

1. SpectreRF Overview

- SpectreRF is an optional feature added to Spectre ,and is represented by 6 analyses:
 - 1. PSS: Periodic Steady State Analysis
 - 2. PAC: Periodic AC Analysis
 - 3. PXF: Periodic Transfer Function Analysis
 - PNOISE: Periodic Noise Analysis
 Tdnoise: Time Domain Noise
 QPNOISE: Quasi-Periodic Noise (not discuss here)
 - 5. PDISTO: Periodic Distortion Analysis QPSS: Quasi-Periodic Steady State (not discuss here)
 - 6. Envelope Analysis (not discuss here)

PAC, PXF, and PNOISE are similar in concept to AC, XF, and Noise. However, they are applied to periodically-driven circuits such as mixers and oscillators.

SpectreRF Tool Flow

PSS is a large-signal analysis and determines the period of the small-signal analyses. PSS requires that multiple periodic stimuli be coperiodic.

PDISTO is also a largesignal analysis, and need not to be run after a PSS analysis. PDISTO does not require multiple periodic stimuli to be coperiodic.

SpectreRF Features

- Compute a steady-state solution efficiently and directly
- Handles very large circuits (~ 10,000 transistors)
- Displays results in both time and frequency domains
- Use Discrete Fourier Transform (DFT) for better accuracy
- Displays standard RF measurements, such as s-parameter in Smith chart, NF, IP3, and 1dB compression point in the Analog Artist design environment.
- Performs oscillator analysis.

2. S-Parameter Analysis

- Linear Simulation:
 - Entirely in the frequency domain
 - A basic RF feature of the Spectre simulator
- Ports:
 - Specify the port number on the *psin* (or *port*); *psin* (or *port*) can act as a source port or a load.
 - Required properties for linear analysis: *Resistance & Port number*
- Noise Analysis:
 - Use Nfmin and NF for 2-port circuits ONLY.

Plotting S-Parameter Simulation Results

SP, ZP, YP, HP	s-, z-, y-, and h-parameters
GD	group delay
VSWR	Voltage Standing Wave Ratio
NFmin	minimum noise figure
Gmin	reflection coefficient associated with Nfmin(also known as Γmin, Γopt, or Γon)
Rn	noise sensitivity parameter
rn	normalized equiv. Noise resistance
NF	noise figure
Kf & B1f	stability terms
GT	transducer gain
GA	available gain, assuming conjugate matched output
GP	power gain, assuming conjugate matched input
Gmax	maximum available power gain
Gmsg	maximum stable power gain
Gumx	maximum unilateral power gain
ZM	impedance at port m
NC	noise circles
GAC	available gain circles
GPC	power gain circles
LSB	load stability circles
SSB	source stability circles

Lab1 : S-parameter Analysis

- Create a new library and a new schematic view.
- Use library "analogLib" & "tsmc25rf" to draw the scheme.
- After drawing, push
 Design → Check and
 Save; then push Tools
 → Analog

 Environment, and the
 window "Affirma

 Analog Circuit Design
 Environment" will

appear.

Setup Design Environment(1)

- Push Setup → Model Libraries then the window
 "Model Library Setup" appears. Setup the model library as shown right. Then click OK.
- Push Setup → Simulator/Directory/Host to designate the project directory. The default project directory is "~/simulation ".

X Affirma / Status: F	Analog Ready	Circuit Des	sign E	nviron	iment (3)			T=27 (: Si	imulato	r: spectre	. 🗆 ×
Session S	Setup	Analyses	Varia	ables	Outputs	Sim	Ilation	Resu	lts	Tools		Help
ſ	Design					1	halyse	es				۲Ę,
Library tea	st		#	Туре	A	rgume	nts				Enable	⊐ AC ■ TRAN
Cell lna	a.		1	sp	1	00K	106	10		Loga	yes	⊐DC IIII
view scł	hemati	с										Ť † Ť X Y Z
Desig	n Varia	bles	,				Output	s				⊡ ≣∷
# Name	Va	due	#	Name	/Signal/	Expr	Va	due	Plo)t Save	e March	
												102
🗙 spectre3	: Mode	el Library S	etup									X
ок	Cancel	Defaults	Ар	ply								Help
Model Li	lbrary	File								S	Section	
/users2/	/cic/o	vid/251p5	n_pdk	/mode	ls/mix02	5_1.s	cs			t	t	
/users2/ /users2/	/cic/ov /cic/ov	vid/251p5; vid/251p5;	n_pdk n_pdk	/mode /mode	ls/rf025 ls/rf025	. scs . scs				r t	t_macro t_rfmos	
	Model Library File Section (opt.)											
Model Libr	rary Fil	e										
Model Libr	ra r y Fil	e]	Ĭ	
Model Libr	rary Fil	e Delete	Cha	nge	Edit F	īle					Brow	se
Model Libr	rary Fil	e Delete	Cha	nge	Edit F	īle					Brow	se

- You can use either an absolute model path or a relative model path
- IF you use the absolute approach, the setup is as shown right-upper.

—	- spectre0: Model Library Setup					
ок	Cancel	Defaults	Apply		Help	
Model	Library 1	File			Section	
<pre>~/251p5m_pdklab/models/rf025.scs rf_macro ~/251p5m_pdklab/models/rf025.scs tt_rfmos</pre>				rf_macro tt_rfmos		
Model L	Model Library File Section (opt.					
Add	D	elete	Change	Edit File	Browse	

_	- spectre0: Simulation Files Setup					
ок	Cancel	Defaults	Apply	Help		
Include Pa	nclude Path . /models]					
Definition	Files					
Stimulus	File 👗					
	- spectre0: Model Library Setup					
ок	Cancel	Defaults	Apply	Help		
Model	Library H	file		Section		
rf025.scs tt_rfmos rf025.scs rf_macro						
Model L	Model Library File Section (opt.)					
Add	D	elete	Change	Edit File Browse		

Setup Design Environment(3)

 Push Analyses → Choose then the window "Choosing Analyses" appears. Key in the values as right and push ok, then some information will appear in the "Analyses" domain of the window "Affirma Analog Circuit Design Environment".

CIC

 Push Simulation → Netlist and Run to run the simulation. The Netlist will be saved under a directory called ~/simulation.

X Affirma Analog Circuit Des Status: Ready	sign Environment (3) T=27 C Simulator: spectre	. 🗆 🗆 19
Session Setup Analyses	Variables Outputs Simulation Results Tools	Help
Design	Analyses	୷ୣୢଽ
Library test	# Type Arguments Enable	⊐ AC ■ TRAN
Cell lna	1 sp 100K 10G 10 Logayes	
View schematic		T + I x y z
Design Variables	Outputs	∎ t í
# Name Value	# Name/Signal/Expr Value Plot Save March	A
	Netlist and Run	000
>	1	\sim

Choosing Analyses Affirma Analog Circuit Design Environme OK Cancel Defaults Apply Help
Analysis tran sens pac proise pxf proise pxf
S-Parameter Analysis
Sweep Variable Frequency Design Variable Temperature Component Parameter Model Parameter Model Parameter Vertication of the schematic window
Sweep Range ◆ Start-Stop ◇ Center-Span Start 100K Stop
Sweep Type Logarithmic = Points Per Decade Number of Steps
Add Specific Points
Do Noise Output port /PORT1 yes Input port /PORT0
Enabled Detions

See the Results

- Use the Direct Plot tool to look the results.
- In the "S-parameter Results" window choose some parameters to see their results.

Status: Ready		1	=27 C S	imulator: spect	re	19
Session Setup Analyses	Variables Outputs	Simulation	Results	Tools	He	p
Design		Analyse	Plot Out	puts	>	
Library test Cell Ina View schematic Design Variables # Name Value > Results in /users2/cic/ovid.	# Type Ar 1 sp 10 # Name/Signal/E ////////////////////////////////////	guments OK 106 Output: xpr Va s/schematic	Direct Pi Print Annotate Orcnit O Save Select Delete Printing/	ot andifions Plotting Option:		Transient Signal Transient Minus DC Transient Sum Transient Difference AC Magnitule AC dB10 AC dB20 AC dB20 AC Phase AC Magnitule & Phase AC Magnitule & Phase AC Difference Equivalent Output Noise Squared Output Noise Squared Output Noise Squared Input Noise Noise Figure DC S-Parameter XF PSS PDISTO

🗙 S-Paran	neter Results	>
OK Ca	ncel	Hel
Plot Mode	🔷 Append 📣 Replace	
Function		
🔶 SP		
🔷 GD 👘	🔷 VSWR 🔷 NFmin 🔷 Gmin 👘	
🔷 Rn	l⇔rn ⇔NF ⇔Kf	
	♦ GT ↓ GA ↓ GP	
Gmax	Gmsg Gumx	
GPC		
Vuiv	000 000	
Modifier	*	
🔶 Magnit	ude 🔷 Phase 🛛 🔷 dB20	
🔷 Real	🕹 Imaginary	
S11	S12	
921	622	
321	SEL	
Add To Out	puts _	
> Press Sii	-button to plot	

Some Results

Save the results to *.s2p

- Edit the S-Parameter Options, and enter the path to the output S-parameter file in the file field of the OUTPUT PARAMETERS section and OK the S-Parameter Options form.
- And Simulate again. Check if the file is created in the appointed directory.

🗙 S-Par	ameter O	otions			×	
ок	Cancel	Defaults	Apply		Help	
				4		
STATE-	File Par/	AMETERS				
readns	Ĭ.					
ОЛТЬЛ	PARAME	TERS				
file	ers	2/cic/ovi	id/251p5	n_pdk_lab/lna_t	est1.s2p	
oppoint	i i	awfile 🔲	screen	🛛 logfile 🔛 no		
NOISE F	PARAMETI	ERS				
reftemp	(C)					
CONVER	GENCE P	ARAMETE	RS			
restart	□ <u>y</u>	yes 🔲 no				
ANNOTA	ANNOTATION PARAMETERS					
annotate	e 🗆 r	io 🔲 title	🔄 swee	p 🔳 status 📃 s	steps	
stats	Ξ.	/es 📃 no				

Simulation State

- Push Session → Save State to save simulation states under a directory called ~/.artist_states. Designate a new directory with the Session → Options command in the simulation window.
- Push Session → Save State to load saved states for a design.

		🗙 Saving State	Affirma Analog Circui	t Design Environment (3)	×
		OK Cancel	Defaults Apply		Help
🗙 Loading State -	- Affirma Analog Circuit	Save As	lna		
OK Cancel A	pply Delete State	What to Save	Analyses	Variables	Outputs
Library	test 🖃		 Model Setup Simulator Options 	Convergence Setup	 Environment Options Waveform Setup
Cell	lna 🖃		📕 Graphical Stimuli	Conditions Setup	📕 Results Display Setup
Simulator	spectre 💷	<u>.</u>			
State Name	<mark>lna</mark> state1		Ĩ		
What to Load	Analyses	Variables	Outputs		
	📕 Model Setup	📕 Simulation File	s 👘 📕 Environme	ent Options	
	Simulator Options	📕 Convergence S	Setup 👘 📕 Waveform	n Setup	
	📕 Graphical Stimuli	Conditions Set	up 🔲 Results D	isplay Setup	

Read the S2P file(1)

- Create a new schematic view.
- Use library "**analogLib**" (*n2port* cell) to draw the scheme.
- Simulate if the results are the same as before.

3. Lab2: Swept DC Analysis

- Create a new schematic view and use library "analogLib" & "tsmc25rf" to draw the scheme.
- . After "Check and Save"; then call the window *"Affirma Analog Circuit Design Environment"*.
- Setup up the Model Libraries.
- Push Variables → Copy From Cellview, and the defined variables appear in the "Design Variables" section. Double click on

the variable name or push Variables \rightarrow Edit, the window "*Editing Design Variables*" appears. Key in the appropriate value for the variables.

