaces is obtained. The validity condition indicates
that, for fixed surface statistics, the PO method produces accurate
predictions of true surface scattering only up to a specific
frequency, and that PO is inaccurate in the high frequency
limit. Comparisons of PO predictions with those of a Monte
Carlo numerical simulation are used to show that the validity
condition derived appears to provide a reasonable indication
of PO accuracy. These results have important implications for
current investigations of scattering from exponentially correlated
surfaces and for the use of Hagfors’ Law, as it is traditional
to accept PO as the appropriate high frequency limit in most
existing approximate models of surface scattering.

Index Terms— Rough Surface Scattering

I. INTRODUCTION

THE geometrical optics (GO) approximation [1]-[2] is
widely used to model near-specular scattering from ran-

dom rough surfaces due to its simplicity and the requirement
that only the rms slope of the rough surface be known. The
GO result is obtained as the leading order term in a high
frequency expansion of the standard physical optics (PO)
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theory. With “single-scale” surfaces for which all roughness
scales are reasonably large compared to the electromagnetic
wavelength, the rms slope required in the GO can be directly
computed from the statistical properties of the roughness; this
is the case with the widely used Gaussian correlation function
model of a Gaussian random process surface. For “multi-scale”
surfaces containing roughness on a wide range of length scales
(including length scales comparable to or shorter than the elec-
tromagnetic wavelength) use of the geometrical optics theory
requires careful consideration. One problem that can occur in
such cases involves the fact that the rms slopes of multi-scale
surfaces are often infinite. A common method used in practice
is to retain the GO theory with an additional “cutoff wavenum-
ber” parameter to be used in determining the rms surface slope.
The cutoff wavenumber defines a high-frequency truncation
point in the surface spectrum beyond which contributions to
the rms slope are neglected. This approach is widely used in
modeling scattering from the sea surface; reference [3] shows
that reasonable near-specular backscattering responses from
ocean-like surfaces can be predicted if the cutoff wavenumber
is chosen as twice the electromagnetic wavenumber. Other
analytical studies reaching similar conclusions have also been
reported [4].

References [5]-[6] have further demonstrated an analytical
basis for this approach for Gaussian random process surfaces,
and provide a method for determining an appropriate cutoff
wavenumber. These references also discuss criteria for pre-
dicting the expected accuracy of the PO approximation once
the cutoff wavenumber is determined.

This paper provides a detailed examination of the use of
both the GO and PO theories for surfaces with exponential
correlation functions. This multi-scale description of surface
roughness has an infinite rms slope, but is widely used in
remote sensing applications, particularly those involving soil
surfaces. The high frequency limit for scattering from an
exponentially correlated surface (known as Hagfors’ Law) has
previously been derived [7], and is also widely used in mod-
eling radar returns from planetary surfaces. A recent paper [8]
provides a complementary examination of Hagfors’ law, and
shows that the scattering cross sections obtained fail to satisfy
power conservation when integrated over bistatic scattering
angles, as is expected for any scattering cross sections based
on the PO theory. Reference [8] also explores the impact of a
finite surface area on Hagfors’ Law, and furthermore compares
scattering from surfaces with exponential correlation functions
with those described by a more general fractal model. However
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fractal surface descriptions beyond the exponential correlation
function model are not considered further here, as this paper is
focused on the expected accuracy of the PO/GO theories for
exponentially correlated surfaces and the impact of surface
spectral truncation on scattering predictions.

The paper begins by determining a complete analytical high
frequency expansion of the physical optics theory for the
case of specular scattering in order to examine the potential
accuracy of more general high frequency expansions (such
as Hagfors’ Law) for which only the first series term is
determined. As a review of the traditional GO approximation
and for contrast with the exponentially correlated case, Section
II presents this process for Gaussian correlated surfaces and
derives a simple analytical representation for the resulting
specular scattering. The process is then applied for expo-
nentially correlated surfaces in Section III, and it is shown
that the resulting specularly scattered cross sections remain
frequency dependent in contrast to traditional expectations.
The expressions obtained in both the Gaussian and exponential
correlation function cases show that the first term in the
high frequency series (Hagfors’ Law in the exponential case)
provides an excellent match to specular PO predictions as long
as the surface rms height is greater than approximately one half
the electromagnetic wavelength.

In Section IV, the methods of [5]-[6] are applied for the
exponential case to re-derive Hagfors’ Law (i.e. the first
term in a high frequency expansion) that is applicable both
for specular and non-specular scattering. Hagfors’ Law of
scattering shows a frequency dependence in the high frequency
limit, and includes a term that can be identified as a frequency
dependent effective slope variance of the surface.

The extent to which the resulting equations can be inter-
preted as originating from a surface with a spectrum truncated
below a specified cutoff wavenumber is then examined in
Section V. Using the methods of [6], the cutoff wavenumber
implicit in Hagfors’ Law, which increases as the square of
the frequency, is re-derived. Because the truncated surface
has a finite slope variance, the traditional GO approximation
following [6] can be applied, but is shown to produce only
moderate accuracy in matching the true leading order PO
high frequency limit. However, further computations with a
recently proposed band-limited exponential surface model [9]
in Section VI confirm that true exponential surface scattering
can be modeled with reasonable accuracy as originating from
the specified truncated surface.

