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Abstract—An optimal three-dimensional (3-D) coefficient tree three-dimensional (3-D) wavelet transform video coding [10].
structure for 3-D zerotree wavelet video coding is considered in The basic idea is to replace the motion compensation by wavelet
this paper. The 3-D zerotree wavelet video coding is inspired by yansforms along the temporal direction to remove temporal re-
the success of the two-dimensional (2-D) zerotree wavelet |maged d The t | let t f h hi
coding. Existing 3-D zerotree wavelet video codecs use the either un anCY' e empora wavele rans_ orm has a ml_"c ‘?WGV
symmetric or symmetric-alike 3-D tree structure, which is a Ccomputational complexity than the motion compensation, since
straightforward extension of the symmetric 2-D tree structure in  no exhaustive searching computation is involved. In the early
the zerotree wavelet image coding. In this paper, we show that the 3-D wavelet-based approaches [5], [8], [9], [21], [22], scalar or
3-D zerotree coding does not need to be applied symmetrically ;o ct0r quantization with run length coding is used to encode the

along all the directions, as the 2-D zerotree image coding does. We - -
find that an asymmetric 3-D tree structure working with a more wavelet coefficients. These methods are not inherently scalable.

flexible asymmetric 3-D wavelet transform can produce a higher ~ Scalability is an essential functionality in many image or
compression ratio than traditional symmetric approaches. The video applications, as discussed in [14]. The term scalability
”eV¥ 3-D tree S]ErUCt“’e C"’?“t_be %SeDd to int1prove thel rtatc_a(;distort(ijon means that the decoder can reconstruct the image or video to
errormance ol many existin -D zerotree waveletl video coaecs . . . . .
\F/)vithout sacrificing ot%er featl?res such as scalability and compu- d_lfferent_qual|t|es by decodlng_varlous amounts of bits from a
tational efficiency. The new tree structure is applied to the 3-D set Single bit stream. The more bits the decoder uses, the higher
partitioning in hierarchical trees method and receives convincing the quality of the reconstructed image or video it produces.
peak signal-to-noise ratio improvements in experiments. As a result, an encoder does not need to encode the original
Index Terms—Set partitioning in hierarchical trees (SPIHT), content at many different bit rates or resolutions to serve users

symmetric and symmetric-alike three-dimensional (3-D) tree with difference bandwidths. It can generate only one bitstream
structure, 3-D zerotree coding, video compression, wavelet trans- 1o meet many needs.

form. . : .
orm Since the invention of the embedded zerotree wavelet algo-

rithm (EZW) [24], many zerotree wavelet image codecs such
I. INTRODUCTION as set partitioning in hierarchical trees (SPIHT) [23], signifi-

ITH THE increasing demands of video streaming 0Vé}ance-linked connected component analysis (S_L.CCA) [3], and
Wcomputer networks and video database browsing, mdﬁ_}tless SPIHT. [18] have been proposed. In addition tq such ad-
features are desired for video compression, such as low cofff’t@ges as simpler codec structure, lower computational com-
putational complexity and good scalability in addition to a googlexny, and better rate-distortion performance, most of them are
rate-distortion performance [25], [28]. Conventional video C0n§_calaple very well. o
pression using hybrid motion compensation (MCP) and discreteVotivated by the success of the zerotree methods in image
cosine transform (DCT) algorithms which have a number &Pmpression, researchers have extended nearly all of them from
advantages, such as reasonably high compression ratio, maf{ygsdimensional (2-D) to 3-D for video coding [2], [4], [11],
technology in DCT, and availability of industrial standards fod2], [17]. [19], [20], [25], [27]{29]. The basic structure of
implementation. On the other hand, the MCP-DCT scheme Hhese codecs is relatively straightforward. First, a 3-D wavelet
difficulty in providing the feature just mentioned. The reason i§ansform is applied on a number of consecutive frames called
twofold. First, motion compensation involves a searching procagroup of frames (GOF) of the video. Second, a 3-D tree struc-
dure which is expensive in computation. Second, motion cofl'e is defined for the wavelet coefficients. Finally, the wavelet
pensation is applied to images with a fixed resolution, whicgpefficients are coded using the zerotree algorithms. The exten-
is not easily scalable. While much research is being perform@i@n of the EZW algorithm has been done in [2] and [4]. The

