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A Numerical Study of Low-Grazing-Angle
Backscatter from Ocean-Like Impedance
Surfaces with the Canonical Grid Method

Joel T. Johnson

Abstract—A numerical study of 14-GHz low-grazing-angle the composite surface model [13] in this angular region.
(LGA) backscattering from ocean-like surfaces described by a Studies for greater than 70incidence have been more
Pierson—Moskowitz spectrum is presented. Surfaces rough in limited [24], [25], [29], [30] due to the fact that use of a
one dimension are investigated with Monte Carlo simulations | . oo b . .
performed efficiently through use of the canonical grid expansion t_apered Wav_e '”C"?'e”t field to _avo'd edge effects in f'n'te_'
in an iterative method of moments. Backscattering cross sections Size surface simulations results in a loss of angular resolution
are illustrated at angles from 81" to 89° from normal incidence in scattered fields as grazing incidence is approached. Angular
under the impedance boundary condition (IBC) approximation resplution can be regained by using longer surface profiles

with the efficiency of the numerical model enabling sufficiently . : . :
large profiles (8192)) to be considered so that angular resolution in the simulation so that tapered wave spot sizes become

problems can be avoided. Variations with surface spectrum low- !arger on the surface, but the Qomputational resources required
frequency cutoff (ranging over spatial lengths from 175.5 m increase as well so that previously no numerical results have
to 4.29 cm) at 3 m/s wind speed are investigated and initial involved surfaces larger than a few hundred electromagnetic
assessments of the small perturbation method (SPM), CompOSitewaveIengths or grazing angles less th4rBY. Some recent

surface theory, operator expansion method (OEM), small slope . S -
approximation (SSA), and curvature corrected SPM predictions studies have focused on deterministic feature-like targets and

are performed. Numerical results show an increase in horizontal Used a hybrid method [36], which analytically extends the
(HH) backscatter returns as surface low-frequency content is target as a flat surface to infinity [37], [38] or else used

increased while vertical (VV) returns_remain relatively constant, periodic surfaces [26]-[28] so that plane wave incident fields
as expected, but none of the approximate models considered areyyithout angular resolution problems can be used, but these

found to produce accurate predictions for the entire range of techni d t simult | del a full f
grazing angles. For the cases considered, HH scattering is always €chniques do not simultaneously model a full range ot ocean

observed to be below VV, further demonstrating the importance length scales for microwave and higher frequencies. Thus,
of improved hydrodynamical models if “super-event” phenomena the angular region beyond 85ncidence for area extensive
are to be modeled. ocean-like surfaces has remained intractable numerically.
Index Terms—Sea surface electromagnetic scattering. In this paper, a more efficient numerical approach is applied
which enables much larger profiles to be considered so that
backscattering for incidence angles greater thah &, be
accurately calculated. The method is based on use of a
ECENT improvements in experimental techniquesanonical grid expansion in an iterative point matching method
[1]-[6] and hydrodynamical models [7]-[9] have sparkedf moments and has previously been applied to studies of
renewed interest in attempts to model near-grazing-an@gussian correlation function surface scattering at near grazing
backscattering from the ocean surface. However, since #ggles [32], propagation over the ocean [33], and ocean-like
accuracy of the standard electromagnetic approximatioggrface scattering at larger grazing angles [35]. Surface lengths
[10]-[13] as well as many recently proposed approximatg 8192\ (175.5 m at 14 GHz) with 65536 unknowns are
models [14]-{21] in this region is not well understood, Monteonsidered so that a 0.634wo-sided 3-dB beamwidth in
Carlo approaches using numerical models for electromagngfige tapered wave incident field is obtained at &8cidence.
scattering from ocean-like surfaces have become the metr@ﬁqy low-wind speeds are considered (3 m/s), but the 14-
of choice for obtaining insight into the scattering procesgHz frequency used results in a large wavenumber rms height
Previous numerical studies with ocean-like surfaces ha(qgg) product of 14.25 for this case so that the surface is still
been performed for incidence angles ranging frdmt® 70 yery rough on an electromagnetic scale. In addition, the large
[22]-[35], and have generally demonstrated the successs@fface size used allows the entire surface spectrum at this
wind speed, which includes ocean-wave scales from the 8.2-
Manuscript received April 9, 1997; revised September 5, 1997. Thm peak Wave|ength to the smallest Bragg wave at 1 cm to be
work was sponsored by ONR contract N00014-9710541. Use of the IBM ] . " .
SP/2 at the Maui High-Performance Computing Center was sponsored Dblpdeled simultaneously. S_'_mUIatlonS are pe_rforrned using the
the Phillips Laboratory, Air Force Material Command under cooperatiiénpedance boundary condition (IBC) approximation to capture
agreement F29601-93-2-0001. surface conductivity effects and initial comparisons with the
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(SSA) [14], operator expansion method (OEM) [16], andpplied with the radius of curvature of the cylindrical model
curvature corrected SPM predictions [39] are performed. i used as a parameter.
addition, variations in backscattered cross sections with spec-
trum low-frequency content are illustrated to investigate the  |||. N uUMERICAL MODEL FOR OCEAN SCATTERING
physical basis of the composite surface theory and particula
attention is given to the roll off in cross sections as grazi
angles exceed 85