Set up the Design Environment(1)

- Call the window "Choosing Analyses" and key in the values as right and push ok.
- <u>To plot power or current at the end of the simulation,</u> you must explicitly save the currents necessary for the calculation before the simulation. The voltages at each node are saved by default.
- Select Outputs → To Be Saved → Select On Schematic. In the schematic, select the NMOS. The terminals are circled in the schematic window after you select them. Press Esc to end the selections.

Set up the Design Environment(2)

- In the window "*Design Environment*" select **Tools** → **Parametric Analysis...**; the window "*Parametric Analysis*" appears, then key in the values as below .
- In the window "*Parametric Analysis*" select Analysis
 → Start to start the simulation.

Τοο

Swe

Ran

Step

CIC

	🗙 Affirma Analog Circuit Des	ign Environment (2)	
ria	Status: Ready	T=27 C Simulator: spectre	12
	Session Setup Analyses	Variables Outputs Simulation Results Tools	Help
S	Design	Analyses	Ł
	Library test	# Type Arguments Enable	⊐ AC F TRAN
	Cell nmos1	1 dc t 0 2.5 100myes	⊐DC a a a
	View schematic		T T Z
	Design Variables	Outputs	E.
	# Name Value	# Name/Signal/Expr Value Plot Save March	
	1 vgs 700m	1 NM0/D yes yes no	- -
	2 ⊅as u	3 NMO/S yes no yes yes no	
arametric A	nalysis - spectre(1): test nmos	l schematic	
l Setup /	Analysis	Help	19
ep 1	Variable	Name vgš	
је Туре	From/To 🖃 From	0 <u>.</u> To 2.5 <u>.</u>	
Control	Linear Steps 💷 🛛 Total Ste	ps 0.5	

 Select Results → Direct Plot → DC and select the terminal "Drain" of the nmos in the schematic window; then push ESC, and the results will be showed.

4. Periodic Steady State Analysis

- Directly computes the periodic steady-state response of a circuit in the time domain.
- Iterative Shooting Newton method is employed.
- Calculate frequency translations using the saved matrices at every time point.
- The fundamental frequency of the circuit or system is determined, based on integer multiples of all source frequencies.
- The circuit is evaluated for one period of the common frequency, and the period is adjusted until all node voltages and all branch currents fall within a specified tolerance.

Shooting Newton Method

- PSS operates by efficiently finding an initial condition that results in steady state.
- The first iteration is transient simulation from t=0 to t=1/PSS_{fund} by default. The **tstab** parameter can be adjusted to facilitate convergence.
- The second iteration is PSS analysis between t=tstab to t=(tsatb+1/PSS_{fund}) and compares all voltage and currents at the start and end of the shooting interval. Set the value of tstab to keep "start-up behavior" away.

PSS Analysis Assumptions

- 1st Assumption : Periodicity
 - All stimuli are periodic and coperiodic with the PSS_{fund}; All responses are periodic.
 - PSSfund can be set to includes the subharmonics.
 - If periodicity assumptions fail, PSS analysis will not converge.
- 2nd Assumption : Linearity

 A near-linear relationship need to exist between initial and final points of the shooting interval.

Simulator Accuracy Suggestions

- Do not set "conservative". This will dramatically extend the simulation time.
- ΔV and ΔI < reltol * lteratio * steadyratio
- The suggested settings are recommended for IP3 Analysis, Noise Analysis, or wherever high accuracy is needed.
- Choose the gear2only integration method. The default trap integration method yields
 underdamping and gearOne yields too
 Parameter Defaults Suggested Setting
 reltol
 1e-3

gearOne yields too much overdamping.

CIC

Parameter	Defaults	Suggested Settings
reltol	1e-3	1e-5
vabstol	1e-6	3e-8
iabstol	1e-12	1e-13
Method	trap	gear2only

errpreset	reltol	relref	method	maxstep	steady-ratio	lteratio
liberal	x10.0	allglobal	gear2	<0.4/maxacfreq	0.1	3.5
moderate	x1.0	sigglobal	traponly	<0.2/maxacfreq	0.001	3.5
conservative	x0.1	alllocal	gear2only	<0.1/maxacfreq	0.00001	10.0

- When the Conv norm is 1(unity) or less, the simulation meets the matching criterion.
- The PSS messages also display the number of PSS iterations, the number of accepted timesteps, and the total time required for PSS analysis.

 $Conv norm = \frac{Measured \Delta V \text{ between start and end of shooting interval}}{reltol*lteratio*steadyratio}$

Lab3 : PSS and swept PSS Analysis

CIC

Setup up the PSS Simulation(1)

- Model library setup.
- Call the window "*Affirma Analog Circuit Design Environment*"; key in appropriate value for the variables in the "*Design Variables*" section.

Analyses →
 Choose. In the window "Choosing Analyses", select pss.

X Affirma Analo Status: Ready	g Circuit Des v	sign E	nvironm	ent (1)		-		Oimulad			4
outuor nota	,						=27 U	Simula	tor: spe	ecure 4	*
Session Setup	Analyses	Varia	ables O	utputs	Simulat	ion	Results	Tools		Help	
Desia	n	Edit			Ana	lvses				÷	
3	Dele	10			<u> </u>				<u>}</u>		
Library test		Faid			guments	· · · · ·		• • • • • • •	. Enab	le JAC	. [
Cell mixer		Cop	y From C	ellview							
	Cor	🙀 🗙 Editing Design Variables Affirma Analog Circuit Design Environment									
View schematic			ок	Cancel	Apply Apply & Run Simulation						He
Design Va	riables										
# Name	Value	#		3	selected	vana	ole		Ia	adie ot De	esign variables
			Rame		flo				#	Name	Value
1 frf	2.4G										
2 flo	2.36		Value (E	Expr)	2.3G				1	frf	2.40
									_ 2	flo	2.3G
			Add	Delete	Change	Nex	t Clea	r Find			
						-					
1							- (1			
>			Cellview	/ Variab	oles Cop	py Fra	om Co	py To			
-		_	Cenview	7 You lou.		ру гн		y 10			

Setup up the PSS Simulation(2)

- The Signal field is ONLY applicable to the **pdisto** analysis.
- Beat Frequency represents the PSS Fundamental (PSS_{fund}) frequency. This fundamental is the highest frequency that evenly divides into all frequencies in the circuit. You may key in an appropriate value or push Auto Calculate button to get an autoresponded value.
- Set the value for **number of harmonics**. The number of harmonics won't affect the simulation accuracy or time.
- Make sure the **Enabled** field is on.
- Click the **Options** button and set the integration method to gear2only.

INTEGRATIO	N METHOD P	ARAMETERS	
method	⊒ euler ⊒ gear2	🔟 trap 🔳 gear2only	🔲 traponly

Setup up the PSS Simulation(3) In the Analog Artist Simulation window, select Simulation → Options → Analog. Set the Tolerance Options as recommended. If it is hard to converge

set the Tolerance Options looser.

Finally, Select **Simulation** \rightarrow **Net** and Run to start the pss: time = 8.859 simulation. Note if the pss: time = 9.362 pss: time = 9.859 Conv norm = 69.1, max *Conv norm* is less pss: time = 365 ps pss: time = 859.1 than 1 or if the PSS pss: time = 1.359 pss: time = 1.862 pss: time = 2.36 n simulation has a pss: time = 2.863 pss: time = 3.361 pss: time = 3.867 convergent result. pss: time = 4.364 pss: time = 4.865

pss: time = 5.359 : pss: time = 5.86 n pss: time = 6.359 : pss: time = 6.359 : pss: time = 7.36 n pss: time = 7.36 n pss: time = 7.361 : pss: time = 8.361 : pss: time = 8.361 : pss: time = 9.362 : pss:

vindow	Status: Rea	dy					T	=27 C	Simula	tor: spectr	e 4
maow,	Session Set	up Analyses	Vari	ables Ou	tputs	Simulat	tion R	esults	Tools		Help
	Des	ign				Netlist	and Ru	in			₩ <i>چ</i>
s as	Librory test		#	Туре	Ar	Run				. Enable	£ ⊿ac
	Library test				10	Ontion	c		Þ.		TRAN
erge	Cell mixer		1	pss	10	Notliet	3			Analog	
-	View schem	atic				Output	Log			Digital	
	Design V	ariahlas				Compos	. LUY	Aido		Mixed Sig	ial
	Design	cu icusie s				2304804	nyence a	Mus			
	# Name	Value	#	Name/Si	gnal/E	1981821	2881-020	ang sa	1171. 1	e March	J.
	1 frf	2.40				osseg -	2323223.]	<u> </u>
lst	2 flo	2.30									
		XS	imula	tor Optio	ns						X
ns (87.5 %), ste ns (92.5 %) ste	ep = 8.122 ps	(81.)	IK (Cancel	Defa	ults A	Anniv				Heln
ns (97.5 %), ste	ep = 6.162 ps	(61.					440-3				
dV(netU11U) = 1.469	932 m∀, took 2	.15 s. —									
(2.56 %), ste	ep = 8.08 ps	(80.) TO	LERA	NCE OPT	IONS						
ns (12.5 %), ste	ep = 2.678 ps	(26.) rolf	ol	1	e-5						
ns (17.5 %), ste s (22.5 %), ste	ep = 5.926 ps en = 8.878 ps	(59.)		1-							
ns (27.5 %), ste	ep = 5.836 ps	(58. val	ostol	3	e-8						
ns (32.5 %), ste ns (37.6 %), ste	ep = 5.053 ps ep = 8.321 ps	(50.1)									_
ns (42.6 %), ste	ep = 8.976 ps	(89. jab	stol	10	e-13[
ns (47.6 %), ste ns (52.5 %), ste	ep = 7.645 ps ep = 7.123 ps	(76.)									
s (57.5 %), ste	ep = 2.543 ps	(25. TE	MPER	ATURE O	PTION	IS					
ns (62.5 %), ste ns (67.6 %), ste	ep = 2.683 ps ep = 6.326 ps	(26.)									
s (72.5 %), ste	ep = 8.877 ps	(88.) ten	пр	2	Ĩ.						
ns (77.5%), ste	ep = 5.64 ps	(56.4									
ns (82.5 %), ste no (87 5 %) oto	ep = 4.894 ps en = 8.100 ne	(48.9 m.s) (81.9 m.s)									
ns (92.5 %), ste	ep = 9.105 ps	(01.2 m%) (91 m%)									
ns (97.5 %), ste	ep = 6.162 ps	(61.6 m%)									
nax dV(net0110) = -	-1.27135 u¥, t	ook 2.06 s.									
solution was achiev	red in 9 itera	tions									
-steps = 2081		CONTRACTOR OF STREET									
r pss analysis 'pss	s' was 24.44 s										

_ 🗆 ×

Display the Conversion Power Gain-

method 1

- In the Analog Artist Simulation Window, select **Results** \rightarrow **Direct Plot** \rightarrow **PSS**. Note the prompts on the bottom of the schematic and **PSS Results** windows.
- The *PSS Results* window **MUST** be on the screen when probing the nodes in the schematic. Don't push OK.
- In the PSS Results form, use the cursor to select the Pif net and Prf nets on the schematic. Press **Esc** to end this command.
- Click the Switch Axis Mode icon on the Waveform Window or select Axes → To Strip.

end Replace
Current Voltage Gain Power Gain Transimpedance IPN Curves Beat Frequency m time
Current Voltage Gain Power Gain Transimpedance IPN Curves Beat Frequency m time
Current Voltage Gain Power Gain Transimpedance IPN Curves Beat Frequency Beat Frequency time
Current Voltage Gain Power Gain Transimpedance IPN Curves Beat Frequency m time
Voltage Gain Power Gain Transimpedance IPN Curves Beat Frequency m time dB20 hary
 Power Gain Transimpedance IPN Curves Beat Frequency
Transimpedance IPN Curves Beat Frequency m time dB20 hary
 ✓ IPN Curves ✓ Beat Frequency m
 ✓ Beat Frequency m
m 💠 time 🔷 dB20 nary
m ∲ time ∲ dB20 nary

Display the Conversion Power Gain-

method 1(continued)

- Click the **Crosshair Marker A** icon and place the marker on the 2.4GHz harmonic of Prf.
- Click the **Crosshair Marker B** icon and place the marker on the 100MHz harmonic of Pif.
- Prf:

Magnitude: 4.0085m Power: ≅ -38 dBm

• Pif:

Magnitude: 4.08038mPower: \cong -37.8 dBm

• Conversion Power Gain $\approx 0.2 dB + 3 dB = 3.2 dB$

Display the Conversion Power Gain-method 2

- Select Output → Save All ... and the window "Save Options" appears. Set the buttons as below window in order to get the AC power!
- Select Outputs → To Be Saved → Select On Schematic. In the schematic, select the PORT1 and RL1. The terminals are circled in the schematic window after you select them. Press Esc to end the selections.
- Double click on the name in the Outputs section or select Outputs → Setup. Set the outputs Will Be Plotted and Saved.