An approximate validity condition for the use of the phys-
ical optics theory for scattering from exponentially correlated
surfaces is then derived in Section VII based on the properties
of the truncated surface. Comparisons of PO predictions with
those of an exact numerical method are also illustrated in
Section VII in order to investigate the validity condition
proposed. Implications of the validity condition for studies
of scattering from exponentially correlated surfaces are then
presented in Section VIII.

II. HIGH FREQUENCY ASYMPTOTIC SERIES FOR SPECULAR

PO SCATTERING FROM AN ISOTROPIC GAUSSIAN

CORRELATED SURFACE

To introduce the paper’s notation and to review the tradi-
tional GO expansion, a complete high frequency expansion of
specular scattering from Gaussian correlated surfaces is first
examined.

Begin with the Gaussian correlation function

C(ρ) = exp

(

−
(ρ

l

)2
)

(1)

Here l represents the surface correlation length and h is used
to denote the surface rms height. The ensemble averaged
incoherent normalized radar cross section (NRCS) for these
surfaces obtained from the physical optics theory is given by
[2]
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(
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Qz = ẑ · Q (5)

Qρ =
∣

∣Q − ẑQz

∣

∣ (6)

The subscripts α, β refer to the scattered and incident field
polarizations, respectively, and are to be chosen from H for
horizontal or V for vertical. The function Γα,β depends on the
Fresnel reflection coefficients of the mean surface evaluated
at the stationary phase point as described in [10]-[11]; for
in-plane scattering problems Γ is identical to the Fresnel
reflection coefficient evaluated at the stationary phase point in
the appropriate polarization when α = β (co-pol scattering)
and vanishes for α 6= β. Polarization subscripts on Γ and σ
will be dropped henceforth for simplicity. In the above it is
assumed that K0 and K are the vector wavenumbers of the
incident and scattered plane waves, respectively, and that the
direction ẑ represents the normal to the mean surface pointing
into the region from which the incident field originates. The
symbol K will be used to denote the scalar wavenumber in
the incident medium (i.e.

∣

∣K0

∣

∣) in what follows.
If specular scattering is considered (i.e. K and K0 are

identical except for a change in the sign of their ẑ components,
so that Qρ = 0), then the co-polarized NRCS expression
simplifies to

σ = |Γ|2 k2
z l2e−4k2

zh2

∞
∑

n=1

(

4k2
zh2
)n

n!n
(7)

where kz is defined as ẑ ·K = −ẑ ·K0, and Γ represents the
Fresnel reflection coefficient evaluated at the incidence angle
(the stationary phase point) for the mean surface boundary. In
standard practice, the NRCS would be evaluated by numeri-
cally summing the above series.
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However, the series expansion in equation (7) can be
summed analytically following [12] as

∞
∑

n=1

(

4k2
zh2
)n

n!n
= Ei(4k2

zh2) − ln
(

4k2
zh2
)

− γ (8)

where Ei represents the exponential integral function and
γ = 0.577215664 is Euler’s constant. This results in a simple
analytical form for the specularly scattered NRCS as

σ = |Γ|2 k2
z l2e−4k2

zh2 (

Ei(4k2
zh2) − ln

(

4k2
zh2
)

− γ
)

(9)

which is the principal result of this section.
The GO is obtained in the high frequency (i.e. kz ap-

proaches infinity) limit. In this limit, the argument of the expo-
nential integral function becomes large, so that the asymptotic
form
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is useful. Substituting this into the NRCS equation yields
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with the leading order term

σ ≈ |Γ|2 l2

4h2
(12)

=
|Γ|2
s2

(13)

where s2 is the slope variance of the surface 4h2/l2. This
leading order term is the traditional GO result for specular
scattering, and should provide an accurate approximation of
the PO series for 4k2

zh2 >> 1. The traditional GO NRCS is
independent of frequency and uses the true slope variance of
the surface.

The analytical summation of the PO series in Equation
(9) provides a simple method for estimating the degree to
which the GO approximation of PO is accurate for Gaussian
correlated surfaces. For example, in near normal incidence
backscattering the error in neglecting higher order terms in
equation (11) is less than 3 percent when h > λ/2 where λ is
the electromagnetic wavelength. Note the question of accuracy
of the PO approximation for Gaussian correlated surfaces is
not addressed here, but has been studied numerous times in
the literature.

A similar process is applied in the next section to determine
a high frequency asymptotic series for specular PO scattering
from exponentially correlated surfaces.