The next section briefly describes the ocean surface al
approximate scattering models considered in this paper an . : . ) ;
Section Il reviews issues associated with the numerical sc Jgular r_eS(_)Iutlon_of obtained cross sections as discussed in
tering model applied. Results are presented in Section IV & (?]' An incident field of the form [43]
final conclusions are summarized in Section V. E, = ki T +W) = (w42 tan 8:)°/4° )

n rAs discussed previously, numerical simulation of grazing
agngle backscattering from rough surfaces is complicated by
of a tapered Gaussian-beam incident field to eliminate
e effects in the study, which has the effect of reducing the

where they direction is perpendicular to the 1-D surface

) _ ] profile, which lies in thezz plane
Surfaces to be used in the Monte Carlo simulation are

Il. OCEAN SURFACE AND APPROXIMATE MODELS

modeled as realizations of a zero mean Gaussian stochastic %, = ¢k, — 2k.; = Q_W(@ sin 0; — 2 cos 0;) (3)
process. The spectrum chosen for the ocean surface is a A
Pierson—Moskowitz spectrum as in [24] g is a parameter which determines the spot size of the Gaussian
5 beam on the surface, is the electromagnetic wavelength, and
V(&) = @ exp |— Py (1) ¢; is the angle of incidence used in the simulatiofig. in
4|k/|3 |]€/|2U4 . . .
the above equation is a phase correction to make the above

Gaussian beam a solution of the wave equation to within the

where ¥ represents the ocean-spectrum amplitudenin &’ . ) _
P P P ih f; r of1/(kg cos 6;)* and is unity to within the same order
(

represents the spatial wavenumber of the ocean in rads/m
is defined to range over both positive and negative valu
o = 0.008, 3 = 0.74, ¢ = 9.81 m/¢, and U is the wind
speed in m/s at a height of 19.5 m. Surface spectra used in A(ky) = o= (ha—boi)?g/4 (4)

the numerical simulations however will be set to zero outside

of wavenumbersky < |k/| < kg, SO that the effects of demonstrating the expected inverse proportionality between
changing surface spectral content can be investigated. Nsp®t size on the surface and beamwidth of the incident wave.
that the Pierson—Moskowitz spectrum does not include surfadslues ofg necessary to provide a given beamwidth can be
tension effects or recently proposed improved models for tderived from (4). A determination of one half the two-sided
capillary wave portion of the spectrum [40], but numerica8-dB beamwidth is obtained from

. If W is approximated as unity, the plane wave spectrum
k,.) of the above incident field can be shown to be

and analytical model results will still be compared for exactly 5 5 1

the same surfaces, allowing meaningful conclusions to be (ky —kyi)"g” /4= —In 7 (5)
drawn regarding approximate model accuracy. Expressions for 0.589

surface height and slope variances can be found in [24]. | sin 6 — sin 0;] = EY (6)