CIC

Setting Outputs Affirma Analog Circuit Design Environment (1) OK Cancel Apply								
	Selected Output		Table Of Outputs					
Name (opt.)	Ī	#	Name/Signal/Expr	Value	Plot	Save 1		
Signal	/RL1/MINUS	1 2	PORT1/PLUS PORT1/MINUS		yes ves	all : all :		
Type	current	3	RL1/MINUS		yes	all :		
Will Be	Flotted Saved 🗌 Marched	4	RL1/PLUS		yes	all i		
Add D	elete Change Next New Expression							

🗙 Save (Options			
ОК	Cancel	Defaults	Apply	Hel
Select si	ignals to c	output (sav	e)	🗌 none 🔄 selected 🛄 lvlpub 🛄 lvl 🔳 allpub 🛄 al
Select p	ower sign	als to outp	ut (pwr)) 🔲 none 🛄 total 🛄 devices 🛄 subckts 🔳 all
Set level of subcercuit to output (nestivi)			pud (nest	stivi)
Select device currents (currents)			ents)	🔄 selected 🔄 nonlinear 🔳 all
Set subcircuit probe level (subcktprobelvl)			ubcktprob	obelvi) I
Select AC terminal currents (useprobes)			(useprobe	bes) 🔳 yes 🔟 no
Select AHDL variables (saveahdlvars)			ahdivarsj	s) 🔄 selected 🛄 all
Save model parameters info				*
Save ele	ments inf	ÍO		F
Save out	tput parar	neters info		

<u>1 dB Compression Point Simulation</u>

- Change the Amplitude(dBm) of PORT1 to a variable prf; Designate a value to prf in the Design Variables section.
- In the Choosing Analyses window, turn on the Sweep button as shown here. Type in *prf* for the Design Variable Name, or click the Select Design Variable button, and highlight *prf* from a list, then click OK.

Help

for Otobilization (totob)

- Remember to check in the INTEGRATION METHOD PARAMETERS the method is gear2only.
 Choosing Analyses -- Affirma Analog Circuit Design Environment Conservative moderate liberal
- Select Netlist and Run button. OK Cancel Defaults Apply

Affirma Analog Circuit Des Status: Ready Session Setup Analyses	ign Environment (1) T=27 Variables Outputs Simulation Resu	Analysis \diamond tran \diamond dc \diamond ac \diamond noise \diamond xf \diamond sens \diamond sp \diamond pdisto \blacklozenge pss \diamond pac \diamond pnoise \diamond pxf \diamond envlp Oscillator \Box	
Design	Edit Analyses	Periodic Steady State Analysis	
Library test	FBx(guments	Fundamental Tones Sweep Frequency Variable? no ves Variable Variable Variable Name 	•
View schematic	Copy To Cellview M 2.46 100	2 F1 frf 2.46 Moderate PORT1 3 F2 flo 2.36 Moderate PORT2	
Design Variables	Outputs	Image: Sweep Range Image: I	
# Name Value 1 prf -40 2 frf 2.46 3 flo 2.36	<pre># Name/Signal/Expr Value 1 PORT1/PLUS 2 PORT1/MINUS 3 RL1/MINUS 4 RL1/PLUS</pre>	Image: Clear/Add Delete Update From Schematic Image: Beat Frequency Image: Step Step Step Step Step Step Step Step	
> Results in /users2/cic/ovid/) /simulation/mixer1/spectre/schematic	Number of harmonics 50 Enabled	

P1 dB Simulation Results

PSS Results

Cancel

🔶 Append 📣 Replace

🔷 Current

🔷 Voltage Gain

🔷 Power Gain

Transimpedance

OK.

Plot Mode

Function Voltage

Power

🔷 Current Gain

Transconductance

Analysis Type 🔶 pss

X

Help

• Use Direct Plot function to see the results. Set up PSS Results form as shown here. Then select the **Pif** net in the schematic. With the cursor still in the schematic window, press **ESC** key to end the **Direct Plot**

Simulating IP3

- PSS by itself is seldom used for IP3 simulation, because the separation between the 2-tone frequency is typically only a few Khz, and leads to a very long simulation time.
- Edit **PORT1** properties as right. So The **Fundamental (Beat) Frequency** is now 25MHz.

F1

Frequency name

- Set up *Choosing Analysis* form appears as shown below and push OK
- Run the simulation

	Second frequency name	F3
Accuracy Defaults (empreset)	Noise file name	<u>.</u>
Choosing Analyses Affirma Analog Circuit Desit	Number of noise/freq pairs	0 <u>ĭ</u>
OK Cancel Defaults Apply Save Initial Transient Results (saveinit) no yes	Resistance	50 Ohms
Analysis tran tran to dc the action of the a	Port number	1
Sens y sp y poisto ◆ pss y pac y pnoise y pxf y envl	DC voltage	Ĭ
	Source type	sine
Periodic Steady State Analysis Sweep Frequency Variable? 	Delay time	Ĭ
Fundamental Tones Variable Variable Name prfi_	Sine DC level	Ĭ
# Name Expr Value Signal Select Design Variable	Amplitude	Ĭ
2 F1 frf 2.46 Moderate 3 F2 flo 2.36 Moderate Sweep Range	Amplitude (dBm)	prf
1 F3 frf+25M 2.425G Moderate Start-Stop Contor Snon Start -40 Stop	Initial phase for Sinusoid	Ĭ
Moderate	Frequency	frf Hz
Clear/Add Delete Update From Scher Sweep Type	Amplitude 2	 Y
Beat Frequency Beat Period 25M Auto C Auto C	Amplitude 2 (dDm)	pré
	Initial phase for Sinucoid 2	rea.
Output harmonics	initiai phase for Sinusolu 2	L. E.E.OFM H
Number of harmonics 💷 5 ¹	_ Frequency 2	III+25M HZ

IP3 Results

CODE STATES OF STATES OF

OK |

Plot Mode

Function

🔷 Voltage

Power

🔷 Current Gain

Analysis Type

Cancel

🔶 Append 🛛 🔷 Replace

🔷 Current

🔷 Voltage Gain

Power Gain

×

Help

 Use Direct Plot function to see the results. Set up PSS Results form as shown here. Then select the Pif net in the schematic. Press ESC key to end the Direct Plot command.

3rd order intermodulation product will occur at $(2 \times 2.4 \text{GHz} - 2.425 \text{GHz}) - 2.3 \text{GHz} = 75 \text{ MHz}$

5. PAC Analysis

- PAC is a small-signal analysis like AC analysis, except the circuit is first linearized around a periodically varying operating point as opposed to a simple DC operating point. Linearizing around a periodically time-varying operating point allows analyzing transfer-functions that include frequency translation.
- When a small sinusoid is applied to a linear circuit that is periodically time-varying, the circuit responds with harmonics.
- PAC computes a series of transfer functions, one for each frequency. These transfer functions are unique because the input and output frequencies are offset by the harmonics of the LO.

PAC Analysis Overview

- PAC computes the transfer function from one input to many outputs.
 PAC is similar in concept to normal small-signal AC analysis, but it also calculates frequency conversion effects.
- By setting the *maxsideband* value to K_{max} , PAC generates all $2K_{max} + 1$ sidebands from $-K_{max}$ to $+K_{max}$.
- The small-signal frequency in a PAC analysis can be arbitrarily close or even equal to the LO frequency.

Fundamental PAC Assumptions

- The PAC small signal analysis assumes that the circuit responds in a small signal fashion to the sinusoidal stimulus. This is accomplished by keeping the magnitude of the PAC signal at least 10 dB below the 1 dB GCP.
- The harmonics of the small signal PAC tone are not computed, although small signals can be used to measure distortion caused by the large signals present in the PSS analysis.
- For the transfer function to be accurate, a large number of time steps, during the PSS analysis, are needed at the small signal frequency. If the analysis frequency of the small frequency analysis is too high, the accuracy degrades. The *maxaxfreq* parameter of the PSS analysis can be used to specify the highest frequency that SpecteRF uses in subsequent small signal analyses.

PAC Analysis Summary

• Specify the following information when running a PAC analysis:

PSS fundamental	The number of harmonics should be no less than the PAC harmonics. *
Input port	Set type to dc and specify PAC magnitude
Input sweep frequency	Sweep, array or single point
Output frequencies of interest	Sidebands or Array of Indices
Results format	Plot results relative to output or absolute value of output frequency. Input is of little value and is not used.

* When setting Output harmonics less than the PAC harmonics, be sure to set the *maxacfreq* parameter to assure that the simulator takes sufficient time points to accurately characterize the output waveform in the PSS analysis.

Lab4 : PAC Analysis

- Use the same schematic as Lab3.
- Modify the parameter values of PORT1 as below table.

Note : When the source type is set to **dc**, this signal will not be checked for coperiodicity with the other signals; this source will be treated as a small signal. When the source is set to **sine**, it will be considered "large signal".

Parameter	Value
Resistance	50
Source type	dc
Frequency	frf
PAC magnitude	1
Amplitude (dBm)	prf
Amplitude2 (dBm)	(blank)
Frequency2	(blank)

Setting Up the PAC Simulation

Help

OK Cancel Defaults Apply OK Cancel Defaults Apply Analysis	gn Environma X Help e 🔷 xf Ip	• Call the window ' fill in the form as Note the number of ha	
Fundamental Tones # Name Expr Value Signal 3 F2 flo 2.36 Moderate	SrcId PORT2	Choosing Analyses Affirma Analog Circuit Design Enviro OK Cancel Defaults Analysis \$ tran dc \$ ac ox \$ noise	om
Image: Clear/Add Delete Update From Scher	natic Calculate	Sens sp >pdisto >pss * pac >pnoise pxf >envlp Periodic AC Analysis PSS Beat Frequency (Hz) 2.36 Sweeptype Frequency Sweep Range (Hz) Start-Stop Start 2.356 Sweep Type Step Size 4₫ Linear Number of Steps 4₫	
Accuracy Defaults (empreset) conservative moderate liberal Additional Time for Stabilization (tstab) Save Initial Transient Results (saveinit) no Oscillator Sweep	yes	Add Specific Points	
Enabled F	Options	Enabled Coption	s

s left; then click **Apply**.

harmonics is set to 0, because the PSS simulation ate the large-signal, steady state solution.

Click on **pac** in the *Choosing* **Analyses** form, and setup the form as left; then click **OK**.

The Frequency Sweep Range sets the sweep range on the psin(port) component at the input port which has a PAC magnitude parameter value specified. The value for Maximum sideband is relative to the Fundamental frequency. Since the LO frequency and PSS_{fund} are equal, you get the results of mixing the RF with the 0 through 3rd harmonic of the LO.

• Select Netlist and Run.