to solve these problems for MCP, a popular alternative is tH@rk of [28] is the extension of the SLCCA. Thaet al. [25]
use the TriZTR idea, which defines three zerotrees. In [11], a
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In [30], the resolution and frame rate scalability is obtained
by partitioning and/or reordering the bit stream from the 3-D
SPIHT. A comprehensive version of the 3-D SPIHT is presented
in [14]. The 3-D SPIHT has also been used in content-based
coding in [20]. In general, the 3-D zerotree based methods are
comparable with H.263 in rate-distortion performance, but per-
form better in computational simplicity and scalability [14]. The
scalability here includes not only image resolution, but also
frame rate [14], [25], [30].

There are three issues involved in the 3-D zerotree wavelet
video coding. The first issue is the sequence of the 3-D wavelet
transform. For the 2-D image, the symmetric 2-D wavelet trans- .
form, which performs the 1-D wavelet transforms alo¥igand |
Y dimensions alternately, is an obvious choice. For the 3-D ly
video, the decoupled 3-D wavelet transform (or called wavelet
packet transform) is better than the symmetric sequence. g 1. Symmetric 3-D wavelet transform.
second issue is the extension of the dimensions of the zerotree
coding algorithms. This problem is trivial since there is no lim- TABLE |
itation on the dimensions in almost all the 2-D zerotree coding AVERAGE STANDARD DEVIATIONS (STD) OF VIDEO
algorithms. The last issue is how to define an efficient 3-D tree SEQUENi'ESDATf,\':foEffgﬁglﬁé,\}/im'CAL’
structure for the wavelet coefficients. Unfortunately, most of the

existing 3-D zerotree codecs do not consider the structure of STD [ X[ Y [ T

the tree systematically. A commonly used tree is the symmetric Carphone 50.63 | 45.76 | 13.80
3-D tree [4], [11], [13], [17], [19], [20], [28]. The performance Mother and Daughter | 33.64 | 35.03 | 12.28
of the symmetric 3-D tree is not optimal because the properties Hall Monitor 34.74 | 4272 | 5.99

of the video signal and the wavelet coefficients are not sym-

metric along all three dimensions. In [25], an asymmetric treeﬁ_ ient 3-D t tructure is develoned by following the th
structure is defined, but it does not follow the idea of the z&Nclent o-L tree structure Is developed by Tollowing the three

rotree coding exactly. In [14], a symmetric-alike tree structuf les. In iegttlon l\_/‘ t(?e |m_gleg1cle:r_1tat|||on Ofthf 3.'D SPIHT using
is proposed which performs better than the strictly symmetr%e new 5-b tree IS described. Finally, conclusions are given in

tree structure. Unfortunately, its performance is still limited b ection V.
some symmetric requirements in its tree structure. For example,
the transform stages along all the dimensions are equal, the basic
coefficient unit for arithmetic coding is a symmetric2x2  The first part of a 3-D zerotree wavelet video codec is a 3-D
block, and the tree structure is modified from the symmetrigavelet transform applied to a GOF. In order to clearly describe
tree in order to fit the subband structure after the decoupled 3tk 3-D wavelet transform, we define the following notations:
wavelet transform. 1) Wx, Wy, andWr are the wavelet transforms along tie

The 3-D zerotree coding is also used in multispectral image, andT" directions, respectively; 2)x, Ly, and Ly are the
compression [6]. In [6], the Karhunen—Loeve transform is usegberators which produce low-pass subbands aftéithe Wy,
along the temporal direction to remove very strong correlatiemd Wy transforms, respectively; Iy, Hy, andHr are the
among images. A different 3-D tree is used there because of tgerators which produce high-pass subbands afté¥thely-,
Karhunen—-Loeve transform. First, a 2-D tree is defined in eaahdWW transforms, respectively; and %)is the GOF which the
frame. Then, the roots of these 2-D trees are attached one by wa@elet transform is applied to.
to form a 3-D tree. If the 3-D wavelet transform is applied in a sequence of

