
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 1, JANUARY 2000 605

Communications______________________________________________________________________

Formulation of Forward–Backward Method Using Novel
Spectral Acceleration for the Modeling of Scattering from

Impedance Rough Surfaces

Hsi-Tseng Chou and Joel T. Johnson

Abstract—F-BM/NSA [3] with computational complexity of ( ) is
very efficient in method of moment (MoM) modeling of large-scale scat-
tering problems from rough surfaces. The previous formulation for PEC
surfaces is here extended to treat impedance surfaces. Similarly, numer-
ical experiment shows F-BM/NSA is far more efficient than the competitive
BMIA/CAG [4] in the order of magnitude.

Index Terms—Forward-backward method, method of moment (MoM),
rough surfaces, scattering.

I. INTRODUCTION

Iterative forward–backward method (F-BM) [1], [2] with novel spec-
tral acceleration (F-BM/NSA) [3] has been shown to be very efficient
in solving the method of moment (MoM) matrix equations for the
large-scale scattering problems from the one-dimensional (1-D) rough
surface. F-BM requires only three or four iterations to obtain a very
accurate solution in many cases of practical applications, and the NSA
algorithm reduces the computational complexity fromO(N2) in the
original F-BM approach toO(N), whereN is the number of unknowns
in MoM modeling. This is true in the operational count of both the
matrix-vector multiplication and memory storage as the surface length
increases for a fixed frequency. In the previous paper [3], the algo-
rithm was formulated for perfectly electrical conducting (PEC) rough
surfaces. The formulations of an NSA algorithm for impedance rough
surfaces are presented in this paper. The numerical results will be com-
pared with a competitive method of the banded-matrix iterative ap-
proach/canonical grid (BMIA/CAG) [4]. Similar to the PEC cases, it
is found that the CPU time required is also a very small portion of that
obtained from BMIA/CAG.

II. FORMULATION

A large-scale problem of scattering from a 1-D rough surface such as
an ocean-like surface is illustrated in Fig. 1, in whichz = f(x) denotes
the impedance surface profile. The MoM matrix equation in terms of
electrical fieldE for a taperedTMz plane wave incidence (Ei) on the
surface is given by [5]

Z � I = V : (1)

Approximated expressions for the elements ofZ are [5] shown in (2)
(shown at the bottom of the next page), where
 is the Euler number
0.577 216,�0 and�1 are the permittivities of the nonmagnetic regions
above and below the surface profile respectively,k = !

p
�0�0 is the

propagation constant in free space, and~�n denotes the position vector
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Fig. 1. Impedance rough-surface profilez = f(x) and geometric
interpretation of asymptotic “lit” region along forward sweeps.L is the
distance within which the source elements have strong interaction with the
receiving element.

at the center of thenth element. In (2),g(~�n; ~�m) is the Green’s func-
tion given by

g(~�n; ~�m) =
j

4
H

(1)
0 (kj~�n � ~�mj) (3)

where H
(1)
0 is the zeroth order Hankel function of the first

kind. The elements ofV and I are given byVn = Ei(~�n) and
In = (@E(~�n)=@n). In (1), I = [In] is the unknown matrix to be
found. The iterative forward-backward sweep procedure described
in [3] can be implemented directly here to solve the induced current
in (1). Like the PEC case, numerical experiments have shown that
usually only three or four iterations are sufficient to obtain accurate
results. However, F-BM requires repeated computation of

Ef( ~�n) =

n�1

m=1

ZnmIm (4)

and

Eb( ~�n) =

N

m=n+1

ZnmIm (5)

which denote the forward and backward radiation by the source current
elements in the front and in the rear of the receivingnth element, re-
spectively, and result in anO(N2) operational count in each iteration.
In this paper, we takeEf as an example and extend the NSA algorithm
previously formulated for the PEC cases in [3] to fast compute (4) and
thus reduce the operational count and memory storage toO(N). The
acceleration on the computation ofEb in (5) can be treated in the same
fashion.

Similar to the development in [3], the acceleration algorithm starts
with the decomposition ofEf in terms of strong interaction contribu-
tion Es and weak interaction contributionEw, respectively.Es is the
field radiated from the strong interaction source group, which is se-
lected within neighborhood distanceLs of receivingnth element. It
is noted that in most of the practical cases,Ls is a very small portion
of the surface length and remains fairly fixed for a given roughness of
surfaces regardless of the surface length, and therefore,Es is found via
the conventional exact computation. On the other hand,Ew, which is
radiated from the source group selected outside the strong interaction
source group, becomes important when the angle of wave incidence is
near grazing or if one is interested in backscattered field. The computa-
tion ofEw becomes most time consuming for a CPU if it is performed

0196–2892/00$10.00 © 2000 IEEE



606 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 1, JANUARY 2000

Fig. 2. Integration contour ofH on the complex� plane.C is the original
contour, andC is the deformed contour.

via the exact computation, and makes F-BM very inefficient. The com-
putation ofEw can now be accelerated via the novel spectral-expansion
technique. One first expressesEw in (4) as

Ew( ~�n) =

n�N �1

m=1

Im �
j

k

�0
�1

@g(~�n; ~�m)

@n

+ g(~�n; ~�m) 1 + (
@f(xm)

@xm
)2�x (6)

whereNs (=Ls=�x) denotes the number of elements that have strong
interaction with thenth element. Employing the spectral representation
of Green’s functiong(~�n; ~�m) in (3) gives

g(~�n; ~�m) =
j

4� C

ejk[(x �x ) cos�+(z �z ) sin�] d� (7)

where in (7), the contour of integrationC� is shown in Fig. 2. Substi-
tuting (7) into (6) gives

Ew( ~�n) =
j�x

4� C

Fn(�)e
jkz sin� d� (8)

whereFn(�) is related to far-field pattern (or plane-wave spectrum) of
the weak interaction group with the reference point selected at(xn; 0),
and it can be found by a recursive procedure

Fn(�) =Fn�1(�)e
jk�x cos � + I(n�1�N )

�0
�1

� sin �

+
@f(xm)

@xm
cos � + 1 +

@f(xm)

@xm

2

� ejk(N +1)�x cos �e�jkz sin �: (9)

Fig. 3. Bistatic scattering pattern of a4096�-long rough surface (rms height
2:27�) illuminated by a tapered field with incident angle of 85�.