- Note how much faster this simulation runs than the previous method used to calculate CG.
- Use **Direct Plot** function to see the results.
- In the schematic window, select the Pif node, and the result are plotted as next page:

Plot Mo	de	A 00000		
not MO	. Tumo	 when 	- V Neplace	
marysis	siype			
♦ pss	🔹 🔶 pac			
Function	1			
🔶 Volt	tage	~	Current	
Sweep	♦ s	pectrum	🔷 sideband	
Sweep Modifier Mag Real	◆ s nitude	pectrum Phase Imaginary	Sideband dB20 dB20 d	
Sweep Modifier Mag Real	◆ s nitude ↓	pectrum Phase Imaginary	Sideband dB20	

Periodic Steady State Response

• To measure the CG, move the marker to the 100MHz position in the waveform window and read the gain.

Note if the input and output port are both matched to 50ohm, we get conversion power gain; otherwise we get conversion voltage gain.

Running a Swept Small-Signal IP3 Simulation

- Modify the parameter values of **PORT1** as right table; then **check and save**!
- Select pss in the Choosing Analyses form, and setup the form as below : Note now the Fundamental Frequency is 100 MHz
- Set the **Number of harmonics** to 50 and you have the harmonics available to view; it won't

affect the
simulation time.

• Click Apply! The Choosing Analyses form is still active on the screen.

An	alysis	↓ tran ↓ sens ↓ pac	dc sp pnoise	ac ∲noise ∲xt pdisto ∲pss pxf ∲envlp	
		Periodic	Steady Stat	e Analysis	
Fu	Indament	tal Tones			
#	Name	Expr	Value	Signal SrcId	
1 3	F1 F2	frf flo	2.46 2.36	Moderate PORT1 Moderate PORT2	
	I	Ĭ.		Moderate 🖃	
	Clear/A	dd Delet	e Upd	ate From Schematic	
	▶ Beat F > Beat F	requency Period	100M	Auto Calculate	
οι	ıtput har	monics			

Parameter	Value
Resistance	50
Source type	sine
Frequency	frf
PAC magnitude	(blank)
PAC magnitude (dBm)	prf
Amplitude (dBm)	prf
Amplitude2 (dBm)	(blank)
Frequency2	(blank)

Sweep 📕 Variable 🖃	Frequency Variable? ♦ no 🔷 yes Variable Name prf Select Design Variable
Sweep Range	-40 <u>.</u> Stop 0.
Sweep Type	Step Size
Add Specific Points 🔲	
Enabled 💻	Options

Setup up the PAC Simulation

- In the **Choosing Analyses** form, select **pac**; then set up the form as right:
- This simulation applies a 2.425GHz tone in the PAC analysis to compare the results by the swept PSS. This PAC test tone is typically separated according to "*channel spacing*".
- Click OK.
- Select Netlist and Run.

IP3 Results

6. PXF Analysis

- The periodic transfer function (**PXF**) analysis directly computes such useful quantities as *conversion efficiency*(the transfer function from input to output at a preferred frequency), *image and sideband rejection*, and *power supply rejection*.
- The primary use of PXF analysis is to measure various conversion gains. This is very valuable when looking at different spurs on the input of a receiver.
- **PXF** can be a better choice for calculating CG than PAC, because **PXF** will provide information on all of the frequencies on the RF port that are converted to the IF band.
- When simulating oscillators, PXF can determine the *tstab* value.

PXF Analysis Overview

- The **PXF** analysis computes the energy contributions from all source harmonic frequencies to a signal or swept output frequency. In this way, a single output response is the combination of all possible frequency components in the design.
- Set the *maxsideband*, or the sidebands parameters, to select the periodic small-signal input frequencies of interest, while sweeping the selected output frequency.

Fundamental PXF Assumptions

- The PXF small signal analysis assumes that the circuit responds in a small signal fashion to sinusoidal stimulus.
 SpectreRF is not capable of computing the distortion caused by the small signals, although small signals can be used to measure distortion caused by the large signals present in the PSS analysis.
- To increase accuracy, choose a large number of time steps during PSS analysis. If the analysis frequency of the small signal analysis is too high, the accuracy of the results degrade. The *maxacfreq* parameter of the PSS analysis specifies the highest frequency uses in subsequent small signal analyses.

PXF Analysis Summary

• Specify the information in this table when running a PXF analysis.

PSS fundamental	The number of harmonics should be no less than the PXF harmonics. *
Output net (v) or	Specify in form
Voltage source (i)	(To measure current, put a 0v battery in series with the branch.)
Output sweep frequency	Sweep, array or single point
Input frequencies of interest	Sidebands
Results format	Plot results relative to input or absolute input value of input frequency. Output is of little value and is usually not used.

* When setting Output harmonics to 0, be sure to set the *maxacfreq* parameter to assure that the simulator takes sufficient time points to accurately characterize the output waveform in the PSS analysis.

Lab5 : PXF Analysis

• Because **PXF** is a small signal analysis, only one large signal tone, the LO, is required. Set the **PORT1** as follows:

Parameter	Value
Resistance	50
Source type	dc
Frequency	frf
PAC magnitude (dBm)	(blank)
Amplitude (dBm)	prf
Amplitude2 (dBm)	(blank)
Frequency2	(blank)

Setting Up the PXF Simulation(1)

- In the Simulation window, select Analyses —
 Choose; turn off the pac analysis. Then select the pss analysis, and set up the form as right:
- Note the number of harmonics is set to 0, because the PSS simulation is only run to calculate the large-signal, steady state solution. Therefore set a value for *maxacfreq* in the PSS Options form. Set *maxacfreq* to 4 GHz.
- Click Apply in the *Choosing Analyses* form.

K Ci	hoo:	sing A	naly	ses -	- At	ffirma Ar Anniu	alog Circ	uit Des	ign Env	/ironme
Ana	alys	is	<pre> transition transition</pre>	ran :ens :ac		dc sp pnoise	ac pdisto pxf	 nois pss env 	se 💠 Ip	xf
			Р	eriodi	c St	teady Sta	ite Analy	sis		
Fu	nda	menta	l To	nes						
#	Naj	ne	Ex	pr		Value	Sig	nal	SrcI	đ
3	F2		fl	.0		2.30	Mod	erate	PORT:	2
,	I		Ĭ.				Mode	rate 🖃		I
- 	Be	eat Fre	- eque	nev	u	<u></u>		in ound		to 1
		at re	riod		2	. 30		Auto	Calcula	
Ou Nu	tput	t harm	riod onic	:s ionics	2	. 36 0 <u>.</u>		Auto		
Ou Nu Acc	tpu imbo cura	t harm er of h acy De onser	riod onic arm efaul vati	s ionics	2 s = 1	. 36 [0]. 0]. 0]. 0]. 0]. 0]. 0]. 0].	liberal	Auto		
Ou Nu Acc Add	tpur imbo cura _ c ditio	at Pe t harm er of h acy De onser nal Ti nitial 1	riod onic arm efaul vatir me 1 Tran	its (e ve	2 s =	. 36	」 liberal stab) ∬ reinit) _	Auto	yes	
Ou Nu Acc Sav	tpur imbi cura ditio ve l cilla	t hammer of h er of h not set nat Ti nitial 1	riod onic arm arm vati me 1 Tran	s in the second se	2 rmpra tabili	. 36	_ liberal stab) ↓ /einit) _	Auto	yes	
Ou Nu Acc Sav Osc	tpu' mb cura _ c ditio ve l cilla	t harm er of h ucy De onser nat Ti nitial	riod onic arm sfaul vati me 1 Tran	its (e ve _ for S1	rrpro motabili	. 36	_ liberal stab)	Auto	yes	

CIC

Setting Up the PXF Simulation(2)

- Click on **pxf** in the *Choosing Analyses* form, and setup the form as left; then click **OK** .
- The *Frequency Sweep Range* is specified from 1MHz to 300 MHz. The **PXF** analysis will calculate all inputs that produce this range of frequencies at the **Pif** port.
- To set the *Positive Output Node*, click the Select button, and select the **Pif** node in the schematic.
- Click the Netlist and Run.

OK Cancel D Analysis 1 SS Beat Frequen Sweeptype Frequency Swee Start-Stop Sweep Type Linear Add Specific Poi	efaults Apply ran \diamond dc sens \Rightarrow sp pac \Rightarrow phoise Periodic XF BDY (H2) 2.36 ep Range (Hz) 4 Start 11	¢ac v pdie e ♦ pxf	sto provinci sto provinci s	se ∲xf s vip
Analysis 1	ran dc sens sp pac sp Periodic XF ncy (Hz) 2.30 ep Range (Hz) Start 11	e e pxf	sto protection of the store of	se 🔷 xf s vlp
SS Beat Freques Sweeptype Frequency Swee Start-Stop Sweep Type Linear Add Specific Poi	Periodic XF ICY (Hz) 2.36 ep Range (Hz) Start 11	Analysi:	S	
SS Beat Frequen Sweeptype Frequency Swee Start-Stop = Sweep Type Linear = Add Specific Poi	ep Range (Hz)	•		
Sweeptype Frequency Swee Start-Stop Sweep Type Linear Add Specific Poi	ep Range (Hz)			
Frequency Swee Start-Stop = Sweep Type Linear = Add Specific Poi	ep Range (Hz) Start 11			
Start-Stop _ Sweep Type Linear _ Add Specific Poi	Start 11			
Sweep Type	Start II	ž		200%
Sweep Type Linear 🖃 Add Specific Poi		4.	Stop	3001
Linear 🖃 Add Specific Poi	⇔ St	ep Size	01	100
Add Specific Poi	Nu 🔷 Nu	imber of	steps	100
naa opecinic PO	inte 🗌			
Sidebands	_		_	
Maximum side	pand 🖃 🛛 3			
Output				
♦ voltage	Positive Outpu	t Node	/net063	Selec
🔷 probe	Negative Outp	ut Node	/gnd!j	Selec
Enabled				Ontions

Plotting the RF to IF Conversion Gain

• Use **Direct Plot** function to see the results. In the PSS Results form, select **pxf** button. Follow the prompts at the bottom of the form, and select the port component (PORT1) in the schematic

Power Supply Rejection

- Double click on the pxf analysis in the window "Design Environment", and the Choosing Analyses form appears. Change the Negative Output Node to Pif-(/net016) in the pxf form, then click ok.
- Run the simulation.

XE	lfirma	a Analog	Circuit Des	sign E	nviron	ment (1)						_	. D X
S	tatus	Ready							T=27 C	Si	mulato	r: spectr	e 4
Se	ssion	Setup	Analyses	Vari	ables	Outputs	Simu	lation	Result	s T	ools		Help
Design							A	nalyse	S				Υţ
Libr	a ry t	est		#	Type	A) 2	rgumen	its	2008			Enable	⊐ AC ■ TRAN ⊐ DC
Cell Viev	m V s	ıxerl chemati	.c	2	pac pss	5 (2.) — — 30	2.4 0 1 0	300M G		<u> </u>	ves no yes	
	Des	ign Varia	ables				C)utput:	S				l∎,
#	Name	va Va	alue	#	Name	/Signal/H	Expr	Va	lue I	lot	Save	March	34
1	prf	-4	10	1	PORT	1/PLUS			Ţ	res	all	no	-
2	frt	2.	46	2	PORT	1/MINUS			2	res	all	no	
3	LTO	Ζ.	36	3	RLI/	MINUS DI IIC			1	res rac	all	no	
					1017	100			-		arr	110	
> R(esults	in /user	s2/cic/ovid/	/simu	lation/	mixer1/sp	ectre/s	schema	atic				\sim

Plotting the Power Supply Rejection

CIC

• Use **Direct Plot** function to see the results. In the PSS Results form, select pxf button. Follow the prompts at the bottom of the form, and select the DC supply (vdc=2.5v) in the schematic

6-10

7. PNOISE Analysis

- PNOISE analysis, unlike conventional noise analysis, computes frequency convention effects, noise folding, aliasing.
- For noise sources that are bias dependent, such as shot noise sources, the time-varying operating point acts to modulate the noise sources. The transfer function from the noise source to the output is also periodically time-varying, and so acts to modulate the contribution of the noise source to the output. The effect of a periodically time-varying bias point on the noise generated by the various components in the circuit is also included.
- Include the effects of thermal noise, shot noise, and flicker noise.