Inthis paper, we present a more efficient 3-D tree structure fofr Wx Wy ... WrWx Wy, it is a symmetric 3-D wavelet
zerotree wavelet video coding. We propose three rules which sma@nsform (Fig. 1) because the wavelet transforms are applied
drawn from the principles of the zerotree algorithms. The moalternately along theX, Y, and1’ directions. The symmetric
important rule is that a longer tree is better in clustering zerdD wavelet transform has been used in [4], [11], [17], and
and therefore better for compression. Following these rules, {&8] as a straightforward extension from the popular symmetric
develop a new asymmetric 3-D tree structure which can impro2eD wavelet transform in the image compression. Furthermore,
the rate-distortion performance while maintaining all other feaince the transform is symmetric, a simple symmetric 3-D tree
tures of the 3-D zerotree wavelet video codecs. The new 3dructure can be used directly in the following zerotree coding
tree structure is applied to the 3-D SPIHT and achieves a sigrafgorithms.
icant peak signal-to-noise ratio (PSNR) improvement. The symmetric way is not the best for the video signal be-

The paper is organized as follows. Section Il presents an anzduse the 3-D video does not have symmetric statistical proper-
ysis of the structures of the video signal and the 3-D waveliés along all the directions. Table | shows the average standard
transform, respectively. In Section Ill, we study the efficient tregeviation (STD) of the first 128 illumination frames of the three
structure and describe the three tree construction rules. A maigeo sequences used in [14] along the horizofialvertical

Il. 3-D WAVELET TRANSFORM
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quantitatively relate the tree structure with the performance of
compression because we do not have a constant model for the
video signal, as its content changes constantly. For the sake of
discussion, we will make some assumptions and simplifications,
and will use the result of experiments to support our analysis.

A. Rules for Constructing Optimal Tree

The wavelet transform is an energy compacting process.
After the transform and quantization, only a few coefficients
are nonzero (significant) while many other coefficients are zero
(insignificant). Compression can be achieved by efficiently
coding the positions of the nonzero and zero coefficients and
the values of the former. Thus, a zerotree coded bit stream
contains two kinds of bits, for value and position, respectively.
It is not simple to reduce the bits for value because the wavelet
transform is a signal decomposition process, and there is not
close correlation among the values of the wavelet coefficients.
Y, and temporal” directions, respectively. As an example, th&ortunately, the bits for position can be saved significantly due
average STD along the temporal directibris calculated by ~ to the fact that the positions of zero and nonzero coefficients

often follow certain patterns. For example, if we scan the
meany , (stde(V (2, y, z)) wavelet coefficients in one subband in a predefined order such

whereV (t,y, x) is the GOFgstd; is the function of STD with as(? z:g—zkag, Wezre'snay sdge malny s'tiquer:cis ofdzerots. Runflf[ar?gth
respect td, andmean, ,, iS the mean function with respectjo and stack run [26] coding algorithms take advantage of this

andz. The result shows that the STD alofigs much smaller patter by using a single s_y_mbol to repr_esent a sequence of
than the STDs along the other two directiongndY’, while the zeros. Another p(_)pu_larly utilized pat'Fern Is the zerotre_e._ The
STDs alongX andY are very close. Therefore, itis reasonabl&© (after _quantlzanon or thresholdmg)l wavelet-cpefnm.ents
to apply the transforms along tHedirection in a different way corresponding to the same local area in the original signal

from the transforms along th& andY” directions in the 3-D often form a tree structure in the wavelet domain. A high
wavelet transform compression ratio is achieved by using a single symbol or bit