It is noted that the far-field pattern in (9) is independent of the receiving
element except the reference point is selected atxn in order to avoid
numerical error. The plane-wave expansion relates the contribution of
source elements’ radiation to the receiving element. It is noted that
far-field patternFn(�) will continuously build up via (9), while a new
source element is born in the weak interaction group as the receiving
element sweeps in the forward direction. On the other hand, the radia-
tion contribution to the receiving element will only rely on the far field
pattern of the direct radiation contribution from the source elements as
described in (8). In practice, it is desirable to employ a new integration
contourC� instead ofC� in (8) because the far field patternFn(�)
in real � space tends to have a narrow main lobe and many narrow
side lobes for a large surface, in contrast to a slowly varying pattern
alongC�. The high efficiency of this algorithm relies on the fact that
for a slowly varying far-field pattern, one may integrate (8) numerically
with a constant sampling rate according to the roughness of the surface
and regardless of the surface length. The criterion in selectingC� is de-
scribed in [3] and is indicated in Fig. 2, where� = tan�1 (1=b) with
b = max [ kRs=20 � �s � 1; 1], �s = tan�1 [(zmax � zmin)=Rs],
andRs = L2

s + (zmax � zmin)2. The integral of (8) over� is dis-
cretized into2Q+1 plane-wave directions and mapped to the real axis
according to the complexity of the far-field pattern in (9). The mapping
in the “lit” region, wherejRe(�)j � �s as indicated in Fig. 1, is given
by

d�! ��e�j� (10)

and

�! �p = p��e�j�: (11)

However, it is noted that alongC� , outside the asymptotic lit region,
the plane waves are highly evanescent and cancel their contribution via
fast oscillation. Therefore, the integrand in (8) may be windowed with

Znm =

j

2k

�0
�1

+
i�x

4
1 +

2j

�
ln

k�x

4e
1 + (df(xn)=dxn)2 + 
 1 + (df(xn)=dxn)2; n = m

�
i

k

�0
�1

@g( ~�n; ~�m)

@n
+ g( ~�n; ~�m) 1 +

@f(xm)

@xm

2

�x; n 6= m

(2)
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Fig. 4. CPU time requirement to solve a matrix equation for the induced
current over rough surfaces (rms height2:27� and�=8 sampling segment)
illuminated by a tapered field with incident angle of 85�.

a filter that is flat over the lit region and tapers to zero in the “shadow”
region (jRe(�p)j > �s) to filter out plane waves that would otherwise
be attenuated via cancellation. The windowed form of (8) is given by

Ew( ~�n) =
j�xe�j�

4�

Q

p=�Q

W (�p)Fn(�p)e
jkz sin � �� (12)

where the window functionW (�p) is unity for jRe(�p)j � �s and
tapers smoothly to zero over a fixed number (usually five on each side)
of oscillations forjRe(�p)j > �s. This reduces the number of plane
waves required to be included in the current approach. Therefore,Q
and�� can be found [3] by

Q =
�s
��

+ 5 (13)

and

�� =
5

kRs

=22: (14)

It is noted that�� depends only on the roughness of the surface and the
size of segment selected for the strong interaction source group. Also
�s is selected according to the maximum roughness of the surface so
that the asymptotic lit region remains fixed for a given surface when the
receiving element sweeps forward and backward. However, in many
cases, one can simply employ�s = (10=kLs) and selectLs �
(zmax � zmin)=4, as suggested in [3].

Using (12) to compute the weak interaction term and direct numer-
ical summation to compute the strong interaction term, the total opera-
tional count involved in this procedure isO(N) [3] in both vector-ma-
trix multiplication and memory storage as the surface length increases
for a fixed frequency.

III. N UMERICAL RESULTS AND DISCUSSION

In this section, F-BM/NSA algorithm is validated by considering
the scattering from a 4096� 1-D impedance rough surface illuminated
by tapered plane wave with a near-grazing incident angle of 85�. The
surface considered is one realization of a 3 m/s windspeed Pierson-
Moskowitz ocean spectrum at 14 GHz (rms height at 2.27�) with a
dielectric constant38 + i40 and is sampled with eight unknowns per
wavelength. The numerical result is compared with a reference solu-

tion obtained from BMIA/CAG. The accuracy of the F-BM is demon-
strated in Fig. 3, where two curves are almost overlapping and cannot
be distinguished from each other. It is noted that both F-BM/NSA and
BMIA/CAG require only three iterations to obtain the converged re-
sult. It is also noted that in some applications, such as if one is in-
terested in the emittivity from dielectric surfaces, eight unknowns per
wavelength may not be sufficient, and more unknowns need to be em-
ployed in MoM modeling. However, this does not affect the validity
of the current approach, because F-BM/NSA tends to accelerate the
computation in solving the unknown current matrix in MoM instead
of trying to modify MoM procedure itself. Furthermore, the number
of total unknowns employed in F-BM/NSA is not restricted to be a
power of 2, as usually employed in BMIA/CAG. In BMIA/CAG, the
number of unknowns, including the pending zeros, usually increases
in the power of 2 in order to efficiently use the fast fourier transform
(FFT) for the acceleration of computation, while surface length in-
creases. The CPU time is also compared and shown in Fig. 4, which
showsO(N) behavior for F-BM/NSA, while surface length increases
for a fixed frequency. It is found that F-BM/NSA is far more efficient
than BMIA/CAG in the order of magnitude.
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A Generalization of the Maximum
Noise Fraction Transform

Christopher Gordon

Abstract—A generalization of the maximum noise fraction (MNF) trans-
form is proposed. Powers of each band are included as new bands before
the MNF transform is performed. The generalized MNF (GMNF) is shown
to perform better than the MNF on a time dependent airborne electromag-
netic (AEM) data filtering problem.

Index Terms—Maximum noise fraction, noise filtering, time dependent
airborne electromagnetic data.

I. INTRODUCTION

The maximum noise fraction (MNF) transform was introduced by
Greenet al. [1]. It is similar to the principle component transform [2]
in that it consists of a linear transform of the original data. However,
the MNF transform orders the bands in terms of noise fraction.

One application of the MNF transform is noise filtering of multi-
variate data [1]. The data is MNF transformed, the high noise fraction
bands are filtered and then the reverse transform is performed.

We show an example where the MNF noise removal adds artificial
features due to the nonlinear relationship between the different vari-
ables of the data. A polynomial generalization of the MNF is intro-
duced which removes this problem.

In Section II we summarize the MNF procedure. The problem data
set is introduced in Section III and the MNF is applied to it. In Section
IV, the generalized MNF transform is explained and applied. The con-
clusions are given in Section V.

II. THE MAXIMUM NOISE FRACTION (MNF) TRANSFORM

In this section, we define the MNF transform and list some of its
properties. For further details the reader is referred to Greenet al. [1]
and Switzer and Green [3]. A good review is also given by Nielsen [4].
A reformulation of the MNF transform as the noise-adjusted principle
component (NAPC) transform was given by Leeet al. [5]. An efficient
method of computing the MNF transform is given by Roger [6].