Numerically predicted backscattering cross sections will be
compared with those of SPM with and without curvature cowhereéf = # — 6; is one half the two-sided 3-dB beamwidth.
rections, composite surface theory, small slope approximatidssing #; = 89° andg = 2,048\, a beamwidth of 0.634is
and operator expansion method. Comparison of Monte Cadbtained with (6), which should provide reasonable accuracy
SPM results with their analytically evaluated counterparts wilbr backscattering predictions as will be shown in Section IV.
be used to assess the influence of finite surface size ahd overall surface size of. = 8, 192\ (9 = L/4) is used
finite number of realizations on Monte Carlo predictions, dm the simulation so that incident fields are approximately 35
demonstrated in [41], and Monte Carlo OEM results williB down at surface edges, as has been used previously in the
be obtained for the same set of surfaces as used with tierature [32], [43].
canonical grid model. Expressions for one-dimensional (1-D) Use of a canonical grid expansion in an iterative point
surface analytical theories with impedance surfaces were deatching method of moments is described in more detail
rived following [13], [14], [24], and [42]. Previous numericalin [32], [33]. The method is based on performing required
studies of the composite surface model [35] at larger grazingatrix multiplies in a conjugate gradient matrix equation
angles suggest choice of the cutoff wavenumber parameseiver by dividing individual rows of the matrix into “strong”
in the composite surface model &5 = k/2 where k is and “weak” regions. Strong matrix elements are defined to be
the electromagnetic wavenumber corresponding to a twihtose within a specified distance of the testing point and are
wavelength spatial scale cutoff. Variations in this parameteomputed exactly, resulting in a banded matrix multiply. Weak
will be considered in Section IV, however, in an attempt tmatrix elements are those outside the specified distance and are
produce improved composite theory predictions. The curvatuegpanded in a power series about zero-height deviation from
correction to SPM cross sections, derived in [39] throughe testing point (the canonical grid expansion). Multiplica-
consideration of a rough cylindrical surface, will also b#&ons of individual terms in the weak matrix power series take
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a convolutional form so that they can be performed with trecattered field intensity as
fast Fourier transform (FFT) in the frequency domain, resulting R< s L 2>
in an orderN log N algorithm for weak matrix multiplies. Oual(f) = |Boe = < hall
Convergence of the canonical grid series has been examined R=oo LIEY|?
in [33], where it is shown that the number of terms requiregls in [24], whered refers to the polar angle of observation
is proportional to théo times slope parameter, resultingina h v refers to the olarizationlE(i)| refers to the ’
highly efficient solution for surfaces that have relatively small _ . " S Pe - )

: ) agnitude of the incident field on the surface profileto
slopes and/or heights in terms of a wavelength. The methocm length of the surface profile, and thé notation above
thus expected to be more suited to lower frequencies and W'm ’

ds. Effici £ th hod for th ; ” icates an ensemble average over realizations of the surface
speeds. Eliciency o the _met od for the surfaces considergd pagtic process. Note that cross-polarized cross sections are
will be discussed in Section IV.

. ) o ) ‘not available from a 1-D surface model. The denominator
Conjugate gradient solver efficiency was increased by usig this expression is actually evaluated 2ig/ cos 0; times

a second conjugate gradient solution of the zero-order can@is iqtq] power incident upon the surface for the tapered
ical grid term matrix with zero-strong matrix bandwidth a$eam, given by the integration of the normal component of
the preconditioner. The “dense” nature of this preconditiongfe incident Poynting vector over the surface profile. With
was found to provide a more rapid convergence in the fylle apove definitions, 1-D cross sections integrated over all
matrix equation than other banded matrix preconditioneigattering angles in the plane of incidence should yietdo; .
Note that conjugate gradient solution of the preconditioned Results to be presented were calculated with the IBM SP/2
equation is clearly an orde¥ log N procedure since matrix 400 node parallel computer at the Maui High-Performance
multiplies are completely performed through use of the FFEomputing Center (MHPCC) [46]. The IBM SP/2 is a col-
However, rapid convergence of the preconditioner solution jigction of 400 RS-6000 (based on a POWER2 CPU) work
also desirable since its iterations must be performed withifations, capable of around 250 MFLOP operation individu-
every iteration of the overall matrix solution. Thus, the preally, networked through a high-performance communication
conditioner solution was also preconditioned through use ¢fstem to allow groups of nodes to operate in combination
a quasi-physical optics solution, which was based on aB a parallel processor. Software libraries are available at
FFT operation to represent the right-hand side (or incidethie center to implement interprocess communications using
field) in terms of its plane wave spectrum, a multiplicatiogimple routine calls so that development of parallel codes is
by 1 — R, or 1 + R, where R, and R, are the Fresnel relatively efficient. The codes of this paper use the parallel
reflection coefficients for individual plane waves to generatértual machine (PVM) message passing library [47], which
the physical optics incident plus reflected wave solution amgl a public domain package for UNIX communications. Due
an inverse FFT to return fields to the space domain. Sintethe implicitly parallel nature of a Monte Carlo simulation,
these operations are all linear, they can be representedpatallelization of the code was effectively perfect with only
terms of a matrix operator, which is the preconditioner useimple process starting and monitoring routines requiring any
for the preconditioner equation. Use of the quasi-physicéterprocess communications.
optics solution was found to produce rapid convergence in
the preconditioner conjugate gradient solver with dramatically V. RESULTS
improved efficiency in the overall matrix equation solution.
The numerical model applied models the dielectric const