This problem has been investigated in [1] and [14], and a dté)— represent a tree of zero co§ﬁ|C|ent5 (zerotr_ee) [23], [24]. In
neral, the more zero coefficients an algorithm can cluster

coupled 3-D wavelet transform (or so-called 3-D wavelet pack%‘la ther- the hiah . o it hi
transform) is used there. The decoupled wavelet transform h&g cther, the ligher compression ratio 1t can achieve.
he zero wavelet coefficients can form a tree structure be-

patternofWr ... WprWx Wy ... Wx Wy asshowninFig. 2. In low-f let ficient of an | :
the decoupled 3-D wavelet transform, several cascaded Wavg%lfse a low-irequency wavelet coetlicient ot an Image IS usu-

transforms along th&' direction remove the correlation along y larger than its corresponding high-frequency wavelet coet-

the temporal direction first. Then, a set of alternate wavelféfiems.[zd']' Ifalow—_frequency wayelet 90efficient Is zero, itis
transforms along th& andY directions remove the correla- |ghly ]|kely that all its corres:pondmg h|gh—frequency W"’?V‘e'et
tioninthe spatial domain. Most recent 3-D wavelet video Codeggefﬁments are also zero. Thls_z_ero d'Str.'b.Ut'on pattern gives us
use the decoupled 3-D wavelet transform [1], [5], [&], [12], [13 chance to cluster zero coefficients efficiently in a tree struc-

N : ; “ture. Fig. 3 shows 16 coefficien{s4, B, C, ..., P} in a sym-
Lloﬂi'ti[c%r?]iagilsiat]y [[:Zul][ﬁ?] [29], [30] forits better signal decom metric 2-D tree structure for the zerotree coding. These coeffi-

cients correspond to the same local region of the image because
they occupy the same relative position in each subband. We call
them a coefficient set. In this way, all the wavelet coefficients
can be grouped into coefficient sets and the amount of the coeffi-
After the 3-D wavelet transform, a 3-D coefficient tree struceient set is the amount of the coefficients in the lowest subband.
ture needs to be defined for the zerotree coding algorithmslitothe figure, the number on the right side of each coefficient
code the wavelet coefficients. Although the symmetric or syns the magnitude (before quantization). In each subband, coef-
metric-alike tree is most used in 3-D zerotree wavelet viddizients belonging to the same coefficient set form a coefficient
codecs, the zerotree coding algorithms are quite flexible with theock such ag E, F, G, H}. Arrows represent the parent—child
structure of the tree. Any tree structure can be used as long aglationships. A tree can be partitioned into isolated coefficients
covers all the wavelet coefficients. Certainly, different trees haamd small trees. For example, the tree in Fig. 3 can be partitioned
different performances in compression. Therefore, the structimé& an isolated coefficient and three smaller trees with roots
of the tree is of importance for the compression. The symmetitc B, C, and D, respectively. If a tree’s root is located at the
tree may perform very well in 2-D image coding, but not theowest subband, it is a full length tree. If a tree’s coefficients
best choice for coding videos for the reasons stated earlieraie all zero, it is a zerotree. The idea of the zerotree coding is
this section, we will discuss how to construct an efficient tree represent all the wavelet coefficients as a combination of the
for the 3-D zerotree wavelet video coding. It is not feasible tgolated coefficients and the zerotrees, and then output the value

Fig. 2. Decoupled 3-D wavelet transform.

lll. 3-D WAVELET COEFFICIENT TREE STRUCTURE
FOR ZEROTREECODING
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Fig. 3. 2-D coefficient tree structure.
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Fig. 4. Longest sorted coefficient tree structure.

Fig. 5. Widest coefficient tree structure.

of the isolated coefficients. In general, the zerotree coding al

otherwise, output bit “1” to indicate this coefficient is an
isolated coefficient.

2) Code the value of all the isolated coefficients.

Suppose we have a coefficient S8t = {¢;,i = [1,N]|}
with NV coefficients which are sorted from large to small. Corre-
sponding to a threshold,, suppose we hav®l zero coefficients
which are defined ageroC(C, th) = {¢;|round(c;/th) = 0}.
Given a tree structuré’», we runAlgorithm 1 After the first
step, the isolated coefficients d@C(C, Tr,th). It should be
noticed here that isolated coefficients may include zero coef-
ficients, but nonzero coefficients must be isolated coefficients.
Consequently, we hadegoC(C, T'r,th) DO C — ZeroC(C,th).