III. HIGH FREQUENCY ASYMPTOTIC SERIES FOR

SPECULAR SCATTERING FROM AN ISOTROPIC

EXPONENTIALLY CORRELATED SURFACE

In this case, the correlation function is

C(ρ) = exp
(

−ρ

l

)

(14)

The ensemble averaged incoherent normalized radar cross
section (NRCS) for these surfaces obtained from the physical
optics theory is given by [13]
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In the specular direction this expression for co-polarization
becomes

σ = 2 |Γ|2 k2
z l2e−4k2
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To proceed, rewrite the sum above as the function

f(x) =

∞
∑

n=1

xn

n!n2
(17)

where x = 4k2
zh2. Although this sum is not easily approx-

imated analytically, its asymptotic properties can still be ex-
amined. Begin with the fact that f(x) satisfies the differential
equation

xf ′(x) + x2f ′′(x) = ex − 1 (18)

where the prime indicates differentiation with respect to the
argument. An asymptotic analysis of this differential equation
suggests that the substitution

f(x) ≈ ex

x2
g(x) (19)

is appropriate. The resulting differential equation for g(x) can
then be solved perturbatively in 1/x for x large. This process
yields eventually

f(x) ≈ ex

x2

(

1 +
3

x
+

11

x2
+ · · ·

)

(20)

up to second order in 1
x for g(x). Figure 1 is a plot of

f(x)x2/ex that illustrates convergence toward unity for x
large; the approximation including terms up to second order
in 1/x is also included in the plot.

Using this result, the specular NRCS for large 4k2
zh2

becomes
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For near normal incidence backscattering, corrections to the
leading order term are less than 9 percent for h > λ/2. The
leading order term is

σ ≈ |Γ|2
2

l2

h2
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IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, MONTH XXXX 4

0.1 1 10 100 500
0.01

0.1

1

2

x

f(
x)

 x
2 /e

x

 

 

Exact
Approximate

Fig. 1. A plot of f(x) divided by ex/x2; the approximate g(x) up to second
order in 1/x is also included

where in analogy to the Gaussian case (equation (13)), s̃2

is used to represent an effective slope variance; the reason
for including the factor 2 in the denominator above will be
made clear in Section V. The quantity C = (l/[2Kh2])2

introduced in the final statement of equation (22) is the
constant traditionally used in Hagfors’ Law; equation (22) is
Hagfors’ Law evaluated for specular scattering.

The effective slope variance is

s̃2 =

(

h

l

)2
(

4k2
zh2
)

(23)

=
k2

z

K2C
(24)

and involves both a slope-like term h/l and the quantity 4k2
zh2.

The latter indicates that the leading order high frequency
limit (Equation (22)) remains dependent on frequency and
the observation angle. This behavior is distinct from the
Gaussian case, but could perhaps be justified in terms of a kzh
dependent cutoff wavenumber when computing the rms slope
of the exponential surface. This possibility is investigated in
Section V. While the quantity 1/

√
C is typically taken as an

effective rms slope in the Hagfors model, equation (24) makes
clear that the 1/

√
C corresponds to the effective rms slope

only when normal incidence backscattering is considered.

IV. GENERAL LEADING ORDER HIGH FREQUENCY LIMIT

FOR EXPONENTIAL SURFACES: HAGFORS’ LAW

References [5]-[6] present a generalization of the high
frequency limit for PO scattering from infinite slope surfaces.
For surfaces with finite slope variance, the limit takes on the
traditional form that is independent of frequency. For surfaces
with infinite slope variance, the high frequency limit of the
physical optics integral becomes an “alpha-stable distribution”
that is difficult to express analytically in general but can
be expanded in an asymptotic series. In this section, the
procedures of [5]-[6] are applied to show that the alpha-
stable distribution for exponentially correlated surfaces has the

simple analytical form of Hagfors’ Law. The expansion of this
distribution is then examined in Section V.

Begin with the cross section written in terms of the physical
optics integral:
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with J0 denoting the Bessel function of zeroth order.
Typically the GO limit is obtained by expanding the cor-

relation function at the origin. However for a surface with
infinite rms slopes, a Taylor expansion of C(ρ) at the origin
does not exist. Instead, reference [5] describes an expansion of
the correlation function at a point near, but not at, the origin,
through use of the form

C(ρ) ≈ 1 − 1

Q2
zh

2
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(27)

= q(ρ) (28)

The parameters α and ρ0 are chosen to satisfy

C(ρ0) = 1 − 1
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2
(29)

C ′(ρ0) = q′(ρ0) (30)

where the prime denotes differentiation. The approximation
q(ρ) matches the values of C(ρ) at the origin and the point
ρ0 (where the argument of the exponent in the PO integral is
-1), as well as the derivative of the correlation function at ρ0.
For the exponential correlation function, the values of ρ0 and
α can be shown to be
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with the final approximate forms applying as Q2
zh

2 approaches
infinity. Note these choices result in the expansion C(ρ) ≈
1−ρ/l being used, but this is now justified as a limit obtained
when points near, but not at, the origin are considered.

Substituting q for C into equation (26) and neglecting the
term e−Q2

zh2

gives
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in the limit Q2
zh

2 approaches infinity. This integral can be
evaluated using an integral table [14] to obtain

σ ≈ Q4 |Γ|2
4Q2

z

2
l2

Q4
zh

4

[

1 +

(

Qρ

Qz

)2
l2

Q2
zh

4

]−3/2

(34)

=
|Γ|2
2s̃2

[

1 +

(

Qρ

Qz

)2
1

s̃2

]−3/2(

1 +
Q2

ρ

Q2
z

)2

(35)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, MONTH XXXX 5

Kh

In
ci

de
nc

e 
an

gl
e 

(d
eg

)