Let

Zi(x); i = 1; � � � ; p

be a multivariate data set withp bands and withx giving the position of
the sample. The means ofZi(x) are assumed to be zero. The data can
always be made to approximately satisfy this assumption by subtracting
the sample means. An additive noise model is assumed

Z(x) = S(x) +N(x)

whereZT (x) = fZ1(x); � � � ; Zp(x)g is the corrupted signal and
S(x) andN(x) are the uncorrelated signal and noise components of
Z(x). The covariance matrices are related by

CovfZ(x)g = � = �S +�N

where�N and�S are the noise and signal covariance matrices.
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The noise fraction of theith band is defined as

VarfNi(x)g=VarfZi(x)g:

The maximum noise fraction transform (MNF) results in a newp band
uncorrelated data set which is a linear transform of the original data

Y (x) = ATZ(x):

The linear transform coefficients,A, are found by solving the eigen-
value equation

A�N�
�1 = �A (1)

where� is a diagonal matrix of the eigenvalues,�i. The noise fraction
in Yi(x) is given by�i. By convention the�i are ordered so that�1 �
�2 � � � � � �p. Thus the MNF transformed data will be arranged in
bands ofdecreasingnoise fraction. The proportion of the noise variance
described by the firstr MNF bands is given by

r

i=1

�i

p

i=1

�i

:

The eigenvectors are normed so thatAT�A is equal to an identity ma-
trix.

The advantages of the MNF transform over the PC transform are that
it is invariant to linear transforms on the data and the MNF transformed
bands are ordered by noise fraction.

The high noise fraction bands can be filtered and then the transform
reversed. This can lead to an improvement in the filtering results be-
cause the high noise fraction bands should contain less signal that might
be distorted by the filtering. Examples of this approach have been given
by Greenet al. [1], Nielsen and Larsen [7], and Leeet al. [5].

An extreme version of MNF filtering is based on excluding the ef-
fects of the firstr components. That isr is chosen so as to include only
bands with high enough noise ratios. This can be achieved by

Z�(x) = (A�1)TRATZ(x) (2)

whereZ�(x) is the filtered data andR is an identity matrix with the
first r diagonal elements set to zero. Thus eliminating the effect of one
or more of the MNF bands produces a filtered data set which is a linear
transform of the original data. This MNF-based filter uses interband
correlation to remove noise.

In order to use(1) to computeA,�N has to be known. Nielsen and
Larsen [7] have given four different ways of estimatingN(x). They
all rely on the data being spatially correlated. A simple method for
computingN(x) is by

N(x) = Z(x)� Z(x+ �) (3)

where� is an appropriately determined step length. We are effectively
assuming

S(x) = S(x+ �):

To the extent that this is not true, the estimate ofN(x) is in error.
When this method of noise estimation is used, the MNF transform is

equivalent to the min/max autocorrelation factor transform [3].

0196–2892/00$10.00 © 2000 IEEE
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Fig. 1. Unfiltered AEM data. Bands 1 to 7 are shown. The band number of
each spectrum is labeled to the left of the spectrum. The dotted line of each
spectrum marks the zero amplitude for that spectrum.

III. A IRBORNE ELECTROMAGNETIC DATA

We test the MNF filtering methodology on a flight line produced
by SPECTREM’s time dependent airborne electromagnetic (AEM)
system. Background information on this AEM system has been
explained by Leggatt [8]. A multiband image can be formed by con-
secutive flight lines but usually each flight line is examined separately.

Fig. 1 shows a flight line of data, consisting of the seven windowed
AEM X band spectra. All seven bands are displayed stacked above each
other. The amplitude of a band at a particular point is proportional to the
vertical distance of the spectrum from its corresponding zero amplitude
reference (dotted) line. Neighboring points along a line are responses
from neighboring points on the ground. The higher band numbers are
associated with greater underground depths.

Ore bodies are often associated with small features in the higher
bands. Analysis can be made easier by filtering the spectra. Because
this data set has substantial interband correlation, the MNF filtering
methodology can be used.

Fig. 2(b) shows the MNF filtering of the spectra in Fig. 1. Only
the last three bands (i.e., 5, 6, and 7) and a portion of the flight line
are shown. The noise was estimated by taking the difference in neigh-
boring pixels, as in (3). The data were filtered by excluding the first
two MNF bands which accounted for approximately 86% of the noise
fraction. Although the noise has been reduced, spurious features have
been added, indicated by “S.” Excluding only the last MNF component
does not significantly reduce the magnitude of the spurious features and
does almost no noise reduction.

As seen in (2), the MNF filtered data is composed from a linear func-
tion of the original data. Fig. 3 shows a plot ofZ1(x) againstRZ (x),

(a)

(b)

(c)

Fig. 2. A comparison of the MNF and GMNF filtering methods. Only a portion
of the flight line for bands 5, 6, and 7 is shown for each figure. The sample
number is displayed on the horizontal axis of each subplot: (a) unfiltered AEM
data and (b) MNF filtered AEM data. The “S” symbols mark parts of the data
where spurious features have been introduced by the MNF filtering, and (c)
GMNF filtered AEM data.

whereRZ (x) is the difference betweenZ1(x) and a least squares re-
gression ofZ1(x) based on all the other bands. The clear pattern of
the residuals plotted in Fig. 3 is evidence that the relationship between
Z1(x) and the other bands is not linear. Similar patterned residuals
were found for residual plots based on the other bands. In the next sec-
tion we show how the linear assumption can be relaxed.
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Fig. 3. Plot of the residual of a linear regression of band 1 based on bands 2
to 7, versus band 1 values.

IV. THE GENERALIZED MAXIMUM NOISEFRACTION TRANSFORM

From the discussion in the previous section it appears that using a
linear filter is too restrictive for this data set. Gnanadesikan and Wilk
[9] proposed a generalization of the principle component transform.
Powers of the original bands were appended to the data set as new
bands. For example,p new bands can be created by appending the
square of each band to the original data set. Thus each generalized prin-
ciple component would be a polynomial, as opposed to linear, function
of all the bands in the original data set.

The same procedure can be applied to generalize the MNF transform.
More formally, a new data set,Z 0(x), can be created by appending up
to q powers of the original data set

Z
0(x) = fZ1(x); Z2(x); � � � ; Zp(x); Z

2
1 (x); Z

2
2 (x)

� � � ; Z2
p(x); � � � ; Z1(x)

q
; � � � ; Zq

p(x)g:

We are assuming that theZi(x) have zero means. Cross terms, such
asZ1(x)Z2(x) can also be appended. The rest of the methodology
remains unchanged.

From (2), each band of the generalized MNF (GMNF) filtered data
can be seen to be

Z
�

i (x) =

p

j=1

q

k=1

Fi; j+(k�1)pZ
k
j (x)

whereFi; j+(k�1)p is the element in rowi and columnj + (k � 1)p
of the filter matrix

F = (A�1)TRAT
:

Thus, the GMNF transform leads to a polynomial filter.

To apply the GMNF filter to the data in Fig. 1, the GMNF transform
was applied with powers of up to order 6 for each band appended to
the original data. Cross terms were found to make little difference to
the result and so were not included. The first 15 of the 42 GMNF com-
ponents, contributing approximately 80% of the noise fraction, were
eliminated.