For an arbitrary zerotree structure-, the total amount of bits
of the zerotree codinBits(C, T'r, th) is the sum of the amount
of the position bitsPosBits(C, Tr, th) from the first step and
the amount of the value bif€alBits(IC(C, Tr, th)) from the
second step

Bits(C, T'r,th)
= PosBits(C, T'r, th) + ValBits(IC(C,Tr,th)). (1)

We want to find aﬁ(C,th) which can minimize
Bits(C, T'r, th)

ﬂ"(C, th) =arg ming.,.(Bits(C, T'r, th))
=arg ming,.(PosBits(C, T'r, th)
+ ValBits(IC(C, T, th))). (2)
First, we consider how to minimize position bits
Tr(C,th) = arg ming, (PosBits(C, Tr, th)).

Obviously, we have

N — M + 1 < PosBits(C, Tr,th) < N.
The maximum amount i& when every coefficient needs one

98¢ to represent whether it is the root of a zerotree or an iso-

rithm generates two kinds of bits: the position bits (positioqated coefficient. The minimum amount ¢ — M -+ 1, since

of the isolated coefficients and the zerotrees) and the value

%ry nonzero coefficient needs one bit of “1” to indicate it is

(values of the isolated coefficients). Without considering the OB isolated coefficient, and zero coefficients need at least one

tional entropy coding, we can clearly separate the output by

Hﬁ. The minimum amount is obtained when Ml zero coeffi-

for every coefficient set. That means we can study the Zerotiee s form one zerotree. For a given threshdidthe coeffi-

coding of each coefficient set independently.

We use the coefficient set in Fig. 3 as an example. The re8ents ZeroC
structure of the 16 coefficients can be arbitrary instead of SYMast amount
metric, as shown in Fig. 3. Figs. 4 and 5 show two examples
of such. We argue that for a single coefficient set, the Iongeét

sorted tree produces the best compression ratio.
To prove our argument, we first uddgorithm las a zerotree
coding algorithm to code a single coefficient tree. Givena qu

the second step generates the value bits. Notice that this si
algorithm is close to the space—frequency quantization (S

cient tree structuré’vr(C, th) which clusters all the zero coef-
(C,th) is thus the optimal tree and generates the
of the position bits. -

For the tree Tr(C,th), we have IsoC(C,Tr,th) =

— ZeroC(C, th). Therefore,ValBits(IsoC(C,Tr,th)) =
ValBits(C' — ZeroC(C, th)). Then for an abritary tre&r, one
hasValBits(IsoC(C, Tr,th)) > ValBits(C' — ZeroC(C, th))

. . : N aQéqcause[soC(C, Tr,th) 2 C — ZeroC(C,th). That means
tization step size, the first step generates the position bits, and. 7.

tTr(C,th) minimizes not onlyPosBits(C, T'r, th) but also

Egz)ifl%its(IsoC(C, Tr,th)). As a result, we have

algorithm in [31]. It can also be viewed as a simplified version 77(C, th) = Tr(C, th) = arg ming, (Bits(C, T, th)). (3)

of EZW or SPIHT.
Algorithm 1: A simple coefficient tree coding algorithm.

In many zerotree coding methods such as EZW and SPIHT, a
large threshold is set at the beginning and divided by two after

1) Quantize all the coefficients, and browse the coefficieetach recursive coding pass. Therefore, we have to find a tree
tree from top to bottom and from left to right. Skip thewhich is optimal for any threshold, but not just one. We argue
coefficients included in a coded zerotree (which will béhat the longest sorted tree is such a tree. We define the longest
defined later). If the current coefficient is the root of aorted tre€l’r;(C) as the tree structure of the coefficient set
zerotree (which means that all its offspring coefficient§c; } which satisfies the following conditions: &), ; is the only
and itself are zero), output bit “0” to code this zerotreeson ofc;; 2) ¢, is the root without parent; and 3), is the deepest
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TABLE I
SUBBAND DEPENDENCE ROW INDEX IS ¢ AND COLUMN INDEX IS j