−50

−25

−10

−5

−1

1

5

1020

1 1.5 2 2.5 3 3.5 4 4.5 5

10

20

30

40

50

60

70

80

Fig. 2. Filled contour plot of the percent difference between equations (35)
and (15), versus Kh and incidence angle, for l/h = 3 and at backscattering.
Errors are less than 10 percent for kh > 2.7, indicating the accuracy of
Hagfors’ Law in approximating PO predictions

where

s̃2 =

(

h2

l2

)

Q2
zh

2 =
Q2

z

4K2C
, (36)

which matches equation (24) for specular scattering. Again Γ
above for in-plane scattering problems refers to the Fresnel
reflection coefficient evaluated at the stationary phase point
(i.e. computed for a surface normal that bisects the incidence
and scattering directions). Equation (35) is found to match
the leading order result obtained in equation (21) for specular
scattering (Qρ = 0), and remains dependent on frequency.
Equation (35) is Hagfors’ Law of scattering from an expo-
nential surface, and can be regarded as the leading order high
frequency approximation of the PO theory for this case. It also
represents the “alpha stable distribution” of references [5]-[6]
for exponentially correlated surfaces. Note that it does not
have the form of the typical GO approximation, which would
involve an exponential function in Q2

ρ/Q
2
z .

To examine the accuracy of Hagfors’ Law (equation (35)) in
approximating the original PO result (equation (15)) a set of
computations were performed for backscattering at incidence
angles from 0 to 89 degrees in steps of one degree, as well
as for Kh values 1, 1.2, · · · , 5 and l/h values 1, 1.5, · · · 10.
The percent difference between the predictions of equation
(35) and those of equation (15) is illustrated in Figure 2
as a filled contour plot for the choice l/h = 3. Note that
this plot is independent of the surface dielectric properties.
Percent differences are shown for the range -25 to +20 percent.
Results show very small errors (within 10 percent) for Kh
values larger than 2.7 as previously predicted, with the largest
errors somewhat surprisingly occurring for small incidence
angles. Unlike the traditional GO approximation, equation
(35) appears reproduce PO predictions even at large incidence
angles, so long as Kh is not small.

Figure 3 plots versus Kh and l/h the maximum absolute
value of the percent error between equations (35) and (15),
with the maximum taken over backscattering data at incidence
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Fig. 3. Filled contour plot of the maximum absolute value of the percent
difference between equations (35) and (15), with the maximum taken over
backscattering at incidence angles 0, 1, · · · 89 degrees. The leading order high
frequency limit provides an excellent match to PO predictions for Kh values
greater than approximately 2.8.

angles 0, 1, · · · 89 degrees. The results again show relatively
small differences that decrease rapidly as Kh increases. The
percent error in the approximation approaches a constant value
for large L/h, and in this region the maximum percent error is
for normally incident backscattering. A percent error indepen-
dent of L for normally incident backscattering is consistent
with the behavior of the higher order terms for specular
scattering in equation (21). Note the accuracy of the physical
optics theory in general is questionable for the smaller L/h
values in the figure. Overall, these results show that equation
(35) is a highly useful approximation for the physical optics
theory of scattering from an exponential correlated surface, for
moderate to large Kh values.

Figure 4 presents results analogous to those in Figure 2,
again with l/h = 3, but for in-plane bistatic scattering at in-
cidence angle 20 degrees. The scattering angle is here defined
so that a value of −20 degrees corresponds to backscattering
while +20 degrees is the specular angle. Very small errors
(within approximately 10 percent) are again observed at all
scattering angles for Kh larger than 2.7. As in Figure 2, the
largest errors continue to be located near the specular region.

V. APPROXIMATION WITH A “TRUNCATED”
EXPONENTIALLY CORRELATED SURFACE

While equation (35) does not have the form of the traditional
geometrical optics theory, its predictions could possibly be
approximated by the traditional geometrical optics theory if
a method for determining the appropriate rms slope were
defined. Reference [6] discusses a method for doing so for
general infinite rms slope surfaces; the arguments supporting
this method are examined here for exponentially correlated
surfaces.
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Fig. 4. Filled contour plot of the percent difference between equations (35)
and (15), versus Kh and in-plane bistatic angle, for l/h = 3 and polar
incidence angle 20◦. Hagfors’ Law remains a good approximation for PO
bistatic scattering so long as Kh is large.

A. PO and alpha-stable distributions

Begin with the form of the high frequency approximation
presented in equation (33):

σ ≈ Q4 |Γ|2
4Q2

z

2

∫ ∞

0

dρ ρ J0(Qρρ)e−
ρ

ρ0 (37)

=
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dx
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−∞
dy eiQxxeiQyy

e−
√

x2+y2

ρ0 (38)

The integration above has the form of a Fourier transform eval-
uated at the point Qx, Qy , and is the basis for the interpretation
of PO scattering in terms of an alpha-stable distribution. If the
function being transformed is regarded as the characteristic
function of a random vector, the result of the transform is the
probability density function of the random vector evaluated at
the point Qx, Qy (although scaled by constant multipliers).

Following this process, the characteristic function corre-
sponding to equation (38) is

φ(x, y) = e−
√

x2+y2

ρ0 (39)

= e−
Q2

zh2
√

x2+y2

l (40)

which from reference [15] is known to be the characteristic
function of a “symmetric alpha stable” random vector; the par-
ticular random vector here has an isotropic Cauchy probability
density function [15].