PNOISE Analysis Overview(1)

- The final result of the analysis is the sum of the noise contributions from both the upconverted and down-converted output frequency specified.
- By setting the maxsideband value to K_{max}, all 2×K_{max}+1 sidebands from -K_{max} to +K_{max} are generated. The number of requested sidebands has a small effect on the simulation time.

PNOISE Analysis Overview(2)

- When the reference sideband has any value other 0, Single Sideband (SSB) NF is calculated. To determine the reference sideband, run a PXF analysis.
- The *Noise Summary Table* displays the following data:
 - Noise contribution (value and %) for each component in the circuit
 - Total output noise
 - Total input referred noise

Fundamental PNOISE Assumptions

- The small signal analyses compute transfer function by using time-domain techniques. The time steps used in these time-domain computations are the same as those in PSS analysis. For accuracy, the PSS analysis needs to have many data points at the highest frequency that you want to analyze in the noise analysis.
- More sidebands yield greater accuracy, but they take longer to simulate and use more disk space. If the analysis frequency of the small signal analysis is too high, the Spectre simulator warns. Use the maxacfreq parameter of the PSS analysis to specify the highest frequency for SpectreRF to use in subsequent small signal analyses.

PNOISE Analysis Summary

• Specify the information in this table when running a PNOISE analysis.

PSS fundamental	The number of harmonics will likely be no less than the PNOISE harmonics.
Output net (v) or Voltage source (i)	Specify in form
Output sweep frequency	Sweep, array or single point
Input frequency contributors	Sidebands
Input Sources	Port, voltage or current sources
Reference Sideband	Noise figure and Input referred noise

Lab6 : Noise Figure

- Modify the parameter values of **PORT1** as follows:
- In the Simulation window, select Analyses → Choose; turn off the pxf analysis.

Parameter	Value
Resistance	50
Source type	dc
Frequency	frf
PAC magnitude (dBm)	(blank)
Amplitude (dBm)	(blank)
Amplitude2 (dBm)	(blank)
Frequency2	(blank)

Setting Up the PNOISE Simulation(1)

Then select the **pss** analysis, and set up the form right:

CIC

- Set a value for **maxacfreq** in the **PSS** Options ۲ form. Set maxacfreq to 20GHz. Remember to set the integration method to **gear2only**.
- Click **Apply** in the *Choosing Analyses form*.

INTEGRATIO	N METHOD PA	RAMETERS			
method	🔟 euler	🔟 trap	🔟 traponly		
	🔟 gear2	📕 gear2only	/		Accuracy Defaults (empreset)
				-	🔤 conservative 🔄 moderate 📑 liberal
ACCURACY F	PARAMETERS				Additional Time for Stabilization (tstab)
reiref	🔲 pointlocal	🔲 alliocal 📘	🛾 sigglobal 🔄 allglobal		Save Initial Transient Results (saveinit) 🔲 no 🔛 yes
Iteratio	¥				Oscillator 🗖
steadyratio	Ĭ.				
	Lond			1	Sweep
maxactreq	2001				Enabled Deptions

a second s			1	((3		
_	ок	Cance	l Defau	its Apply			
1	Analy	sis	♦ tran ♦ sens	⇔dc ↓sp	→ ac → pdis	∼noi ≉ps:	se 🔷 xi s
			◇ pac	🔷 pnois	e 🔷 pxf	🔷 env	vip
			Period	lic Steady	State An	alysis	
	Funda	amental	I Tones				
	¥ Na	me	Expr	Valu	ie S	ignal	SrcId
	3 F2	2	flo	2.30	G M	Ioderate	PORT2
			Ĭ.		M	oderate 🔤	
	a	ear/Add	d De	lete	Update I	From Sche	ematic
	Dutpi	ıt harm	onics				
	Dutpi Numk	it harm ber of h	onics armonic	s 💷 🕅			
	Dutpu Numk	it harm ber of h	onics armonic	s =] [0]			
	Dutpı Numk	it harm ber of h	onics amonic	s _			
	Dutpu Numk	it harm ber of h	onics armonic	s = D			
,	Dutpu Numk	it harm per of h	onics armonic	s = d			
	Dutpu Numk	it harm ber of h	onics armonic	s = I			
	Dutpu Numk	it harm per of h acy De	onics armonic	s = 0			
	Dutpu Numk	it harm per of h racy De conserv	onics armonic faults (r vative	s _ (i empreset) _ moderat	e _ libe	ral	
	Dutpu Numk Accur	it harm ber of h racy De conserv onal Tir	onics armonic faults (r vative) me for S	s _ () empreset) _ moderat itabilization	e _ libe ı (tstab)	ral	
	Dutpu Numk Accur	it ham ber of h racy De conserv onal Tir Initial 1	onics armonic faults (r vative) me for S Fransien	s _ (e 🔲 libe I (tstab) Saveinit)	ral	yes
	Dutpu Numk Accur Li Additi Save Dscill	at harm ber of h racy De conserv onal Tir Initial 1 ator	onics armonic faults (i vative me for S Fransien	s _ () empreset) _ moderat itabilization t Results (e 🔄 libe I (tstab) I saveinit]	ral	yes
	Dutpu Numk Accur Additi Save Dscill	it harm ber of h acy De conserv onal Tir Initial 1 ator	onics armonic armonic (vative me for S Fransien	s = (() empreset) _ moderat :tabilization t Results (e 🔄 libe • (tstab) saveinit)	ral	yes
	Outpu Numk Accur Additi Save Dscill	acy De conservional Tir Initial 1 ator	onics armonic faults ((vative) me for S Fransien	s = (moderat t Results (e _ libe (tstab) saveinit]	ral	yes
	Dutpu Numk Accur Additi Save Dscill	it harm ber of h racy De conserv onal Tir Initial 1 ator p	onics armonic armonic (vative me for S Fransien	s _ ((e 📕 libe 1 (tstab) 1 saveinit)	ral	yes

Setting Up the PNOISE Simulation(2) Choosing Analyses -- Affirma Analog Circuit Design Environmex Cancel Defaults Apply Help Analysis 🔷 tran 🔷 ac 🔷 noise 🛛 🔷 xf 🔷 pdisto \land pss <> sp Click on **pnoise** in the *Choosing analyses form*, and >pxf <> envir set up the form as right: Periodic Noise Analysis PSS Beat Frequency (Hz) 2.36 Sweeptype A Maximum sideband of 8 implies PNOISE will • Frequency Sweep Range (Hz) Start-Stop 💷 Start 3K Stop 300M calculate the noise out to 8 harmonics of the PSS_{fund} , or Sweep Type Points Per Decade 20 Number of Steps Logarithmic 🔤 18.4 GHz. Add Specific Points 📃 Sidebands To set the **Positive/Negative Output Node**, click the Maximum sideband 🖃 🛛 🕅 **Select** button, and select the **Pif/Pif-** node in the schematic window. Output Click the **Select** button and select PORT1 component Positive Output Node /net063 • Select voltage 🖃 Negative Output Node /net061 Select in the schematic to set the **Input Port Source**. Input Source /PORT1 Input Port Source Select port 🖃 Reference Side-Band To obtain the **Reference Side-Band**, run **PXF** analysis. • Noise Type sources Finally, push **OK**; then **Netlist and Run**. • Enabled Options... 7-8

Plotting the NF

PSS Results

OK.

Plot Mode

Function

Analysis Type

🔷 pss 🔺 pnoise

🔷 Output Noise

🔶 Noise Figure

Cancel

🔷 Append 🔺 Replace

🔷 Input Noise

Noise Factor

×

Help

 Use Direct Plot function to see the results. In the PSS Results form, select pnoise button. Click Plot button, and the waveform window displays the results.

Printing the Noise summary Report

- It is valuable to know the main contributions of noise in a system. This information is readily available from a **PNOISE** simulation.
- In the Analog Artist Simulation window, select Results → Print → PSS Noise Summary. The Noise Summary form appears. Fill the form as shown here.

🗙 Noise Summary		×							
OK Cancel Defaults Apply		Help							
Type 🔷 spot noise 🔶 integrated noise 🛛 🕺 n	oise unit	V^2 =							
Frequency Spot (Hz) 1K									
From (Hz) 315 To (Hz) 3001	1								
weighting 🔶 flat 🔷 from weight file									
FILTER									
include All Types diode									
include None resistor									
include instances	Select	Clear							
exclude instances	Select	Clear							
TRUNCATE & SORT									
truncate $lpha$ none $\ \diamondsuit$ by number $\ \diamondsuit$ by rel. threshold $\ \diamondsuit$ by abs. threshold									
top 3 noise % 50 noise value	0.0								
sort by 📕 noise contributors 🛄 composite noise 🛄 device name									

The Noise Summary Table

- Click **OK** in the *Noise Summary form*, and the *Noise Summary Table* displays.
- Note what are the main contributions of noise.

🗙 Results	Display Wind	low		<	•		
Window	Expressions	Info	Help 52			•	
				NMO.rs	fn	0	0.00
Device	Param	Noise Contribution	% Of Total	NMO.rg	fn	0	0.00
1				NMO.rds	fn	0	0.00
/PORT1	rn	7.90045e-10	25.76	NMO.rd	fn	0	0.00
NM2.rg	rn	2.16638e-10	7.06	NMO.mcore	rd	0	0.00
NMO.mcore	e id	2.14053e-10	6.98	NMO.mcore	rs	0	0.00
NM1.mcore	e id	2.13385e-10	6.96	/Rmatch2	fn	0	0.00
/R1	rn	2.10986e-10	6.88	/Rmatch1	fn	0	0.00
/R0	rn	2.07627e-10	6.77	/Rbias3	fn	0	0.00
/Rbias1	rn	1.98573e-10	6.47	/Rbias2	fn	0	0.00
NM4.mcore	e fn	1.30932e-10	4.27	/Rbias1	fn	0	0.00
NM3.mcore	e fn	1.30236e-10	4.25	/RL2	fn	0	0.00
NMO.mcore	e fn	9.85642e-11	3.21	/RL1	fn	0	0.00
NM1.mcore	e fn	9.64867e-11	3.15	/R1	fn	0	0.00
NM2.mcore	e id	5.95926e-11	1.94	/R0	fn	0	0.00
NM4.mcore	e id	5.04592e-11	1.65	/PORT2	ext_file_noise	0	0.00
NM3.mcore	e id	5.04257e-11	1.64	/PORT1	ext_file_noise	0	0.00
/RL1	rn	4.37251e-11	1.43				
/RL2	rn	4.34147e-11	1.42	Integrated N	loise Summary (in V	I^2) Sorted By No	ise Contributors
/PORT2	rn	3.98763e-11	1.30	Total Output	Noise = 3.06722e-	-09	
/Rmatch1	rn	3.77525e-11	1.23	Total Input	Referred Noise = 4	. 38152e-10	

Time Domain Noise

- The noise in RF circuits is generated by sources that can typically be modeled as periodically time-varying. Noise that is periodically time-varying is also called *cyclostationary* noise.
- Might or might mot be independent (correlated).
- Becomes intricate with nonlinear elements, with memory, or driven by time-varying signals.

CIC

Time Domain Noise Overview

There have been 3 new noise type parameters added to PNOISE analysis:

- 1. sources:
 - Compute time-averaged total noise power at a signal output, in the frequency domain.
- 2. timedomain:
 - Calculates the time-varying instantaneous noise power in a circuit with periodically driven components
 - Setting the *NOISE Skip Count*=N parameter will only compute the noise at every Nth timepoint in the PSS waveform.
- 3. correlations:
 - Calculate correlations in noise at different ports of a multiport circuit

CLab7: Calculating Time-Varing Instantaneous Noise Power

٧

.