Fig. 2(c) shows the GMNF filtered AEM data. A comparison with
the MNF filtered data [Fig. 2(b)] shows that for GMNF filtered data, the
noise reduction is greater and spurious features are much less evident.

V. CONCLUSION

We have proposed a generalized maximum noise fraction transform
(GMNF) that is a polynomial as opposed to linear transform. The
GMNF was applied to filtering a test AEM data set. It was found
to remove more noise while adding less artificial features than the
MNF-based filter.

Implementing the GMNF is a simple extension of the MNF imple-
mentation. Software written for the MNF transform can be be used for
the GMNF transform without any modification.

REFERENCES

[1] A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation
for ordering multispectral data in terms of image quality with implica-
tions for noise removal,”IEEE Trans. Geosci. Remote Sensing, vol. 26,
pp. 65–74, Jan. 1988.

[2] R. C. Gonzalez and R. E. Woods,Digital Image Processing. Reading,
MA: Addison-Wesley, 1992.

[3] P. Switzer and A. Green, “Min/max autocorrelation factors for multi-
variate spatial imagery,” Dept. Statistics, Stanford University, Stanford,
CA, Tech. Rep. 6, 1984.

[4] A. A. Nielsen, “Analysis of regularly and irregularly sampled spatial,
multivariate, and multi-temporal data,” Ph.D. dissertation, Institute of
Mathematical Modeling, Univ. Denmark, 1994.

[5] J. B. Lee, A. S. Woodyatt, and M. Berman, “Enhancement of high spec-
tral resolution remote-sensing data by a noise-adjusted principal com-
ponents transform,”IEEE Trans. Geosci. Remote Sensing, vol. 28, pp.
295–304, Mar. 1990.

[6] R. E. Roger, “A faster way to compute the noise-adjusted principal com-
ponents transform matrix,”IEEE Trans. Geosci. Remote Sensing, vol.
32, June 1994.

[7] A. A. Nielsen and R. Larsen, “Restoration of GERIS data using the
maximum noise fractions transform,” inProc. 1st Int. Airborne Remote
Sensing Conf. and Exhib., vol. III, Strasbourg, France, 1994, pp.
557–568.

[8] P. B. Leggatt, “Some algorithms and code for the computation of the step
response secondary EMF signal for the SPECTREM AEM System,”
Ph.D. diss., Univ. Witwatersrand, Johannesburg, South Africa, 1996.

[9] R. Gnanadesikan and M. B. Wilk, “Data analytic methods in multi-
variate statistical analysis,” inMultivariate Analysis II, P. R. Krishnaiah,
Ed. New York: Academic, 1969, pp. 593–638.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 1, JANUARY 2000 611

Detection and Extraction of Buildings from Interferometric
SAR Data

Paolo Gamba, Bijan Houshmand, and Matteo Saccani

Abstract—In this paper, we present a complete procedure for the extrac-
tion and characterization of building structures starting from the three-di-
mensional (3-D) terrain elevation data provided by interferometric SAR
measurements. Each building is detected and isolated from the surround-
ings by means of a suitably modified machine vision approach, originally
developed for range image segmentation. The procedure is based on a local
approximation of the 3-D data by means of best-fitting planes. In this way,
a building footprint, height and position, as well as its description with a
simple 3-D model, are recovered by a self-consistent partitioning of the
topographic surface reconstructed from interferometric radar data.

Index Terms—SAR urban analysis, 3-D building extraction.

I. INTRODUCTION

The urban environments, with their complex structure composed
of buildings of different kinds and shapes, small and/or large green
areas, infrastructures (roads, railroads, bridges,. . .) and continuously
changing suburbs have constantly been a challenge for remote
sensing analysts. Notwithstanding the large number of works on the
interpretation of urban images acquired by different sensors, from the
classic photocamerasto synthetic aperture radars (SAR) [1], [2] from
multispectral [3] to hyperspectral sensors (like AVIRIS [4]), a large
amount of information is still hidden in the raw data.

On the other hand, with the largest part of the population in the world
already settled in towns and cities, it is increasingly important to de-
velop a set of flexible tools for the analysis, monitoring and planning
of urban environments. Even the study of geological and hydrological
risks in urban areas can give useful hints to prevent and alleviate haz-
ards like earthquakes and floods, whose costs (in terms of lives more
than dollars) have been steadily increasing in the past years [5].

To this aim, the continuous trend in research is to merge measure-
ments and data from different sensors [6]–[8] to refine, by means of this
interaction, the quality of the information extracted. Contemporarily,
very interesting analyses in recent years have been dedicated to investi-
gate how all-weather sensors, like the SAR, can be exploited to evaluate
bio- and geophysical parameters in urban areas [9]. In particular, many
papers have been presented aiming at determining which radar data (in
terms of polarization [10], [11], wavelength [12], [13] or viewing angle
[14], [15]) are more useful for urban image analysis.

However, very few papers are devoted to the use of interferometric
SAR (IFSAR) measurements [16], [17] for urban image analysis: one
of them is [4], where IFSAR and AVIRIS data are merged to better
distinguish buildings from green areas. Indeed, the three-dimensional
(3-D) measurements obtained by this system may be extremely useful
for extracting the complete topography of a urban environment (for in-
stance, for hydrological purposes) as well as for gathering more insight
on particular structures or infrastructures (like the road network).

Analysis of the IFSAR terrain elevation data in urban areas are diffi-
cult due to the insufficient spatial resolution (with respect to urban fea-
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tures), multiple scattering due to the building geometries, and layover
effects, in addition to the intrinsic IFSAR system level noise. There-
fore, it is clear that there is still a strong need to evaluate which type of
information is available from these data and to what extent it is possible
to extract them.

The resolution problem is being increasingly resolved by the new
generation of radar sensors that are currently operational or will be
operational in the near future, like the NASA/JPL AIRSAR system
[18]–[20] (currently a 40 MHz system, but to get upgraded to 80
MHz) and the DLR E-SAR system [21]. The goal of these systems
is to provide a 1-m level spatial resolution, which therefore can
resolve many of the objects present in an urban environment. As for
the second problem, instead, we found very interesting to apply to
the original remote sensing images some suitable machine vision
approaches. Indeed, even if developed for very different situations,
these procedures are of invaluable utility when used in this context.

In this work, we focus on the task to extract information on urban
structures of interest from high-resolution IFSAR data. Specifically,
we want to automate the detection (and subsequent analysis) of the
height and shape of the buildings present in a given area. To this aim,
we apply to the original data a segmentation algorithm able to exploit
their resolution, while maintaining at the same time a high robustness
to noise.

The paper is organized as follows: Section II presents the complete
building detection strategy used in the 3-D image analysis procedure.
Section III, instead, shows the results obtained on actual images and
discusses their significance for urban area analysis as well as their limit
for a more refined model-based extraction of the urban profile. Finally,
in Section IV some conclusions and lines of thought for future improve-
ments are introduced.