Symmetric alpha stable (SαS) random vectors have the
property that a random vector defined as a sum of many
independent, identically distributed (iid) SαS random vectors
will have a probability density function of similar form to that
of each of the original iid random vectors. The particular case
of interest here involves a random vector defined as

Y =
1

bn

n
∑

r=1

Xr (41)

where each Xr random vector is independent and has the
characteristic function of equation (40). The sum random
vector Y will also have the characteristic function of equation
(40) if the “norming constant” bn is chosen to be n. This is
verified by the fact that the characteristic function of a sum
of n iid random vectors is the characteristic function of one
of the iid random vectors raised to the nth power, while the
characteristic function of X/bn is φ(x/bn, y/bn).

Reference [6] recommends that equation (38) be interpreted
as proportional to the pdf (or “distribution”) of a sum of
n = Q2

zh
2 random vectors, each with a pdf p(qx, qy) that cor-

responds to the inverse Fourier transformation of e−
√

x2+y2/l:

p(qx, qy) =
l2

2π

[

1 + q2
ρl2
]−3/2

(42)

where q2
ρ = q2

x + q2
y; the above equation is identical to the

power spectrum of the exponential surface divided by the
surface height variance, called the normalized power spectrum
in what follows. Though the number of random vectors clearly
can be non-integer in this case, reference [6] states that the
results to follow are not affected by this fact. PO NRCS
values are then directly proportional to the resulting alpha-
stable distribution obtained in this process.

B. Expansion of alpha-stable distribution using truncated
surfaces

While for exponential surfaces the alpha-stable distribution
can be expressed analytically (equation (35)), it is also pos-
sible to express this alpha-stable distribution as an expansion
involving quantities that are more similar to traditional GO
and composite surface model forms. The expansion uses an
alternate means for obtaining the pdf of a sum of random
vectors: repeated convolution of the pdfs of each random
vector in the sum. Using this repeated convolution form,
reference [6] proposes a separation of the individual pdf’s into
two truncated portions as

p1(qx, qy) = p(qx, qy) (43)

for qρ < kmax, and zero otherwise. The function p2 is defined
as p(qx, qy)−p1(qx, qy). The repeated convolutional form can
then be written as a series of terms involving varying numbers
of p1 functions convolved with p2 functions.

Reference [6] argues that the term involving p1 convolved
with itself n times should provide the leading order approxi-
mation in the high frequency limit for near-nadiral backscat-
tering. Because the truncated pdf p1 has a finite rms slope,
the leading order term can be approximated through the
central limit theorem using a form similar to the traditional
geometrical optics method with the rms slope determined
using the truncated pdf:

σ ≈ Q4 |Γ|2
Q2

z

m̂
Q2

zh2

0

Q2
z s̃

2
e
−

Q2
ρ

Q2
zs̃2 (44)
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where the moments of p1 of interest are

m0(kmax) = h2

∫ ∞

−∞
dqx

∫ ∞

−∞
dqy p1(qx, qy) (45)

= h2

(

1 − 1

R

)

(46)

m̂0(kmax) =
m0(kmax)

h2
(47)

m2(kmax) = h2

∫ ∞

−∞
dqx

∫ ∞

−∞
dqy q2

ρ p1(qx, qy) (48)

=
h2

l2
(R − 1)

2

R
(49)

with R =

√

1 + (kmaxl)
2. The slope quantity s̃2 in equation

(44) is to be taken as m2(kmax) at present. The factor m̂
Q2

zh2

0

is obtained in equation (44) in the central limit theorem due
to the fact that p1 integrated over the (qx, qy) plane is m̂0.
As is well known, m2 (the slope variance of the truncated
exponential surface) approaches infinity as kmax becomes
arbitrarily large.

C. Prediction of cutoff wavenumber

The final issue involves determination of the truncation
wavenumber kmax to utilize. As discussed in [6], the norming
constant bn in (41) can also be determined through the multi-
dimensional central limit theorem for infinite variance random
vectors. The theorem specifies that the norming constant
satisfies an equation involving the rms slope of the truncated
surface, as follows:

b2
n

l2
=

n

h2
m2

(

bn

l

)

(50)

which for the known bn = n = Q2
zh

2 provides a condition on
the effective slope as

s̃2 = m2

(

Q2
zh

2

l

)

(51)

This equation can be shown to hold for the previously defined
value of s̃2 (equation (36)) as Q2

zh
2 becomes large through

the use of equation (49). Because the argument Q2
zh

2/l of
m2 above represents a truncation of the surface spectrum,
reference [6] argues that

kmax = Q2
zh

2/l = Qz s̃ (52)

should be used as the cutoff wavenumber when defining a
truncated rms slope for the surface. The original derivation
of Hagfors’ law [7] obtained an identical cutoff wavenumber
based on consideration of the regions of maximum contribu-
tion in the physical optics integral.