(7)

Results were generated using surface spectrum low-
S al’?équency cutoff wavenumbek; values of 146.6 rad/m
of the ocean through use of the IBC approximations ' = qresponding to a spatial scale of two free-space elec-
R Jg_ wheren, is th_e |mpedance of the sea water medlUfﬁ_lomagnetic wavelengths) and 0.036 rad/m 8192 free-space
[44]. This approximation is reasonable since sea Watervb%lvelengths) with correspondinkp products of 0.088 and
a fairly high-loss medium at microwave frequencies with @4 o5 and total surface rms slopesof 0.075 and 0.158,
dielectric constant of approximately8 + 40 at K, band yegpectively. The high-frequency surface cutoff was held
[45]. Some indication of the accuracy of the IBC for thigjyeq atks, = 586 rad/m (one-half free-space wavelength) to
case was obtained through a comparison of perturbation thegyyre that the Bragg portion of the spectrum was adequately
predictions using the IBC with those that included the exag{odeled. Strong matrix bandwidths in the canonical grid
equations for the specified dielectric constant. Backscatterifgdthod as described in [32], [33], ranged from 64 points
cross sections were found to be within 0.2 dB for this casg the lowest rms height case to 512 points for the highest
even at near-grazing angles, where IBC accuracy is expecigith a corresponding increase in the number of canonical grid
to decrease due to the high dielectric constant of the sea watgts required from 3 to 15, respectively. These parameters
medium. Similar results were obtained with the compositgere determined through tests on several surface realizations
surface model, demonstrating that the IBC’s accuracy extengs described in [33] and insure that canonical grid series
beyond the small-surface rms height case where the SPMGg&een’s functions are accurate to within 0.1% for all points
valid. on the surface outside the bandwidth region. Sixty-four

Numerical results will be presented in terms of the normalealizations were averaged for fields incident af,8&3,
ized incoherent backscattering radar cross sectionin the 85°, 87, and 89 and computational times for a single
plane of incidence, defined in terms of the ensemble averaagle, polarization, and surface realization ranged from
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Fig. 1. Comparison of numerical and SPM backscattering predictions foig- 2. Comparison of numerical and composite surface model backscatter-
small rms height casek{; = 146.6 rad/m, ko = 0.088) and large rms ing predictions for large rms height case.
height case £; = 0.036 rad/m, ko = 14.25).