Voltage 1	0.0 V <u>ř</u>					off															
Voltage 2	2.5 V <u>ř</u>					off															
Delay time	Ĭ.	•	•	í			• •	1,													
Rise time	100p š			-													•		•		•
Fall time		•											•	÷.	РМØ		1	•	•		
Pulse width	Ĭ.													1	"pmos	_rf"					
Period	5n si													╢	1:2.40.0	ĺп.					
Frequency name for 1/period	fin													· - 1	fingers	:8					
• Create a new sc	hematic	•					-	•		i i	 n		•	•	m=3 *	•	•		-		ut
• Use library " an a	alogLib" &		vø D ^{vs}	do=2	2.5			m.(∎v Ð;	'1 v1:Ø v2=	.Ø 2.5				NMØ - "nmos	_rf"		•		•	
"tsmc25rf" to d scheme.	raw the		- 1 - 1 - 1	• •	· ·	•	•	•	•	tr=1	ØØp		-		il:240.0 w:80u fingers	λη 1:8	•	•	•		
• After drawing, • Save!	Check and	•													m:1		•	•		•	
		-	-			-	-	-	2	-		-	-	7	Ľ	-	-	-	-	-	-

7 time domain-3

Setting Up the PNOISE Simulation(1)

- Open the Design Environment window and set up a PSS analysis as shown right:
- Click the Options button and set the method to gear2only.
- Click Apply.

🗙 Cho	osing Ana	alyses	Affirma A	vnalog Circ	uit Desi	gn Enviro	nme <mark>×</mark>
ОК	Cancel	Defaults	Apply				Help
Analy	'sis	tran sens pac	dc sp pnoise	◇ ac ◇ pdisto ◇ pxf	◇ nois ◆ pss ◇ envl	e 🔷 xf	
		Periodic \$	Steady S	tate Analy	sis		
Fund	amental	Tones					
# Na	ame	Expr	Value	Sigr	al	SrcId	_
1 f:	in	1/(5n-0)	200M	Mode	erate	V1	
Ľ	lear/Add). Deleta	e U	Moder	rate 🖃 🛛 n Scher	natic	
r ♦ E	Beat Fred Beat Peri	luency od	200M		Auto C	alculate	
Outpo	ut harmo ber of ha	nics rmonics _	10		1		
Accu	racy Def conserv	aults (em ative 🔟 n	oreset) noderate	_ liberal		_	
Addit	ional Tin	ne for Stab	oilization (tstab) 1	n <u>i</u>		
Save	Initial T	ransient R	esults (sa	aveinit) 🗌	no 🔟	yes	
Oscil	lator 🗔						
Swee	ep 🗆						
Enab	led 💻					Options	

<u>Setting Up the</u> PNOISE Simulation(2)

- On the PNOISE analysis form, select **timedomain** in the NOISE Type field.
- Set up a PNOISE analysis as shown right:
- Note: If the Noise Skip Count is set to an integer p, then noise will be calculated at every p+1 points. When the Noise Skip Count is 0 (default), it calculates the noise at every timepoint in the final PSS solution.

Analysis	tran dc ac nois sens sp pdisto pss pac • pnoise pxf env	se 🔷 xf 'Ip
PSS Beat Frequ	Periodic Noise Analysis	
Sweeptype Frequency Sw	veep Range (Hz)	
Start-Stop Sweep Type Logarithmic	→ Points Per Decade → Number of Steps	100 <u>×</u>
Add Specific F	Points 🔲	
Maximum sid	leband 🖃 🛛 🔟	
voltage 🖃	Positive Output Node /outg Negative Output Node /gnd1	Select Select
Input Source		
Noise Type timedomain : Add Specific	Noise Skip Count	
Enabled		Options

Plotting Time Domain Results

- Click the Netlist and Run icon to start the simulation.
- Use Direct Plot function to view the time domain plot of v(out)

test inverter schematic : Jun 18 14:33:37 2002

7_time_domain-6

Help

7_time_domain-7

Plotting Time Domain Noise Results on Spectrum(1)

• To display the spectrum of the noise results, set up the PSS Results form as show right:

CIC

• Click Plot. See the result in the next page.

🗙 PSS Results	x
OK Cancel	Help
Plot Mode 🛛 🔷 Append 🔶 Replace	
Analysis Type	
🔷 pss 🔶 tdnoise	
Function	
 Output Noise Integrated Output Nois Sweep time spectrum 	se
Modifier	
🔶 Magnitude 💊 dB20	
Add To Outputs 🔲 🛛 Plot	

7_time_domain-9

8. Periodic Distortion Analysis

- **PDISTO** is an analysis that invokes a series of **PSS** like analyses over all input frequencies, their harmonics, and the intermodulations of the frequencies and harmonics.
- Similar to **PAC**, the **PDISTO** analysis calculates the responses of circuits that exhibits frequency translations. However, instead of simulating small signal behavior, **PDISTO** models the response from moderately large input signals.
- Use **PDISTO** to calculate intermodulation distortion from two or more large input signals. **PDISTO** treats one particular input signal as the **large** signal, and the others as **moderate** signals.
- **PDISTO** allows arbitrary signal signal inputs, including sums of sinusoids that might not be periodic, it as a **quasi-periodic** extension of **PSS**. **PDISTO** can be thought of as an extension of **PAC** that allows signal signal inputs, capable of producing third-order products, to be used.

PNOISE Analysis Overview

- Internal to the simulator, one input is treated as the **large** signal, which causes the most nonlinearity or the largest response in the circuit.
- Other signals are treated as **moderate** and do not need to be harmonically related to the large signal or integer multiples of each other.
- The **moderate** signals can be large enough to create distortion (near P_{-1dB} point)
- The ability to **sweep PDISTO** provides a way to perform intermodulation distortion calculations with multiple input signals, considered as large signals.

8-4

Comparing PDISTO and PAC(2)

- The number of harmonics of the **large** signal does not affect the simulation time, where the number of harmonics on the **moderate** signals greatly affects simulation time.
- Always specify at least 1 harmonic on each signal in a **PDISTO** analysis.
- **PDISTO** analysis does not take as long as a **PSS** analysis with a small PSS Fundamental, but it is longer than a **PSS/PAC** analysis.

PDISTO Assumptions

- Unlike **PSS**, **PDISTO** does not required multiple inputs be commensurate or coperiodic. However, they still must be periodic.
- For coperiodic, well separated signals, use **PSS**.
- For signals that are closely spaced or not coperiodic, use **PDISTO**.
- For circuits driven by 2 or more moderate signals or at unrelated frequencies, use **PDISTO**.
- If only one periodic signal is large enough to create distortion, choose **PSS** followed by **PAC** or **PXF**.

Lab8 : Simulation with PDISTO

- Modify the parameter values of **PORT1** as follows:
- In the Simulation window, select Analyses → Choose; turn off the pss and pnoise analysis

Parameter	Value
Resistance	50
Source type	sine
Frequency	frf
Amplitude (dBm)	prf
Amplitude2 (dBm)	prf
Frequency2	frf +1M

Setting Up the PDISTO Simulation(1)

- In the *Choosing Analyses* form, select **pdisto** for the analysis. Use the **Clear/Add** button to change the values in the Fundamental tones list box as shown right.
- Remember to select **gear2only** button in the Options form.
- Select Simulation-Options-Analog, and set the Tolerance Options as recommended. If the signals are truly large, relax reltol to

1e-4.

ah

Setting Up the PDISTO Simulation(2)

- Remember to select the output terminals *to be saved and plotted* before the simulation.
- Increase the power of the input RF signals from -40 dBm to -30 dBm.(P-1dB for this circuit is -22 dBm) In the PSS/PAC analysis, you used a PAC tone that was at least 10 dB below

the 1 dB compression point to prevent violating the small signal assumptions associated with the **PAC** analysis. This restriction does not apply to **PDISTO**.

• Select Netlist and Run button

XA	ffirma	Analog	Circuit Des	sign I	Enviror	nment (1)				_	. 🗆 🗡
S	tatus:	Ready						T=27 C	Simulat	or: spectr	e 4
Ses	ssion	Setup	Analyses	Vari	ables	Outputs	Simulati	on Results	s Tools		Help
		Design					Analy	yses			÷
Libra	a ry te	st		#	Туре	e Ai	rguments.			Enable	⊐ AC ■ TRAN ⊐ DC
Cell Viev	mi V sc	xerl hemati	ic	1 2 3	pars pxf pnoi	3.se 8	1М ЗК	300M 300M	100 20	no no no	III III XYZ
	Desi	jn Varia	ables				Outy	puts			[₽,
#	Name	V	alue	#	Name	/Signal/N	Expr	Value P	lot Save	March	*
1 2 3	prf frf flo	-3 2 2	30 . 46 . 36	1 2 3	PORT PORT RL1/	1/PLUS 1/MINUS MINUS		y y y	res all res all res all	no no no	8
				4 5 6	RL1/ RL2/ RL2/	PLUS MINUS PLUS		У У У	res all res all res all	no no no	
> Re	esults i	n <i>l</i> user	s2/cic/ovid	/simu	lation/	/mixer1/sp	ectre/sch	ematic			\sim

Plotting Simulation Results

PDISTO Results

🔶 Append 📣 Replace

OK Cancel

Plot Mode

Function

Analysis Type 🔶 pdisto

X

Help

Use **Direct Plot** function to see the results. Follow the prompts at the bottom of the form, and select instance terminal (RL1) in the schematic

dBm

-1ØØ

8-10

Simulation IP3 with PDISTO(1)

- The setup for this measurement is very similar to the one used for the swept PSS simulation, except you will be using PDISTO with two moderate tones and one large reference signal.
- Modify the parameter values of **PORT1** as follows:
- Check and save.

Parameter	Value
Resistance	50
Source type	sine
Frequency	frf
Amplitude (dBm)	prf
Amplitude2 (dBm)	prf
Frequency2	frf + 25M

Simulation IP3 with PDISTO(2)

- In the *PDISTO Analyses* form, use the **Clear/Add** button to change the values in the Fundamental tones list box. Set up the Sweep Range as shown right.
- Remember to choose the **gear2only** method and set the Tolerance Options as recommended or relax *reltol* to appropriate value. Click OK.
- Run the simulation.