D. Evaluation of traditional GO approximation for truncated
surface

Using the definition of m̂0 for this value of kmax, it can
be shown that m̂0(kmax)Q2

zh2

approaches to 1
e in the high

frequency limit, and the scattering cross section becomes

σ ≈
(

Q4 |Γ|2
Q4

z

1

s̃2
e
−

Q2
ρ

Q2
zs̃2

)

(

1

e

)

(53)

=
|Γ|2
es̃2

e
−

Q2
ρ

Q2
zs̃2

(

1 +
Q2

ρ

Q2
z

)2

(54)

While this result is similar to the complete high frequency
approximation (equation (35)), it fails to match equation (35)
in the high frequency limit for specular scattering by the factor
2
e , which represents a 1.33 dB error. In addition, equation
(54)’s dependence on Q2

ρ/Q
2
z at first order is one half that of

equation (35).
Equation (54) is in error for two reasons. First, the slope

variance of the truncated surface (i.e. p1) is large enough that
the Gaussian function obtained by applying the central limit
theorem to the multiple convolution of p1 is not sufficiently
accurate. The true multiple convolution of p1 is more peaked
and has longer tails than a Gaussian (e.g., it is more like a
long-tailed stable distribution than a Gaussian). Physically, this
means that the small-scale surface roughness is large enough
in amplitude even for the truncated spectrum that the facets
of the surface cannot be approximated as smooth. Second, the
small scale roughness above the cutoff wavenumber in p2 is
large enough that the second term of the convolution series is
non-negligible relative to the first term even for specular scat-
tering. This has essentially the same physical interpretation as
the first error contribution. Above-cutoff surface components
cause long-wavelength surface facets to scatter diffusely, so
facets tilted away by the long-wavelength components scatter
appreciably in the specular direction. The second series term is
therefore larger than it would be for a smoother surface. Note
these errors are more pronounced for the exponential surface
(k−3

ρ spectrum) than they would be for an ocean-like surface
(k−4

ρ ) due to the much greater amplitudes of the short scale
roughness in the exponential case.

Although Equation (54) is not asymptotically exact in the
high frequency limit, it remains a close approximation to
the exact value of the physical optics integral. This suggests
that the surface spectrum can be truncated at the cutoff
wavenumber kmax with only a modest impact on PO predicted
scattering cross sections. The next section provides further
analysis of the issue of truncation of the spectrum.

VI. COMPUTATION OF PO SCATTERING FROM A

TRUNCATED EXPONENTIAL SURFACE

The preceding section showed that a truncated exponential
surface spectrum with the cutoff wavenumber kmax = Q2

zh
2/l

could produce PO scattering similar to that from a true
exponential spectrum in the high frequency limit. However
the preceding section also showed that the accuracy of the
traditional GO form (54) that results from a single term
approximation to the repeated convolution may be limited. In
this section, a recently developed model for “band-limited” ex-
ponential surfaces [9] is utilized in order to investigate further
the effects of surface truncation on PO NRCS predictions.

The band-limited exponential surface model developed in
[9] truncates the high frequency portion of the exponential
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Fig. 5. Convergence of PO NRCS predictions for band-limited exponential
surfaces truncated at wavenumber kcut to those obtained from equation (35).
Ratio indicated in decibels as a function of kcut/kmax for backscattering at
incidence angles of 0, 30, and 60 degrees and for three sets of surface Kh,
Kl parameters (indicated in figure titles).

spectrum by multiplying it by a Gaussian roll-off at high
frequencies. This Gaussian rolloff is defined to take on the
value e−1 at a wavenumber kcut. Reference [9] discusses the
correlation function that results for this surface, as well as a
method for evaluating PO NRCS predictions. While this band-
limited surface model is not precisely a truncated exponential
surface of the type defined in equation (43), an examination of
NRCS predictions for the band-limited model as kcut is varied
can nevertheless provide information on the effect of spectral
truncations.

PO scattering predictions were computed using the band-
limited model for kcut ranging from kmax/2 to 3kmax.
Results of these computations are illustrated in Figure 5 in
which the ratio of the complete PO NRCS obtained from the
bandlimited surfaces to that obtained from the high frequency
approximation for true exponential surfaces (equation (35)) is
plotted in decibels, versus the ratio kcut/kmax. Computations
were performed for the cases Kh = 10, Kl = 100 (plot
(a)), Kh = 10,Kl = 50 (plot (b)), and Kh = 20, Kl =
100 (plot (c)). The curves shown represent NRCS ratios for
backscattering at 0, 30, and 60 degrees incidence. The results
show convergence as kcut increases, with the level of error
reduced for kcut in the vicinity of kmax, though there is
spread in the rate of convergence among the curves illustrated.
In particular, results for larger Kh or h/L values typically
converge more slowly due to the increasing importance of
terms neglected in the single term convolutional form. Overall,
the results of Figure 5 demonstrate that surface features below
the cutoff wavenumber kmax determined in Section V appear
to play an important role in the total scattered returns, but
the contribution of shorter scale features are not completely
negligible. Nevertheless, the spectral truncation point kmax

does provide a reasonable order of magnitude estimate for the
length scales producing the dominant scattering contributions.