P(5:,55) | t [ 2 [ 3] 4]5 6] 7|8
1(LxLyLxLyLyLTV) 0.82 ] 0.87 | 0.95 | 0.94 | 0.99 | 0.99 | 1.00
2(HxLyLxLyLrLrV) | 0.06 0.50 | 0.89 | 0.70 | 0.94 | 0.96 | 0.98
3(LxHyLxLyLrLyV) | 0.05 | 0.41 0.88 | 0.74 | 0.93 | 0.95 | 0.98
4(LxLyLxLyHrLrV) | 0.04 | 0.30 | 0.41 0.57 | 0.93 | 0.97 | 0.99
S(HxHyLxLyLrL7V) | 0.04 | 0.30 | 0.42 | 0.87 0.91 | 0.94 | 0.97
6(HxLyLxLyHrLrV) | 0.03 | 0.28 | 0.38 | 0.86 | 0.54 0.94 | 0.96
7(LxHyLxLyHrLzV) | 0.03 | 0.28 | 0.37 | 0.86 | 0.53 | 0.91 0.96
8(HxHyLxLyHrL7V) | 0.03 | 0.27 | 0.37 | 0.85 | 0.53 | 0.90 | 0.93

leaf without son. Fig. 4 shows the longest sorted tree. For anyh = height(css(4))/height(ps)
given thresholdh, since{c;} has been sorted, we know that sw = width(css(z))/width(ps)
thoseM zero coefficients ardc;|i € [N — M + 1,N]}.In  for j=0:j<sh—1
the longest sorted tree, all the zero coefficients are clustered&& k£ =0: sw —1
a zerotree with root aty _ 5r41. ThereforeI'r;(C) is optimal ces(ttlsons) = ess(i,m * sh + j,n * sw + k)
for any thresholdh ttlsons = ttlsons + 1
Tr1s(C) = arg ming,. (Bits(C, Tr,th)), for allth. (4) gzg

Unfortunately, it is not possible to appl§r;,(C) to every €nd

coefficient setC, because there is no way to guarantee that all

the coefficient sets have the same orders of magnitude, and a gy already know that for the zerotree coding of one coeffi-
of extra bits must be used to describe the order of coefficienggent set, the longest sorted coefficient tree is the best. This result
A simple way to solve this problem is to associate a coefficieRgs two implications: 1) the magnitude of the parent coefficient
position with the information of its number subband, and agnhould be larger than that of the child coefficient; and 2) a longer
sume all the coefficients in one coefficient block to be neighree is better for compression. We assume that the same rules
bors/brothers spatially. This restriction and the definition of theyn also be applied in the design of the subband tree. However,
coefficient set enable us to use a subband tree to represent alk#fasfirst rule needs to be modified since we now have subbands
coefficient trees. A subband tree is a tree structure in which eagliher than coefficients. Instead of comparing the magnitude of
node is a subband in the wavelet transform domaigorithm  the parent and child coefficients, we calculate the dependence
2 describes how to derive the coefficient tree structure from th@twyeen two subbands; and S;. The dependence(S;, S;)
subband tree structure for the 2-D case. is defined as the fraction of the parent coefficientsjrwhose

If the magnitude orders of the coefficient sets are completedyagnitude is equal to or larger than that of all its childrens’ coef-
random, the zerotree idea may not work at all, since there is figfents in 5;. Here, the magnitude is that after the quantization
a single subband tree structure which can claim to be efficigjhich we do to remove the effect of small noisy coefficients.
for every coefficient set. Fortunately, the magnitude order gfpje |1 is an example of the values of the subband dependences.
the wavelet coefficients is highly related to the subband thhe decoupled 3-D wavelet transform in Fig. 2 is used where the
they are in. In general, the lower (frequency) a subband is, tf@velet transform is applied three times along each of the three
larger the magnitude of the coefficients is in the subband, agdes. The video sequence used is Hall Monitor, the frame rate is
the coefficients in the subbands at the same level tend to hayeframes per second (fps), and the quantization step size is 16.
similar magnitudes. This general observation of the magnituderyom the above discussion, we draw three rules for the sub-
order gives us a possibility to construct a subband tree whigBnd tree construction.