approximately 15 min on a single node of the SP/2 for Fig. 2 compares numerical model results in the high-rms
the low-rms height cases to approximately 240 min in tHeeight case with those of the composite surface model. Three
high-rms height cases, illustrating the efficiency and expectéiferent choices for the cutoff wavenumber parameter in the
rms height dependencies of the canonical grid approa@@mposite surface model (which defines the upper limit to the
These computational times are very reasonable when the |al@jé-frequency portion of the surface spectrum used in finding
number of unknowns in the simulation (65 536) is consideretie “tilting” rms slope) are illustratedk; = /2, k/128, and
Several numerical tests were performed varying the numises ¢;k/2. Fig. 2 clearly shows the standard choice= k/2
of realizations, beam taper width, surface high-frequené§ overpredict numerical results at smaller grazing angles,
content, surface sampling rate, and strong region bandwidggused by the composite surface model’s continued averaging
and showed that the results presented should be accufMer SPM results at larger grazing angles. The agreement
ensemble averages within approximately 2 dB for all casebtained at larger grazing angles with = k/2, however,
considered. gives an additional validation of the numerical method, since
Fig. 1 compares computed horizontal (HH) and verticgarlier numerical studies have shown good agreement with
(VV) backscattered cross sections for thg = 146.6 rad/m this choice at larger grazing angles. Choice of a much smaller
and k; = 0.036 rad/m cases. Also included in this plotvalue of k; = k/128 greatly reduces the rms slope of
are the corresponding SPM results. The excellent agreemiégt long wave portion of the spectrum so that smaller HH
between numerical and perturbation theory results (withinCIOSs sections are obtained, but even with this decrease the
dB at all angles less than 8and within 1.6 dB at 89 in the composite surface theory again fails to predict the obtained
low-rms height case clearly demonstrates that the numeriéaigular dependence of the numerical resultsadiocchoice
method can produce accurate predictions even up fo 8% k; = cos 0;k/2 was made in an attempt to improve this
incidence. The small errors observed in these cross sectibggavior with some success as shown in the HH cross sections,
are caused by the finite number of realizations averaged dn VV predictions remain inaccurate. Fig. 2 clearly shows
to the effects of the tapered beam. Monte Carlo SPM resduiigt use of the composite surface model at near grazing angles
were also computed and found to be in excellent agreemégguires an improved understanding of the parameter in
with numerical results (within 0.6 dB at all incidence angles}his angular region.
further demonstrating the accuracy of the SPM for the low rms A Monte Carlo second-order SPM formulation was also
height case. Numerical results fég — 0.036 rad/m (where derived for HH- and VV-polarized scattering from a 1-D
ke = 14.25) clearly illustrate the effects of including surfacempedance surface following the perfectly conducting HH
low-frequency content. An additional point at°8&icidence formulation of [41]. However, second-order predictions, which
was calculated for the large rms height case to provide moesulted were found to exceed those of first order by more than
information on the roll off of cross sections beyond®87 20 dB (even with the cancellation effects ®of» and o3 as
Horizontally polarized cross sections increase by up to 20 d@fined in [41]) indicating a convergence problem in the SPM
at 89 while vertically polarized cross sections show only &olution for this largekec = 14.25 case. Comparisons with a
slight increase. Note also that HH cross sections decrease muoid-rms height case whete; = 18.3 rad/m andko = 0.707
slowly as grazing is approached than in the low-rms heighlhowed second-order SPM predictions to work well, demon-
case, clearly visible from the increasing difference betwestrating that the method was implemented accurately so these
the two results near grazing incidence. comparisons show that higher order SPM formulations should



118 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 1, JANUARY 1998

-30 T T T T T T 7 T
V]
ol
i —40+ 8 1
+
— P o
s g N
c c —50F b
Qo 2 X o
%] ] X
g B é -60[ M o} ]
(&) (&)
] ©
3 7 3 -7of X 1
o T %
3 : 3
N X HH large rms ht A N
© SN e ©
E -80fF| + VVlarge rms ht RN x 7 E -80F | x  HH large rms ht ; §
[} ~ N <]
Z ~——— Small Slope 2 SN = +  VVlarge rms ht
N
_got |~ — Small Slope 3 AR i ~got+ | X HH Operator Expansion 4
NN
—-- Smali Slope 4 \\'\ ©  VV Operator Expansion
\
\
100 ) | | ; . . I L N ~100 L | | | | L L . 1
80 81 82 83 84 85 86 87 88 89 90 80 81 82 83 84 85 86 87 88 89 90
Incidence Angle (deg) Incidence Angle {deg)

Fig. 3. Comparison of numerical and small slope approximation backsc&ig. 4. Comparison of numerical- and operator-expansion method backscat-
tering predictions for large rms height case. tering predictions for large rms height case.

be expected to have problems in the microwave frequenajth zero bandwidth and including only the zero and first-
region where theto product is usually very large. order CAG series terms, which corresponds to e+ N

Fig. 3 compares numerical cross sections in the large n@&M solution. A direct OEM solution was not applied since a
height case with predictions obtained from the small slogermulation for impedance surfaces was not readily available.
approximation for impedance surfaces. Both zeroth- and firgtverage cross section results show reasonable agreement in
order terms were calculated for the SSA T-matrix (as defin€&dg. 4, but the errors that occur indicate problems with the
in [42]) allowing computation (through numerical integrationpperator expansion since the same set of surface realizations
of the SSA second-, third-, and fourth-order cross sectioissused for both methods. Comparisons for individual surface
as defined in [42]. Results for HH cross sections show thealizations showed larger than 10-dB errors in some cases.
second-order SSA prediction to be slightly smaller than theFig. 5 compares numerical cross sections in the large rms
corresponding SPM result while higher order corrections graldeight case with the curvature corrected SPM formulation
ually increase cross sections toward the canonical grid valuek.[39]. This formulation is based on the application of
SSA predictions are seen to reproduce to some extent peturbation theory to a cylindrical surface with a specified
roll off in cross sections as grazing angle is decreased, batius of curvature. The rms radius of curvature for the
substantial errors are still observed in the comparison 3em/s wind speed surfaces studied was calculated following
canonical grid results. It should be noted that [14] describg&9] and found to be 32 cm using; = k/2, 11 cm
s & cos # as a condition of applicability of the SSA, whereusing k; = k. This model is seen to produce somewhat
s is the surface rms slope, a condition that is clearly not meétter agreement with numerical results than composite surface
in this example. Further evidence of problems in the SSA teeory with a constant,;, but again it is clear than th&
given by the fact that third- and fourth-order cross sections fparameter will require variation with grazing angle if the
VV results (not included in the plot) exceeded those of secondrrect angular dependence is to be obtained. Note also that
order by more than 20 dB, as with higher order perturbatiaurvature corrections decrease VV cross sections below those
theory corrections. A more rapid failure of the SSA for V\predicted by planar perturbation theory, producing error at
polarization was also observed in [14]. larger grazing angles.