VII. A VALIDITY CONDITION FOR THE USE OF PHYSICAL

OPTICS WITH EXPONENTIALLY CORRELATED SURFACES

Reference [6] proposes a method for assessing the potential
accuracy of the physical optics method for a given surface,
through a comparison of the average radius of curvature of
the truncated surface to the electromagnetic wavelength. The
region where the physical optics method is expected to be
applicable for backscattering is described by

1√
m4

cos3 θ >>
2π

K
(55)

where θ is the polar observation angle, and m4 is the fourth
moment of the truncated surface spectrum, given by

m4(kmax) = h2

∫ ∞

−∞
dqx

∫ ∞

−∞
dqy q4

ρ p1(qx, qy) (56)

=
h2

3l4
(R − 1)

3
(R + 3)

R
(57)

Substituting equation (57) into equation (55) along with the
choice kmax = Q2

zh
2/l yields the following approximate con-

dition for applicability of physical optics upon simplification
in the high frequency limit:

(Kh)

(

h

l

)

<< 0.2 (58)

which can also be written as

s̃ << 0.2
Qz

K
(59)

or

C >> 6.25 (60)

This first and last conditions are found to be independent of
the incidence angle. The results show that the ratio h/l (a
“nominal slope” of the surface) must be extremely small as
Kh becomes large in order for the physical optics theory to be
applicable, and that the PO theory is invalid as the frequency
becomes infinite (note that C = (l/[2Kh2])2 decreases as the
frequency increases.)

A comparison of PO predictions with those of a numerically
exact method was performed in order to provide a basic
assessment of this validity condition. While the capabilities
of Monte Carlo methods for computing rough surface 3-D
scattering problems continue to increase [16], exponentially
correlated surfaces present significant computational chal-
lenges due to the large range of roughness scales involved.
To reduce computational requirements, numerical simulations
were performed for surfaces rough in one direction only (i.e. 2-
D scattering problems), using the method of moments (MOM)
technique described in [17].

Examination of the PO method in this case requires a re-
evaluation of equations (15), (35), (54), and the predicted kmax

value for one dimensional surfaces. The appendix of reference
[17] provides the relevant formulation for equation (15), as
well as the definition of the bistatic scattering coefficients to
be illustrated. Note however that here the reflection coefficient
described in the appendix of reference [17] is replaced with the
reflection coefficient evaluated at the stationary phase point.
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Expressions analogous to equations (35) and (54) can then be
derived as shown in Sections IV and V. Explicit expressions
are very similar to those for the 3-D scattering problem, and
are omitted here to avoid confusion. The kmax value predicted
by the multi-dimensional central limit theorem is found to be
that of the 3-D case multiplied by

√
2.

One dimensional numerical simulations used penetrable
surfaces with length 100 (for the smallest correlation length
to be shown) or 200 wavelengths with the relative dielectric
constant typically chosen as 15.57 + i3.71. A tapered wave
incident field was utilized to reduce surface edge scattering
effects, and a high sampling density retained in order to
ensure accurate computations as described in [17]. Results
were computed for 150 (smallest correlation length case) or
60 surface realizations with either horizontally (labeled “TE”)
or vertically (labeled “TM”) polarized incident fields. The
results to be shown are for in-plane bistatic scattering patterns
at incidence angle 40 degrees, with a default Kh value of
2.51. Values of Kl were chosen as 12.6, 41.9, or 83.8, so that
the left hand side of the validity condition (equation (58)) is
respectively 0.503, 0.1508, or 0.0754 (corresponding C values
are 1, 11.1, and 44.3, respectively, while corresponding s̃ val-
ues for backscattering are 0.77, 0.23, and 0.12, respectively).
Numerical simulations were also performed for Kh = 5.02
and Kl = 83.8 and 167.4 (using a slightly different dielectric
constant of 14.15+ i5.21) in order to investigate the behavior
of the PO approximation as the frequency is increased; these
cases represent a doubling of frequency from the Kh = 2.54,
Kl = 41.9 and 83.8 simulations, and have corresponding
validity parameters of 0.301 and 0.1508, double those obtained
in the lower frequency computation.

Figure 6 illustrates the comparison of true PO (solid curves,
analogous to equation (15)), truncated surface GO (dotted
curves, analogous to equation (54)), and numerically computed
results (dashed curves) for the three lower frequency cases as
well as the Kh = 5.02, Kl = 83.8 case for TE and TM
incident fields. Results analogous to equation (35) are not
plotted, but were within 0.7 dB of true PO predictions for
all cases and all scattering angles. The comparisons in plots
(a) through (f) clearly show an improving accuracy of PO
predictions compared to MOM as the validity parameter is
reduced. Near specular results are typically most accurate in
TE polarization, while a tendency of PO to overestimate TM
scattering in the near specular region is observed particularly
for larger values of the validity parameter. However for non-
specular regions, these behaviors are reversed, and PO more
closely follows the MOM results in the TM case. The truncated
surface GO approximation is observed to provide a reasonable
prediction of PO results in the near-specular region, with
relatively small errors that in the near specular region are
largest at the specular angle.

Plots (g) and (h) correspond to the plots (c) and (d)
cases when the frequency is doubled. The results show a
decreased accuracy in the PO approximation as the frequency
is increased, particularly for TM polarization. Simulations with
the frequency doubled from the plots (e) and (f) cases were
also performed, but are not illustrated because the results are
nearly identical to those at the lower frequency in plots (c)

and (d), and again indicate a decrease in the accuracy of the
PO approximation as the frequency is increased.