II. BUILDING DETECTION STRATEGY

Our goal is to extract the significant buildings from interferometric
SAR images, that is to locate somespecial regionsinside them. There-
fore, we must face a segmentation of the image, since segmenting an
image means to divide it into meaningful objects according to a given
criterion. The task is analyzed in [22], where some heuristic criteria for
the correction of the shape of isolated buildings are applied to interfer-
ometric data, and in [23], where the author explored, in a more general
context, how to find the parameters of a given building model that best
fit the measured 3-D data. Both papers, however, do not address the
problem of building extraction in a crowded, complex urban environ-
ment.

On the other hand, we may find useful to rely on consolidated ap-
proaches studied in machine vision. In this field, when considering 3-D
(usually calledrange) images, generally the criteria applied to segment
the data are geometric ones (see, for instance, [24] or [25]), often in-
volving the principle of plane-fitting (i.e., to find the plane which better
approximates a given surface). In our situation this approach can be
useful when looking for the regions corresponding to the building roofs.
The idea is therefore not only to partition the image (each pixel must
belong to one region) but also to discard the data that do not carry useful
information during image segmentation.

To this aim, the simplest possible algorithm could be an iterative re-
gion growing approach: we start from randomly chosen pixels (seeds)
and examine all the adjacent ones. If one of them issufficientlynear
to the seed in the 3-D space (wheresufficientlymust be defined by a
suitable threshold), it is added. However, this is only a first step of the
segmentation, since the data is now divided into regions whose geo-
metric characteristics are still to be determined (for instance, are they

0196–2892/00$10.00 © 2000 IEEE
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Fig. 1. Block diagram of the segmentation algorithm used to analyze the IFSAR images.

Fig. 2. On the right, an AIRSAR C-band image of Santa Monica, West Los Angeles (VV polarization). For a visual comparison, on the left an aerial photo of
the same area is displayed. The blocks of black pixels correspond to large building shadows in the photograph, and to pixels labeled as “erroneous acquisition” in
the SAR data.

planes or not?). However, since we expect that almost all of the struc-
tures in a urban environments can be roughly described by polyhedra
with plain faces, we can try to approximate each of these regions by a
plane.

This idea can be further improved by the algorithm outlined in [26].
In this approach the primitives of segmentation are not pixels, but scan
lines (the lines of the image), in order to save cpu time. Grouping lines,
it’s faster to find consistent planes hidden in noisy data. We applied
this procedure, suitably changed, following three processing steps (see
also Fig. 1).

First Step—Scan Line Segmentation:The pixels belonging to the
same scan line are grouped into segments according to a simple geo-
metric criterion [27]: a curve is iteratively broken in two parts until no
point of the original curve is far from the resulting segment chain more
than a given threshold (�1). Since one scan line of the IFSAR image
can be viewed as a curve in the third (range) dimension, this step rep-
resent an approximation by segments of the 3-D topographic data along
each line of the image. Moreover, since this 3-D curve actually presents
some discontinuities (the building edges, for instance), we follow [26]
in using edge pixels (pixels with value very different from their left
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Fig. 3. Zoomed views of the aerial image in Fig. 2 showing the three zones
around Wilshire Boulevard that were analyzed in this paper.

(a)

(b)

Fig. 4. Raw 3-D interferometric data provided by the TOPSAR system above
the first zone of Fig. 3 and the reconstructed building profiles after the data
analysis.

or right neighbor) as further breakpoints. Finally, each segment found
is recorded in a list, with pointers to its neighbors (i.e., adjacent seg-
ments).

Second Step—Planar Region Aggregation:It consists of finding
first the seedsfor the aggregation and then to perform a region
growing procedure to get the final, segmented image. Each seed is
constituted by three adjacent segments (longer than a given threshold
�2) belonging to different scan lines. The seeds are ordered and used
for segment aggregation into planar surfaces starting from the one
nearest to the ideal condition of three segments aligned on a plane.

Fig. 5. The Coastal Federal Bank in Wilshire Boulevard: the building profile
as reconstructed from IFSAR data and a photo from the ground.

This condition is measured by controlling that the directions and the
intercepts of the seed segments coincide as much as possible (see also
[26, Eq. (11)]). The index used is

ip = 0:5 +
1

12
i 6=j

mi �mj

jmijjmj j
+

ni � nj

jnijjnj j
(1)

wheremi = (ai; �1),ni = (b�i ; �1), andsi = aix+bi, i = 1; 2; 3
are the algebraic expressions of the segments of a seed.

Next, the iterative region growing is performed. All the segments
adjacent to the best seed are examined: if a segment is close enough
(again, by a threshold�3) with respect to both its ends to the plane
that approximates the seeds, it is added to the region. This process is
iterated (considering the new region as an enlarged seed), until no more
expansion is possible. Successively, less optimal seeds are used for the
same process until the image is divided into planes and only segments
that could not be aggregated are left.

Third Step—The Final Refinement:The previous segmentation may
be improved by means of heuristic algorithms or more refined edge
detection scheme to adjust the boundaries of the regions. In [26] the
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simple method to reassign boundary pixels to the nearest plane is sug-
gested.

As already stated above, to this procedure we must add a last step
requiring that the best-fitting plane for each region is approximated
with an horizontal one, for a first, imprecise simulation of building
roofs.

Moreover, we must note that not all the pixels of the original image
belong to a plane, when the algorithm stops: points affected by large
noise, or regions where no actual planar surface is observable (for in-
stance, trees in a park) are not aggregated. These points could be due
to an error to be corrected or could carry important information not to
be missed. At this point of the procedure it is difficult to say which is
the case, until no further information is gained.

A. Critical Points of the Algorithm for Interferometric Data
Segmentation

It is clear that the method described in the preceding paragraphs was
developed originally as a machine vision approach to range image seg-
mentation. Therefore, several problems arise when we try to obtain sig-
nificant results from the application of this algorithm to the topographic
data computed by SAR interferometry. We discuss here first the choice
of the thresholds in the above outlined procedure (�1–�3), and then the
point of prefiltering or not the original data. Finally, a few words will
be also dedicated to the choice to approximate each plane with an hor-
izontal one in the final resulting 3-D topography.

We found that, as far as the first step (scan line partitioning) is con-
cerned, the breakpoints based on the original algorithm were not al-
ways the optimal ones. In low-resolution SAR images, it is necessary
to overpartition the lines because of the small number of points defining
each structure, while a different choice causes the merging of separate
buildings into a unified object. It can be argued that this method intro-
duces some kind of error in the segmentation procedure. However, the
problem is later corrected by the segment grouping carried out in the
growing process (while an underpartitioning would have been impos-
sible to adjust). In a few words, this corresponds to a choice of�1 (see
the previous paragraph) as low as0:8�img where�img is the mean
local image variance of the original data.