Fig. 4 illustrates the comparison between canonical gridFig. 6 plots polarization ratios obtained numerically and
results and a method similar to the second-order symmetiiom the SPM and composite models. Numerical polarization
operator expansion method of [16]. The OEM is an approachitios in the low-rms height case are seen to agree well
to scattering from a rough surface, which represents induceih perturbation theory, although somewhat larger errors are
surface currents in terms of FFT operations on the incidewibserved in this plot compared to Fig. 1 due to the increasing
field for a specified surface profile. A Monte Carlo simulatiorerrors when HH and VV cross sections are combined. The
performed for the same set of surfaces used in the canonisi&ht average overestimation can be seen from Fig. 1 to be
grid method, is thus required to obtain average scattering crase to a slight underestimation of perturbation theory VV cross
sections. As discussed in [16] and [33], the symmetric versigections at large grazing angles and a slight overestimation
of the OEM solves the same matrix equation as the canonicél HH cross sections at small grazing angles, rather than
grid method, assuming that a zero strong matrix bandwidthdssystematic error in cross sections themselves. Numerical
used. The order of the OEM depends on the number of wepdlarization ratios obtained in the large rms height case are
matrix canonical grid series terms retained. Results presentesinpared with those of composite surface theory (using
in Fig. 4 are actually obtained from the canonical grid methdg/2). It is interesting to note that composite surface theory
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Fig. 5. Comparison of numerical and curvature corrected SPM backscattéig. 6. Numerical, composite surface, and SPM polarization ratios.
ing predictions for large rms height case.

continues to yield reasonable predictions of polarization ratieggular resolutions to the incident fields of the numerical
up to 88 even though it produces inaccurate predictions afiodel) should allow further insight into the scattering physics
HH and VV cross sections due to a cancellation of much of LGA sea clutter so that new analytical models can be de-
the cross-section angular dependency in the polarization ratieloped. Scattering from two-dimensional surfaces, necessary
Problems are still observed at°§however. for prediction of cross-polarized cross sections, has also been
studied with the canonical grid approach at larger grazing
V. CONCLUSIONS angles [35], [52]-{54]
A numerical study of low-grazing-angle (LGA) backscatter-
ing for 1-D ocean like impedance surfaces has been performed.
An efficient iterative point matching method of moments usinga] p. H. Y. Lee, J. D. Barter, K. L. Beach, C. L. Hindman, B. M. Lake, H.
a canonical grid expansion was used so that large surface Rungaldier, J. C. Shelton, A. B. Williams, R. Yee, and H. C. Yueh, "X
profiles could be simulated to avoid angular resolution prob- Sglr‘dl(r)%'c?(‘)"’aé’g %E:)Ck;ggtltfggﬁlﬂol'gg‘;cea” waves,Geophys. Res.,
lems near-grazing incidence. Comparisons with perturbatiop; p. 3. McLaughlin, N. Allan, E. M. Twarog, and D. B. Trizna, “High
theory in the small rms height limit show the numerical resolution polarimetric radar scattering measurements of low grazing
model to provide accurate predictions at up t6 8Bservation, igg? sea clutter,JEEE J. Oceanic Engyol. 20, no. 3, pp. 166-178,
and studies in a larger rms height case, corresponding to[@ b. B. Trizna, J. P. Hansen, P. Hwang, and J. Wu, “Laboratory studies
full 3-m/s wind speed Pierson—Moskowitz ocean spectrum at
14 GHz, show problems in the standard analytical models,
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