Analysis tran dc ac noise xf sens sp pdisto pss pac proise pxf envip Periodic Distortion Analysis Fundamental Tones # Name Expr Value Signal SroId Harnes 2 F1 frf 2.46 Moderate PORTI 2 3 F2 flo 2.36 Large PORTI 2 3 F2 flo 2.36 Large PORTI 2 Clear/Add Delete Update From Schematic Accuracy Defaults (errpreset) Conservative moderate liberal Additional Time for Stabilization (tstab) Save Initial Transient Results (saveinit) no yes Sweep Frequency Variable? no yes Variable Name prf. Select Design Variable Sweep Type Linear Step Size Logarithmic Stab Size Add Snecific Points	ок	Cancel	Defaults	Apply		He
Periodic Distortion Analysis Fundamental Tones # Name Expr Value Signal Srold Harms 2 F1 frf 2.40 Moderate PORTI 2 6 F1_1 frf+25M 2.4256 Moderate PORTI 2 3 F2 flo 2.36 Large PORTI 2 2 frf 2.46 Moderate PORTI 2 2 flo 2.36 Large PORTI 2 2 Clear/Add Delete Update From Schematic 2 Accuracy Defaults (errpreset)	Analy	ysis	tran sens pac	dc sp pnoise	ac ◇ noi > pdisto ◇ ps: > pxf ◇ em	ise √xf s vlp
Fundamental Tones # Name Expr Value Signal Srold Harms 2 F1 frf 2.46 Moderate PORTI 2 6 F1_1 frf+25M 2.4256 Moderate PORTI 2 3 F2 flo 2.36 Large PORTI 2 2 36 Large PORTI 2 2 Clear/Add Delete Update From Schematic 2 Clear/Add Delete Update From Schematic 2 Accuracy Defaults (errpreset) conservative moderate liberal Additional Time for Stabilization (tstab) f. Save Initial Transient Results (saveinit) no yes Sweep Frequency Variable? no yes yes Variable Variable Name prf. Select Design Variable Sweep Range Start - 40 Stop 0 Sweep Type Linear Step Size S Linear Number of Steps S S			Periodi	c Distortion	Analysis	
Image: Step: Outros Digital Diotal matrix 2 F1 frf 2.46 Moderate PORTI 2 3 F2 flo 2.36 Large PORTI 2 3 F1 frf 2.46 Moderate PORTI 2 Clear/Add Delete Update From Schematic 2 2 Clear/Add Delete Update From Schematic Accuracy Defaults (errpreset) conservative moderate liberal Additional Time for Stabilization (tstab)	Fund # N	lamental	Tones Exor	Value	Simal	SrcId Harms
2 F1 frf 2.46 Moderate PORTI 2 6 F1_1 frf+25M 2.4256 Moderate PORT1 2 3 F2 flo 2.36 Large PORT1 2 2 frf 2.46 Moderate PORT1 2 2 frf 2.46 Moderate PORT1 2 2 frf grd Moderate PORT1 2 3 ref frf grd PORT1 2 4 conservative moderate liberal Additional Time for Stabilization (tstab) ino yes Sweep start-Results (saveinit) no yes Variable Variable Name prf start-Stop f Center-Span Start -40		-canco	Lipi	• 41240		
F1 frf 2.46 Moderate PORTI 2 Clear/Add Delete Update From Schematic 2 Accuracy Defaults (errpreset) conservative moderate liberal Additional Time for Stabilization (tstab)	2 F 6 F 3 F	1 1_1 2	frf frf+25M flo	2,46 2,4256 2,36	Moderate Moderate Large	PORT1 2 PORT1 2 PORT2 3
Clear/Add Delete Update From Schematic Accuracy Defaults (errpreset) conservative moderate conservative moderate iberal Additional Time for Stabilization (tstab) Save Initial Transient Results (saveinit) no yes Variable Variable Variable Variable Variable Variable Start-Stop ~ Center-Span Start -40 Sweep Type * Linear * Step Size * Number of Steps	F	1	frf	2.40	Moderate 🖃	PORT1 2
Accuracy Defaults (errpreset) conservative moderate liberal Additional Time for Stabilization (tstab) Save Initial Transient Results (saveinit) no yes Sweep Frequency Variable? In the second sec		hhA\reel [°]	Delet	ie Unr	late From Sch	ematic
Variable ✓ Variable Name Select Design Variable Sweep Range ◆ Start-Stop ◆ Center-Span Start -40 Sweep Type ◆ Linear ◆ Step Size ◆ Logarithmic ▲ Add Specific Points	Accu Addit	iracy Def conserv tional Tim	'aults (ern ative ı ıe for Stal	preset) moderate bilization (ts	liberal :tab) J	
Select Design Variable Sweep Range ◆ Start-Stop ◆ Center-Span Start -40 Sweep Type ◆ Linear ◆ Logarithmic Add Specific Points	Accu Addii Save Swe	iracy Def conserv tional Tim e Initial Ti ep 🔳	faults (ern ative 🔄 1 ne for Stal ransient R	preset) moderate bilization (ts Results (sav Frequ	」liberal :tab) ∬ einit) no ency Variable?] yes ? ◆ no
Sweep Range ◆ Start-Stop ◆ Center-Span Start -40 Step Sweep Type ◆ Linear ◆ Logarithmic ◆ Step Size ◆ Number of Steps	Accu Addit Save Swe	iracy Def conserv tional Tim e Initial Ti ep I Variable	faults (err ative] ne for Stal ransient R	preset) moderate bilization (ts tesults (sav Frequ Varial	」liberal :tab) ∬ einit) □ no □ ency Variable? ole Name [prf] yes ? ◆ no
Sweep Type Linear Linear Logarithmic Add Specific Points	Accu Addii Save Swe	iracy Def conserv tional Tim e Initial Ti ep I Variabl	faults (err ative 🗐 I ne for Stal ransient R e 🖃	preset) moderate bilization (ts Results (sav Frequ Varial	liberal tab) J. einit) no d ency Variable ble Name prf Select Design	yes ? ◆ no ↓ yes
 ◆ Linear ◆ Step Size ◇ Logarithmic ◇ Number of Steps Add Specific Points 	Accu Addii Save Swe	iracy Def conserv tional Tim e Initial Ti ep 🔳 Variable ep Range Start-St Center-S	Faults (err ative 1) ne for Stal ransient R e 1 e 2 pan St	preset) moderate bilization (ts kesults (sav Frequ Varial	liberal (tab) einit) no ency Variable ble Name prf Select Design	yes ? ◆ no ◇ yes Variable
Add Specific Points	Accu Addii Save Swe Swe Swe	iracy Def conserv tional Tim e Initial Ti ep I Variable Variable g Range Start-St Center-S ep Type	faults (err ative 1) ne for Stal ransient R e 1 e 1 pan St	preset) moderate bilization (ts kesults (sav Frequ Varial	liberal (tab) einit) no ency Variable ble Name prf Select Design	yes ? ◆ no ◇ yes Variable
	Accu Addii Save Swe Swe Swe	iracy Def conserv lional Tim e Initial Ti ep Variable Variable ep Range Start-St Center-S ep Type Linear Logarithn	faults (err ative l) ne for Stal ransient R e l e	preset) moderate bilization (ts tesults (sav Frequ Varial Varial	liberal itab) einit) no ency Variable 3 ole Name prf. Select Design Stop Size er of Steps	yes ? ◆ no ◇ yes 1 Variable

Displaying the IP3 Plot(1)

 Use Direct Plot function to see the results. Set up the PDISTO Results form as shown right.
 Follow the prompts at the bottom of the form, and select instance terminal (RL1) in the schematic

LO: 2.3 G	RF: 2.4 G & 2.425G
1 st order harm	onics: 100M & 125M
3 rd order harr	nonics: 75M & 150M

K PDIST	U Rest					_
ок	Cancel					Hel
Plot Mod	e	🔷 Appe	nd 🔶 R	teplace		
Analysis	Туре					
🔶 pdis	to					
						
Function						
	ige er	2	> Voltag	e Gain		
🕹 Cum	ent Gai	in 🤇	Power	Gain		
🔷 Tran	scondu	ictance <	Transi	mpedan	ice	
🔷 Com	pressio	n Point ৰ	P IPN Cu	irves		
Circuit I	nput Po	ower 🔷	Single P	Point		
			Variable	Sweep		e 11 2
					(bi	· 7
"prf" rar	nges fra	om -40 to	-20		Cbr	.,
"prf" rar Extrapo	nges fro lation P	om -40 to Point (dBm	-20 1) -30	1	ср ^и 1	.,
"prf" rar Extrapo	nges fro lation P	om -40 to Point (dBn od 183	-20 1) -30	Orde	(hi	
"prf" rar Extrapo Input	nges fro lation P Referm	om -40 to Point (dBn ed IP3	-20 1) -30	Orde	()Pr	_
"prf" rar Extrapo Input	nges fro lation P Referm	om -40 to 'oint (dBn ed IP3 q. (Hz)	-20) -30 F2	Orde F1	7 3rd	
"prf" rar Extrapo Input	nges fro lation P Referm	om - 40 to Point (dBn ed IP3 q. (Hz) 50M	-20) -30 F2 0	Orde F1 -2	3rd F1_1	
"prf" rar Extrapo Input 3rd Order	nges fro lation P Referm	om -40 to Point (dBm ed IP3 q. (Hz) 50M 75M	-20 1) -30 F2 0 -1	0rde F1 -2 2	F1_1	
"prf" rar Extrapo Input 3rd Order Harmoni	nges fro lation P Referm	om - 40 to Point (dBm ed IP3 q. (Hz) 50M 75M 100M 125Y	-20) -30 F2 0 -1 -1 1	Orde F1 -2 2 1	()" 3rd F1_1 2 -1 0	
"prf" rar Extrapo Input 3rd Order Harmonic	nges fro lation P Referm	om - 40 to oint (dBn ed IP3 q. (Hz) 50M 75M 100M 125M 150M	-20) -30 F2 0 -1 -1 -1 -1 -1	Orde F1 -2 2 1 0 -1	F1_1	
"prf" rar Extrapo Input 3rd Order Harmonia	Referm	om - 40 to oint (dBn ed IP3 q. (Hz) 50M 75M 100M 125M 150M	-20) -30 F2 0 -1 -1 -1 -1 -1	Orde F1 -2 2 1 0 -1	F1_1 F1_1 2 -1 0 1 2	
"prf" rar Extrapo Input 3rd Order Harmonie	nges fro lation P Referm	om - 40 to Point (dBm ed IP3 q. (Hz) 50M 75M 100M 125M 150M	-20) -30 F2 0 -1 -1 -1 -1 0	Orde F1 -2 2 1 0 -1	F1_1 F1_1 2 -1 0 1 2 0	
"prf" rar Extrapo Input 3rd Order Harmonic	Referm	om - 40 to oint (dBn ed IP3 q. (Hz) 50M 75M 100M 125M 150M 0 25M	-20) -30 F2 0 -1 -1 -1 -1 -1 0 0 0	Orde F1 -2 2 1 0 -1	F1_1 F1_1 2 -1 0 1 2 0 1 2 0 1 2 0 1 2 0 1	
"prf" rar Extrapo Input 3rd Order Harmonia 1st Order	Referm	om - 40 to oint (dBn ed IP3 q. (Hz) 50M 75M 100M 125M 150M 0 25M 50M	-20) -30 F2 0 -1 -1 -1 -1 0 0 0 0 0 0	Orde F1 -2 2 1 0 -1 -1 -2	F1_1 F1_1 2 -1 0 1 2 0 1 2	
"prf" rar Extrapol Input 3rd Order Harmonie 1 st Order Harmonie	Referm	om - 40 to oint (dBm ed IP3 q. (Hz) 50M 75M 100M 125M 150M 0 25M 50M 75M	-20) -30 F2 0 -1 -1 -1 -1 0 0 0 0 -1	Orde F1 -2 2 1 0 -1 -1 -2 2	F1_1 F1_1 2 -1 0 1 2 -1 -1	
"prf" rar Extrapo Input 3rd Order Harmonia 1 st Order Harmonia	Referm	om - 40 to oint (dBm ed IP3 ed IP3 q. (Hz) 50M 75M 100M 125M 150M 0 25M 50M 75M 100M	-20) -30 F2 0 -1 -1 -1 0 0 0 -1 -1 -1 -1	Orde F1 -2 2 1 0 -1 -1 -2 2 1	F1_1 F1_1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
"prf" rar Extrapo Input 3rd Order Harmonia 1 st Order Harmonia	res fro	om -40 to oint (dBm ed IP3 q. (Hz) 50M 75M 100M 125M 150M 0 25M 50M 75M 100M	-20) -30 F2 0 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Orde F1 -2 2 1 0 -1 -1 -2 2 1	F1_1 F1_1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
"prf" rar Extrapo Input 3rd Order Harmonia 1 st Order Harmonia	nges fro lation P Referm	om -40 to oint (dBm ed IP3 q. (Hz) 50M 75M 100M 125M 150M 0 25M 50M 75M 100M	-20) -30 F2 0 -1 -1 -1 -1 0 0 0 0 -1 -1 R	Orde F1 -2 2 1 0 -1 0 -1 -2 2 1 eplot	F1_1 F1_1 2 -1 0 1 2 -1 0	

9. Oscillator and Phase Noise Analysis

- SpectreRF-PSS analysis can be performed on autonomous or nondriven circuits, such as oscillators.
- Oscillator analysis includes two phases:
 - The initial transient phase:
 - The PSS monitors the potential difference between the two nodes specified and the waveforms in the circuits, and this analysis develops a better estimate of the oscillation period of the circuit.

- The shooting phase:

The circuit is simulated repeatedly while the length of the period and the initial conditions are adjusted to achieve a periodic steady state solution.