For the same reason also the definition ofedge pixelsmay be
changed according to the type of building that we want to extract. For
instance, for high structures, edges correspond to large height steps,
while when looking for residential objects, we have lower values. In
this research we adopted a sort of conceptually pyramidal approach,
and started by first extracting the large buildings. When working
instead on residential structures we think that it would be better to
lower the value of what is to be considered an edge accordingly.

The second threshold in the algorithm (�2) is set to evaluate only sig-
nificant segments when looking for planeseeds.It is clear that, to dis-
card possible error, it must be chosen as small as possible with respect
to the physical characteristics of the searched objects and the resolution
of the image. As for our IFSAR data are concerned (10 m resolution, 5
m posting), even segments of two of three pixels are meaningful since
there exist buildings with these dimensions. This requires to consider
a large number of seeds, leaving to a successive interpretation step the
task to choose if all the planar regions are meaningful or not. Therefore
a value smaller than the original value of 10 is used.

Finally, the last parameter to be tuned (�3) defines somehow which
is the largest difference between a plane and a given segment to allow
its aggregation. This parameter refers to the distance between the plane
and the segment ends. Therefore, even if in [26] it is suggested a unique
value for any situation, it is intuitive that longer segments require lower
values (they can be aggregated only if they are significantly consistent
with those already grouped), while smaller ones can be considered also

in worse cases. We found, however, that the overpartitioning rule in the
first step of the procedure usually provide only small segments, and the
choice of a varying�3 does not change the quality of the results.

Another important point regards the prefiltering of the data. We de-
cided not to make any prefiltering of the image (even if this could be
extremely critical for the image analysis) because classical approaches
to SAR filtering (see [28] for a recent review) usually provide also a
smoothing of the image, that would have caused a loss of resolution,
making the identification of the correct borders of each building diffi-
cult. Instead, the range segmentation offers a self-consistent smoothing
of the 3-D data driven by the simple building models (essentially, par-
allelepipeds) that we use. In other words, the best-fitting plane proce-
dure above delineated can be seen as the application of theoptimum
filter to the problem to recover asignalcorrupted by noise knowing its
shape (again, it’s a plane). For this reason there is no need to perform
any prefiltering. It is true, however, that more recent papers have devel-
oped pyramidal [29] or filter bank approaches [30] to avoid as much as
possible the degradation of SAR image details after denoising. These
methods allow a more precise edge location in radar measurements af-
fected by noise, and we plan to add some sort of edge analysis as a
further information source useful for our task.

Finally, we want to add a practical note: the approximation of the
range regions with horizontal planes is made by using the mean value
between the points belonging to each slanting plane. This introduces
a further approximation which affects the values of the heights of the
buildings. On the other hand it minimizes evaluation errors due to noise
and/or false reflections.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The interferometric SAR range image used to show the results of this
research covers a portion of Santa Monica, in the metropolitan area of
Los Angeles (see Fig. 2). It is a range image, that is to say an array of
numbers representing the surface elevation with respect to a reference
plane. So, this image already gives us the 3-D profile of the urban sur-
face.

The data were obtained with an interferometric SAR, the AIRSAR
system, operated by NASA/JPL and mounted on a DC8 plane. The
system is operated at C-band (5.6689 cm wavelength) with a 40 MHz
pulse bandwidth, and has a nominal height accuracy in the order of ±2.5
m. The spatial resolution of the SAR system is therefore 3.75 m in range
direction but, after the interferometric processing by phase unwrapping
procedures [31], [32], this range is reduced to 7.5 m, since two pixels
are averaged. The averaging in the azimuth direction is also performed
to yield a square resolution cell. So, the ground range resolution for the
mid-swath area (nominally 45 radar incident direction) is about 10 m,
even if the images of the AIRSAR interferometric elevation data are
provided after sampling at 5 m postings, geocoded, and rectified.

This resolution makes the building detection an extremely difficult
task; nevertheless, these data were used in this research just to show
how well the procedure behaves even when the spatial coarseness of
the measurements is relatively low (10 m are comparable with most of
the building footprints’ dimensions).

The images we show here come from a larger data series recorded
on August 5, 1994, from the height of 11 000 m. The flight path was
from 33.97 N latitude,−118.47 longitude to 33.97 N latitude,−118.41
longitude. The radar look angle for the proposed area is nominally 45�

and shadow/layover effects are observable as it can be seen by looking
at the black pixels inFig. 3 left, corresponding to incorrect measure-
ments that were discarded by the TOPSAR data processor.

We stress that we present here only a very small part of the data
recorded.
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Fig. 6. Building profile of 11755 Wilshire Boulevard as reconstructed from IFSAR data and two photos from the ground.

A. Wilshire Boulevard

Within the study area, we applied the above outlined procedure to
a subimage covering part of Wilshire Boulevard (East Santa Monica).
The image was in turn divided into three parts (see Fig. 3) for a better
analysis, and the above presented algorithm was applied separately to
each of them. This was done in order to handle the data easily and to
facilitate the identification of the buildings.

However, it should be mentioned that the original 3-D data lack the
definition of a suitable ground level, because multiple reflections at the
building edges produce responses that alter this value. To overcome this
problem, we used the same procedure discussed in [4] and compute
the overall height distribution of the data. Ground level is taken as the
highest peak in the histogram, due to the presence in the area of large
flat green areas, and points that have lower values are discarded. By
means of this technique, only a very small number of pixels (in our area,
less than 2%, and mainly around building edges) are not considered, but
the successive detection procedure is considerably improved.

The results of the complete analysis for zone #1 of Fig. 3 are shown
in Fig. 4: the upper picture represents the raw 3-D surface extracted

from the interferometric measurements, while the other one shows the
output of our program. It is immediately clear that the raw data are
confusing, with disturbing noise and blurred building edges, while in
the 3-D graph obtained from our algorithm the profiles of the most
relevant buildings are now evident. Moreover, each of them is now a
separate object. In other words, we operate simultaneously on Fig. 4(a)
three operations:

1) a denoising procedure, as it is clear for instance looking at the
roofs of the building in Fig. 4(b);

2) a structure recognition, because now we are able to distinguish
the buildings from their (probably less interesting) surroundings;

3) an image segmentation.

As a final comment, we should note that there are also some artifacts
still visible for the lower objects present in the scene, that we neglect
for the moment.

More in detail, in Figs. 5 and 6 two of the buildings situated in
Wilshire Boulevard are shown by simply retaining only those 3-D
values that we found belonging to each of them. After that, their
shape was compared either with maps or to the information that we
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Fig. 7. Footprints of all the buildings extracted from the three subimages in Fig. 3 compared with their actual sections (shadowed): a square corresponds to 25 mq.