Reference [17] states that the physical optics approximation
is “invalid at any frequency” for exponentially correlated
surfaces. However this conclusion was reached with regard
to the relatively large slope surfaces investigated in reference
[17]. The results of Figure 6 clearly show that the PO solution
can provide an accurate prediction of exponential surface near-
specular scattering, so long as surfaces with small “nominal
slopes” (for which the validity condition (58) is satisfied) are
considered. Further more detailed evaluations of the accuracy
of the PO theory for exponentially correlated surfaces must
await future numerical simulations.

VIII. CONCLUSIONS

This paper has examined the geometrical and physical optics
theories of scattering for exponentially correlated surfaces. As
an introduction, an analytical form for PO specular scatter-
ing from surfaces with Gaussian correlation functions was
presented, and found to provide higher-order corrections to
the standard geometrical optics theory in the high frequency
limit. A similar expansion was derived for specular scattering
from exponentially correlated surfaces, and found to involve a
frequency dependent term similar to an effective rms slope of
the surface. Both these specular expansions can be useful for
assessing the accuracy that the high frequency approximation
of physical optics may achieve.

A further detailed examination of the high frequency limit
for exponentially correlated surfaces was then performed,
following the methods of [5]-[6] which have primarily been
applied for pure power-law spectrum (i.e. ocean-like) surfaces
in the past. Equation (35) is Hagfors’ Law, which provides the
leading order high frequency approximation for PO scattering
from exponential surfaces in a form that is convenient for use
in applications. The approximation has a form that is distinctly
different from the traditional GO approximation, and remains
dependent on frequency.

Attempts were then made to assess whether the exponential
results could be interpreted in terms of scattering from a
spectrally truncated surface, as has often been proposed in
the past. The approach of [6] applied for exponentially cor-
related surfaces yielded the Hagfors’ Law cutoff wavenumber
kmax = Q2

zh
2/l for determining surface rms slopes; when

used, this cutoff wavenumber was found to produce the
slope-like parameters of equation (35) in the high frequency
limit. However, the single term approximation of the repeated
convolution described in [6] was found to produce a 1.33 dB
error for specular scattering even in the high frequency limit,
and also to fail to match the correct variations with incidence
angle. Nevertheless, computations of PO backscattering from
band-limited exponential surfaces of the type proposed in [9]
showed that NRCS predictions indeed showed some degree of
convergence to the true high frequency limit when surfaces
were truncated at wavenumbers near the derived kmax value.
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Fig. 6. Comparison of PO (solid curves), truncated GO (dotted curves), and numerically computed (MOM, dashed curves) bistatic scattering coefficients for
one dimensional surfaces with Kh = 2.51 or Kh = 5.02 (plots (g) and (h)), relative permittivity 15.57 + i3.71 (14.15 + i5.21 plots (g) and (h)) and for
incidence angle 40 degrees. Kl parameters and incident field polarizations are shown in Figure titles. The value of left hand side of the validity condition
(equation (58)) is also shown in the figure titles.

The obtained kmax value can be written as

kmax = Qz (Qzh)

(

h

l

)

= Qz s̃ (61)

= 4K cos2 θ (Kh)

(

h

l

)

(62)

where the final form applies for backscattering. The inclusion
of the factor Kh in the kmax definition is particularly unusual
for a high frequency theory, since it will approach infinity in
the limit, indicating that even surface features much smaller
than the electromagnetic wavelength contribute to PO scattered
returns. These properties also make clear that the effective rms
slope of the surface s̃ increases with frequency. The extreme
high frequency content of the exponential surface results in
this behavior.

Furthermore, it is interesting to observe that the rms height
of the truncated portion of the surface (given by htrun =
h/

√
R from equation (46)) always satisfies

khtrun =
k

Qz
(63)

for the specified value of kmax; this product is independent
of frequency or surface statistics. This choice of cutoff is
consistent with rules often put forward in the two-scale theory
of rough surface scattering, in that the integrated rms height of
the surfaces roughness removed from the “large scale” surface
is small compared to the wavelength.

The validity condition derived shows that use of the PO
theory for exponential surfaces requires very “smooth” sur-
face statistics, and that for fixed surface statistics the PO
theory becomes less applicable as the frequency is increased,
in contrast to traditional expectations. Because the validity
condition requires that the product of the two final terms in
equation (62) is << 0.2 (as well as the Hagfors parameter
C >> 6.25), the obtained kmax value must be less than
approximately K in order to produce a reasonably accurate PO
prediction of surface scattering. This is not a surprising result,
but indicates that PO accuracy is lost in the true high frequency
limit due to the increasing importance of contributions from
surface roughness length scales that are small compared to the
electromagnetic wavelength. A set of numerically computed
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data was utilized to provide a preliminary verification of
the validity condition. Further tests of PO accuracy and the
derived validity conditions will require additional studies and
simulations with more accurate methods.

The consequences of the derived validity condition can
be important for continued studies of scattering from ex-
ponentially correlated surfaces, as many of the approximate
electromagnetic models currently applied reproduce PO in the
high frequency limit. Careful evaluations of other approximate
theories [1], such as the integration equation method (IEM)
or the small slope approximation (SSA), will be required
in order to ensure that reasonable predictions are achieved
for exponentially correlated surfaces with rms heights large
compared to the electromagnetic wavelength.
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