Troubleshooting Oscillators Does not converge – increase *tstab* Improve the estimate of the period. Be especially carefully that the period specified is not too short. Change the value of the method parameter from *gear2only* to *trap* or *traponly*. Does not converge – increase *maxperiods* If the shooting iteration approaches convergence and fails, increase the value of the *steadyratio* parameter, but never set *steadratio* larger than 0.1.

• Change the value of the tolerance parameter.

- tstart Start time for transient analysis.(default is 0)
- Tonset Time when the last stimulus waveform becomes periodic.
- PSS_{period} the guess period entered by the user.
- tstab additional stabilization time entered by the user.
- maxstep = (Ttran / 50)(default).
- The algorithm then adds a further 4 periods of our guess frequency of transient analysis in order to measure the oscillator frequency.

Oscillator Algorithm and maxstep

- Default *maxstep* > period if Ttran > 50 oscillator periods. The oscillator might not start correctly or a metastable state might be found by the simulator.
- Use tighter convergence criteria or set *maxstep* < 1/(200×FreqOsc)
- In PSS shooting iterations stage, maxstep is the smallest of:
 - *maxstep* manual entry
 - PSSperiod/(maxharm×40)
 - 1/(maxacfreq×5)
 - PSS Beat Frequency/200
- Setting a high harmonic in the PSS analysis or setting *maxacfreq* will only effect the maxstep of the PSS shooting iterations but NOT the maxstep of the initial transient section.

9-5

Set Up the Design Environment

- In the *Design Environment* form select Setup \rightarrow Model Libraries to set up the model library as show below.
- Select Variables → Copy From Cellview to set the variable vctrl to be some value.

Status: Ready	T=27 C Simulator: spectre	6	
Session Setup Analyses	Variables Outputs Simulation Results Tools	Help X spectre1: Model Library Setup	×
Design	Analyses	K Cancel Defaults Apply	Help
Library test	# Type Arguments Enabl	J RC]
Cell osc	1 tran 0 200n yes	Model Library File	Section
View schematic		/users2/cic/ovid/181p6m_pdk/models/mm018.scs	tt
Design Variables	Outputs	/users2/cic/ovid/181p6m_pdk/models/mm018.scs /users2/cic/ovid/181p6m_pdk/models/rf018.scs	res rf_macro
# Name Value	# Name/Signal/Expr Value Plot Save March	/users2/cic/ovid/181p6m_pdk/models/rf018.scs	tt_rimos
1 vctrl 900m	1 PORTO/PLUS yes yes no 2 PORTO/MINUS yes yes no	Model Library File	Section (opt.)
4		Add Delete Change Edit File	Browse

<u>Transient</u> Simulation set up

- Select Analyses → Choose to set up the transient simulation as right window.
- Set up the form and option form as shown right:
- Push Netlist and Run button.

X Choosing I	Analyses Affirma Analog Circuit Design Environ	me×
OK Canc	el Defaults Apply	Help
Analysis	◆ tran	
	Transient Analysis	
Stop Time	200n	
Accuracy D	Defaults (errpreset) rvative 🔲 moderate 🛄 liberal	
Enabled 📕	Options.	
writefinal	spectre. fč	
ckptperiod	Х. 	
INTEGRATIO	N METHOD PARAMETERS	
method	🗖 euler 🔄 trap 📑 traponly	
	🖬 gear2 🛛 📕 gear2only 🛄 trapgear2	
ACCURACY P	PARAMETERS	
reiref	🔲 pointlocal 🔲 alllocal 🔲 sigglobal 🔲 allgloba	ا ا
Iteratio	Х. 	
ANNOTATIO	N PARAMETERS	
stats	🔟 yes 🛄 no	
annotate	🗌 no 🔄 title 🔄 sweep 🔳 status 🛄 steps	_
OUTPUT PAP	RAMETERS	
save	🔄 selected 🛄 lvipub 🛄 lvi 🔳 alipub 🛄 ali	

Display the Transient Results

• In the *Analog Artist Simulation* window, select **Results** \rightarrow **Direct Plot** \rightarrow

Transient Signal; then select Vout1 node in the schematic and press ESC key to end the selection. The Vout1 transient node voltage appears in the

CIC

Oscillator Notes

- When applying initial conditions to start an oscillator, first run a transient analysis to get the voltages for a few nodes in the circuit. To set the initial conditions for the next run, select Simulation – Convergence Aids – Initial Condition.
- In the Transient Options form, set a value such as *spectre.fc* for the **writefinal** parameter in the *STATE FILE PARAMETERS* section. The *spectre.fc* file will have all of the final conditions on the nodes in the circuit.
- Before running another transient or PSS analysis, set **readns** to *spectre.fc* in the *CONVERGENCE PARAMETERS* section of the Options form.

spectre.fc file

	$ \times$
CHECKPOINT_VERSION 1	
# Generated by spectre from circuit file `input.scs' during analysis tra	ın.
# 4:41:44 PM, Thur Jun 20, 2002	
# Number of equations = 77	
NM2:int_d 1.38143129288017	
NM2:int_s 4.27510716664238e-05	
net5 -0.150439862589224	
net7 0.202993505669876	
net11 2.25021017248973	
net19 1	
net26 0.9	
net35 0.779556456246658	
net39 0.776441932715426	
net43 1.06676286864526	
net49 1.6759459972117	
net57 1.92889948704024	
net58 1.38147572492745	
PORT0:p 0.00405987011339751	
V0:p -0.0732141329919096	
V1:p 0.000358606009066479	
V2:p 1.1956494590698e-05	
vdd! 1.8	
C0.diode:int_a 0.899821441348785	
C0.n2 -0.105920570737303	
C1.diode:int_a 0.900467622111242	
C1.n2 0.115359200575381	
C2.ls:1 -0.00405987011339751	
C2.n1 0.211926869155686	
C2.n2 0.203959736445305	

Use the DFT Function

- In the Waveform window, click the **Add Subwindow** icon, then a subwindow with a label of **2** in the upper right corner is added.
- Click the **Calculator**, then the calculator appears.
- Click the vt button in the Calaulator and follow the prompt at the bottom of the schematic window. Then select the Vout1 node in the schematic and press Esc; click and hold Special Functions and select dft form from the Special Function list.
- Fill in the form as follows: And click OK.

🗙 Discre	te Fourier	Transform	n		x
ОК	Cancel	Defaults	Apply		Help
From	10[0	In	To 200r <u>ě</u>	Number of Samples	1024
Window 1	Type R	ectangular	· =	Smoothing Factor	1
Coherent	Gain ((none) =	1		

🔀 Calculat	or											_ 🗆 🗵
Window I	Memorie	es Con	stants	Option	IS						Hel	p 61
dft(VT("/	net7")	, 100n, 9	200n, 10	24, "Re	ctangu	lar",1	, 1)]					
Evaluate B	uffer 🔤	j Di	splay S	tack 🗌	1		🔶 st	andard	⇔ RF			
browser	vt	it	lastx	х⇔у	dwn	up	sto	rci	Sp	ecial Fu	inctions	
wave	vf	if	cle	ear	clst	app	sin	asin	mag	In	exp	abs
family	vs	is	en	ter	undo	eex	COS	acos	phase	log10	10**x	int
erplot	vdc	idc	-	7	8	9	tan	atan	real	dB10	y**x	1/x
plot	ор	opt	+	4	5	6	sinh	asinh	imag	dB20	x**2	sqrt
printvs	vn	var	*	1	2	3	cosh	acosh	fl	f2	f3	f4
print	mp		1	0	•	+/-	tanh	atanh				

9-12

PSS/PNOISE Analysis(1)

- In the *Choosing Analysis* window, turn off the transient analysis; select the **pss** analysis and set up the form as right:
- An estimate of 2GHz was selected for Beat Frequency. It's recommended to estimate a lower frequency than expected to help in the convergence.
- The value of **tstab** is set to 100n to inform the simulator that the oscillation needs 100ns to stabilize to a steady-state waveform.
- Remember to choose the **gear2only** method in the options form.
- Click Apply.

Choosing Anal	yses Affirma /	Analog Circuit Des	ign Environme
OK Cancel	Defaults Apply		Hel
Analysis 🔶	tran 🔷 dc sens 🕹 sp pac 🕹 pnoise	↓ ac ↓ nois ↓ pdisto ↓ pss ↓ pxf ↓ env	se 🐟 xf Ip
I	Periodic Steady S	itate Analysis	
Fundamental T	ones		
# Name E	xpr Value	e Signal	SrcId
♦ Beat Perio	d 20 <u>i</u>	Auto	Calculate 🔟
Output harmon Number of har	ics nonics = 1		
Output harmon Number of han Accuracy Defa Conserval Additional Time	ics monics (the second	☐ liberal (tstab) 100rř.	
Output harmon Number of han Accuracy Defa conserval Additional Time Save Initial Tra	ics nonics = 1 ults (errpreset) tive = moderate for Stabilization insient Results (s	□ liberal (tstab) 100rř. aveinit) □ no □	yes
Output harmon Number of han Accuracy Defa conservat Additional Time Save Initial Tra Oscillator	ics monics (Live moderate for Stabilization insient Results (s Oscillator node	_ liberal (tstab) 100mੁੱ aveinit) _ no _	yes Select
Output harmon Number of han Accuracy Defa conservat Additional Time Save Initial Tra Oscillator I	ics monics [] ults (errpreset) tive [moderate for Stabilization insient Results (s Oscillator node Reference nod	liberal (tstab) 100n [×] aveinit) no aveinit) no a /net7 [×] e /gnd![yes Select Select
Output harmon Number of han Accuracy Defa Conserval Additional Time Save Initial Tra Oscillator	ics monics [] [] ults (empreset) tive [] moderate for Stabilization insient Results (s Oscillator node Reference nod	_ liberal (tstab) 100nă aveinit) _ no _ a /net7ă a /net7ă a /net7ă	yes Select Select
- Next, click the **pnoise** button, and set up the PNOISE analysis as right:
- The phase noise from 1 Hz to 10 MHz, *relative* to the derived oscillation frequency, will be calculated.
- The Sidebands field is set to a Maximum sideband of 0. In this case, you are interested in the upconverted 1/f device noise to the oscillation frequency. To account for higher harmonics of the oscillator that also contribute noise, change this value.
- No Input Source is specified. ٠
- Click OK.

PSS/PNOISE Analysis(2)	Choosing Analyses Affirma Analog Circuit Design Environmet OK Cancel Defaults Apply Help Analysis tran dc ac noise xf explore pac pnoise pxf envlp
Next, click the pnoise button, and set up the PNOISE analysis as right:	Periodic Noise Analysis PSS Beat Frequency (H2) 26 Sweeptype relative = Relative Harmonic I Frequency Sweep Range (Hz)
The phase noise from 1 Hz to 10 MHz, <i>relative</i> to the derived oscillation frequency, will be calculated.	Start-Stop Start I Stop 10M Sweep Type Points Per Decade 20 Logarithmic Number of Steps 20 Add Specific Points
The Sidebands field is set to a Maximum sideband of 0. In this case, you are interested in the upconverted 1/f device noise to the oscillation frequency. To	Sidebands Maximum sideband
account for higher harmonics of the oscillator that also contribute noise, change this value.	Output Positive Output Node /net7 Select voltage = Negative Output Node /net5 Select Input Source none
No Input Source is specified. Click OK.	Noise Type sources Fnabled Options

CIC **Run PSS & PNOISE Simulation**

OK Cancel

Input Noise

Noise Factor

🔷 Phase Noise

Plot Mode

Function

Analysis Type

🔷 pss 🔶 pnoise

📣 Output Noise

♦ Noise Figure

> Transfer Function

× PSS Results

lot Mode

unction

OK Cancel

nalvsis Type

>pss 🔶 pnoise

> Output Noise

> Noise Figure

> Transfer Function

🔶 Append 📣 Replace

Input Noise

Noise Factor

🔶 Phase Noise

Help

х

Help

- Click the Run Simulation icon and use Direct function to see the results.
- Compare the oscillation frequency with the ۲ previous transient results.
- Click Plot icon, and the waveform window