TABLE I
PERCENTAGE ERROR IN DETERMINING THE

BUILDING FOOTPRINTSBEFORE AND AFTER THE REFINEMENT

STEP IN SECTION VI-A

TABLE II
ACTUAL AND MEASUREDHEIGHTS OF THEBUILDINGS EXTRACTED (MEAN

ERROR= 2.2 m,� = 4:9 m)

extracted from a color image of the analyzed zone coregistered with
the IFSAR original data. Furthermore, we had a number of color
photographs taken on the ground depicting the main buildings of
Wilshire Boulevard. The photographs allowed us to identify each

building and to have a first idea of the validity of our results by means
of a rough comparison of its shape and height. These figures show,
respectively, the reconstructed shapes of the Coastal Federal Bank and
11755 Wilshire Boulevard, together with some photographs from the
ground.

B. Some Comments on the Results

The first important thing to observe is that all the large buildings por-
trayed in the photographs had been extracted by our algorithm without
any exception, and this is the minimum results we expected for. In addi-
tion, we observe that all the extracted structures correspond to commer-
cial, financial and directional sites, that is buildings characterized by
relevant heights and large dimensions. Smaller houses on the contrary
are much more difficult to distinguish because of their small dimen-
sion. Moreover, we have not yet collected ground truth in a sufficient
detail for that area to help in tuning the parameters of the extraction
procedure. Finally, IFSAR data with higher spatial resolution than the
one we used are needed to extract and recognize them; to this aim, the
2.5 m posting data, that the new TOPSAR system will be able to pro-
vide, may give sufficient information for a more detailed extraction of
the less evident structures.

Each building carries at least three types of information, namely its
position, shape and height. As far as the positions of the buildings are
concerned, comparing our output graph with the color image, we have
noticed that they are substantially correct (within the range of spatial
precision of the data).

Instead, Fig. 7 shows the footprints of all the largest buildings in the
three zones of Fig. 3, and a comparison with their actual shape is per-
formed. It is clear that while the reconstructed shape of the objects is
generally a sufficiently good representation of the real one, the area of
the buildings is heavily underestimated. The main reason is the shad-
owing/overlay effect due to the relative position of the airplane carrying
the radar and the illuminated large bodies on the ground. It affects the
accuracy of the 3-D data related to the transition between a building
and the road (or another building, the grass, etc.). As a result, it is hard
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for the algorithm to find good borders, and this was the reason to obtain
a building footprint mask using another sensor in [4]. Table I presents
the errors computed as a percentage of the original area for the same
examples of Fig. 7. Worse results are related to buildings “badly” ori-
ented with reference to the flight direction (this is the case, for instance,
of the Barrington Plaza Apt.)

To overcome the problem, we introduced a further refinement step
to our procedure, devoted to two tasks: reduce the unclassified pixels,
and merge horizontal planes that have very similar heights. The first
task is due to the fact that in our final images there are many pixels not
belonging to any plane; they are added to the nearest classified set if it
is sufficiently near (less than 3 times the SAR precision, i.e., 7.5 m).
Moreover, since the previous results show that probably each building
roof is detected as a set of differently oriented planes (due to SAR pro-
cessing errors, or to spurious reflections) we merged the final detected
surfaces that are adjacent and very similar in height (the threshold is the
same than above). Heights are changed taking into account the weight
(in terms of pixels) of each merged set. The results obtained with the
aid of this technique are presented in Table I, and show a significant
improvement in the footprint estimate in almost all the cases.

The last comment regards the building heights, that happen to be nec-
essarily approximated because we model each structure by using only
planar surfaces; moreover, all the roofs are taken as flat ones. Never-
theless, the resulting values seem to be in very good accordance with
those determined from field measurements. Table II shows the dif-
ferences between the extracted heights and the actual values, together
with the mean error; again, the minus sign represents an underestimate.
This result (±4.9 m) must be compared with the mean error that we ex-
pect (according to [20]) from TOPSAR measurements, i.e., ±2.5 m. We
may say that the loss in resolution from the original data to the clas-
sified one is limited, especially considering that this result is partially
due to the error in the location of the ground level. Moreover, we think
that it is better in an urban environment to have less precise informa-
tion on each built structure as a single entity than to know the exact 3-D
position of each measured point, without knowing to what it belongs.
In other words, we believe that the limited loss in precision of our re-
sults with respect to the original data is more than compensated by the
recognition of interesting urban structures.

IV. CONCLUSIONS

This work presents the application of a modified machine vision ap-
proach to 3-D data extracted from interferometric SAR measurements.
The proposed approach has proved to be useful in reconstructing the
3-D structure of large commercial structures from a 10 m resolution
data. Their shape is sufficiently well reconstructed and their height is
found with an absolute mean precision around 2 m and standard de-
viation of ±4.9 m. However, building footprints are largely underesti-
mated.

Therefore, the proposed approach exploits almost completely the
vertical (±2.5 m) resolution of the original data and enables us to recog-
nize and isolate those buildings that raise well over their surroundings,
but lacks a suitable system to overcome layover/shadowing effects. A
further refinement of this work is also needed for the recognition and
analysis of smaller buildings such as residential houses by using both
more detailed data and improved extraction algorithms. However, even
these preliminary results show that there is a strong possibility to ex-
tract from IFASR data building models characterized with a precision
only slightly worse than the original topographic data. Such analysis

could be extremely useful for research as well as civic applications such
as urban growth, and change monitoring.
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Effects of Atmospheric Boundary Layer Moisture on
Friction Velocity with Implications for SAR Imagery

Steven M. Babin and Donald R. Thompson

Abstract—Using computer simulations, it is shown that failure to
consider water vapor effects may lead to anomalous friction velocity
changes with static stability. When interpreting synthetic aperture radar
(SAR) imagery showing sea surface features induced by marine boundary
layer spanning eddies, consideration should be given to the effects of water
vapor.

Index Terms—Atmospheric boundary layer, friction velocity, synthetic
aperture radar (SAR), water vapor.

I. INTRODUCTION

Synthetic aperture radar (SAR) images of the ocean surface have
not only revealed features of the ocean but also of the atmosphere.
Many previous studies have discussed atmospheric effects on the
ocean surface and their corresponding signatures observed in SAR
imagery (e.g., [1]–[4]). In particular, the presence of atmospheric
boundary layer spanning eddies affects the roughness of the sea sur-
face. Boundary layer spanning eddies enhance sea surface roughness
beneath and down wind of convective downdrafts. Similarly, these
eddies decrease sea surface roughness beneath and down wind of
convective updrafts [3]. This roughness variation is often detectable
with SAR. Under certain conditions, these atmospheric boundary layer
spanning eddies form longitudinal rolls roughly parallel to the mean
wind [5]–[7]. The role of atmospheric stability in the development
of boundary layer rolls has been discussed by many authors [3],
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[8]–[10]. While the meteorological community is familiar with the
effects of atmospheric moisture on stability, many in the engineering
community may not be. The routine use of empirical relations in
deriving atmospheric quantities from SAR imagery may lead one
to forget the important impacts of water vapor physics on SAR
observations. These impacts may lead to discrepancies in comparisons
of SAR-derived quantities with buoy data if variations in humidity are
ignored. Therefore, this paper is intended to explain and demonstrate
the effects of humidity on atmospheric stability and its possible
consequences for SAR imagery of the ocean.

To study the effects of boundary layer humidity on SAR imagery,
we use an algorithm to calculate the friction velocity (u�) based on
bulk atmospheric measurements. Monin and Obukhov [11] defined the
friction velocity as a characteristic velocity scale in the surface layer

u� =
�

�
(1)

where� is the surface stress and� is the air density. By nondimen-
sionalizing the wind shear using this friction velocity, the following
expression can be obtained:

dU

dz
=
u��

�z
(2)

where
U mean wind velocity in the surface layer;
z altitude;
� von Karman’s constant.

The von Karman’s constant� is nondimensional and has been
determined from various experiments to be about 0.4 (e.g., [12]).
The quantity� is a universal similarity function that is often called
a nondimensional stability function. This function is represented by
different expressions for stable and unstable conditions but reduces to
unity for neutral stability. When(2) is integrated over altitude using
the boundary condition that the velocity at the surface is zero, we
obtain

U =
u�
�
(ln(z=z0)�  ) (3)

wherez0 is an integration constant called the surface roughness length
and is an integrated form of�. The surface roughnessz0 is propor-
tional to but smaller than the mean height of the rough elements of the
surface. This surface roughness is related to the wind-induced surface
stress. Therefore, the SAR backscatter cross section is related to the
friction velocity.

We ran several computer simulations to calculate the friction velocity
from a variety of input air–sea temperature differences, wind speeds,
and humidities. Plots were then made comparing friction velocities cal-
culated from various wind speeds and air–sea temperature differences.
This paper will demonstrate that atmospheric boundary layer water
vapor has a significant impact on the stability and therefore on ocean
surface roughness and the resulting SAR imagery.

II. A LGORITHM

The algorithm for calculating the friction velocity (u�) was adapted
from Babinet al.[13] and Babin [14]. The foundation for this algorithm
is the atmospheric surface layer theory of Liuet al. [15] and modi-
fications to this theory made by Fairallet al. [16]. Fairall et al. [16]
found that certain areas of the Liuet al.[15] theory could be improved.
For example, because Monin–Obukhov similarity theory is not strictly
applicable to low wind speeds, Godfrey and Beljaars [17] proposed
changes that would extend the validity of this theory to the low wind
speed regime. These modifications were employed by Fairallet al.[16]

0196–2892/00$10.00 © 2000 IEEE
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Fig. 1. Plots of friction velocityu versus air–sea temperature difference where this difference is determined using ordinary temperatures. Each line represents a
different wind speed. This plot is determined from calculations assuming a 10 m measurement height, a sea surface temperature of 25�C, and a relative humidity
of 70%.

Fig. 2. Same as Fig. 1 except that the 10 m wind speed is fixed at 2 m/s and each line represents a different relative humidity (60, 70, 80, and 90%).

in the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere
Response Experiment (TOGA-COARE) and were verified by simulta-
neous flux and bulk measurements made from numerous ships, buoys,
and aircraft [18].

The equations of Buck [19] and a salinity correction [20] are used to
calculate saturation water vapor pressures accurately. Using the Fairall
et al. [16] technique, initial estimates of the Monin–Obukhov scaling
parameters are made assuming neutral stability. Then, an iterative pro-
cedure is used to obtain their nonneutral values. Whereas Fairallet al.
[16] fixed the number of these iterations, Babinet al. [13] continued
the iterations until the new Monin–Obukhov parameters were within
0.001% of their previous values. This convergence typically takes less
than 20 iterations.

For the calculations used in this paper, the measurement height was
fixed at 10 m. The sea surface temperature was assumed to be fixed
at 25 �C. The atmospheric pressure was fixed at 1015 hPa. Calcula-
tions were performed for wind speeds from 2 to 10 m s�

1. The relative
humidity at the measurement height was an input variable. Two cases
were examined. In the first case, the influence of variations in the 10 m
relative humidity on plots ofu� versus air–sea temperature difference
were examined. In the second case, the effects of this relative humidity
on plots ofu� versus air–sea virtual potential temperature difference
were examined.

Virtual potential temperature is a more accurate determinant of at-
mospheric stability over the ocean than ordinary temperature [21], [22].
Virtual temperature is defined as the temperature that dry air must have
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Fig. 3. The same as Fig. 1 except that the abscissa is virtual potential temperature difference.

to equal the density of moist air at the same pressure. Because moist
air is less dense than dry air, it is more buoyant. Therefore, virtual tem-
perature effectively accounts for the effects of moisture on stability.
The virtual potential temperature (�v) is commonly used in the atmo-
spheric boundary layer because it also removes the temperature varia-
tion caused by altitude changes (i.e., adiabatic lapse rate). Therefore,
the buoyancy or stability of a moist air mass can be assessed by the
vertical profile or gradient of virtual potential temperature. When�v

is constant with altitude, the air is neutrally buoyant and therefore has
neutral stability. When�v decreases with altitude, the air is positively
buoyant and is considered stable. When�v increases with altitude, the
air is negatively buoyant and is considered unstable.

III. RESULTS

To illustrate the effects of atmospheric water vapor on the friction
velocity, plots of friction velocity versus air–sea temperature difference
(Fig. 1) were made for a 10 m relative humidity of 70% and wind speeds
between 2 and 10 m/s. Fig. 2 shows a similar plot but for a fixed wind
speed of 2 m/s and relative humidities between 60 and 90%. Note how
the friction velocity curves change with relative humidity. The location
of the maximum slope change in friction velocity is farther from neutral
at the lower relative humidity.

Fig. 3 show the same plots as in Fig. 1 except that the abscissa is
now virtual potential temperature. Because virtual potential tempera-
ture takes into account the buoyancy effects of water vapor, these curves
will be identical for different relative humidities. If the criterion for sta-
bility were based instead on ordinary temperatures, then the effects of
humidity on stability and hence on friction velocity will be overlooked.
Therefore, it is important that virtual potential temperature be used as
a stability criterion when examining friction velocities over the ocean.
It is also interesting to note that, as would be expected, the change in
u� with stability is less at higher wind speeds.

IV. SUMMARY

We have briefly reviewed the contribution of atmospheric water
vapor to stability and demonstrated how this affects the friction

velocity. When atmospheric water vapor is not considered as part
of the stability criterion (Figs. 1 and 2), theu� versus stability
curves change with relative humidity. However, when atmospheric
water vapor is considered, these curves do not change with relative
humidity (Fig. 3). Because the friction velocityu� is related to the
surface roughness, these atmospheric effects may be observed in SAR
imagery. Such effects are also more significant at low wind speeds.
At low wind speeds, the effects of stability on convective eddies are
more pronounced than at higher wind speeds where wind shear effects
would dominate. Therefore, it is important to consider the contribution
of atmospheric water vapor to static stability when interpreting SAR
imagery over the ocean, particularly at low wind speeds.
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