can give the best average performance among all the coefficientl) Every subband is a node of the subband tree, and the co-

sets. - - : :
Algorithm 2:  Derive the coefficient tree from the subband ngéetr:;t;ee structure is uniquely determined by the sub
tree. 2) There is good dependence between the parent sulshand
and the child subban8l;. P(S;,S;) > 0.9.

ps: matrix representation of the parent 3) Always attempt to construct a longer subband tree.

subband. It should be pointed out that the above rules are not the result of a
pc = ps(m,n): a coefficient in ps. rigorous mathematical derivation but that of a heuristic analysis.
css: array holding ps’s L child subbands. We feel that this is a realistic and effective approach considering
ccs: array holding pc’'s child coefficients. the random nature of the contents of images. Since assumptions
ttlsons = 0 about the magnitudes of the coefficients and their relations are

for i=0:L-1 correct in most cases, the rules are effective in constructing an
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C1 Cc c2

Fig. 6. Symmetric 3-D zerotree after decoupled 3-D wavelet transform.
Fig. 7. Symmetric-alike 3-D zerotree after decoupled 3-D wavelet transform.

efficient subband tree, which can be proved by results of appli-
cations. Our experimental results also prove that these rules@réhe beginning and ending frames of the GOF. In [14], a sym-
effective. metric-alike 3-D tree structure is used to solve this problem. The
In the 2-D image coding, one can see that the symmetric tregefficient tree structure is shown in Fig. 7. For simplicity, only
structure in Fig. 3 satisfies all the three rules, and is, therefot&o dimensionsy andT’, are shown. Instead of assigning the
the best. We can certainly try different tree structures such @sefficients blockC' as the child of the coefficien (shown as
attaching thed x Hy Lx Ly V subband to thélx Ly Lx Ly V  dot arrow), two child block€’; andC, are assigned as the chil-
subband. However, the experiment results show that any otbegn of B. This structure fits the subband structure, and there-
tree structure cannot consistently improve the coding perfdore follows rule 1.
mance, and the improvement, if any, is very small. We thus con-The symmetric-alike subband tree structure follows rules
clude that the symmetric tree is the best. In the 3-D case, theand 2, but does not consider rule 3. Next, we will show
problem becomes more complex, which will be studied in thow to generate a better 3-D subband tree which follows all

next subsection. the rules. We use Fig. 2 as example. First of all, it should
o o be made clear that the root subband is the lowest subband

B. New and More Efficient 3-D Coefficient/Subband LxLyLxLyLrL7V. Secondly, for all the subbands calcu-

Tree Structure lated from the intermediate subbafg LV, it is reasonable

For the symmetric 3-D wavelet transform, it is natural antp follow the way for constructing the 2-D symmetric tree
reasonable to use the symmetric 3-D subband tree structure $4jyicture since they are the result of the 2-D wavelet transform
[11], [17], [28]. However, the decoupled 3-D wavelet transef the subband.r LV, and it has been shown that the 2-D
form performs better than the symmetric 3-D wavelet transymmetric tree is very efficient for the 2-D wavelet transform.
form as mentioned earlier. Unfortunately, the construction of tAden, the subband x Ly Lx Ly Hr L7V should be the child
3-D subband tree is difficult when one uses the decoupled 3dbthe root subband, since it is the low resolution representa-
wavelet transform, since the latter generates asymmetric stibn of the subbandg.;- LV, and Hy LV, which are low-
bands, as shown in Fig. 2. and high-pass subbands after applyiig- to the subband

In [25], a 3-D coefficient tree is defined for the decoupled 3- 7V, respectively. Now we consider the positions of the
wavelet transform. When a coefficient is zero, a symmetric 2-8ubbandd. x Hy Lx Ly Hr L1V, Hx Ly Lx Ly Hr LtV , and
coefficient tree is generated in the same frame. Then this 2iDx Hy Lx Ly Hr L7V. These subbands are attached to the
tree is copied to all the following frames. Finally, the 3-D coefroot subband by the previous works, because they have very
ficient tree is the combination of all the 2-D trees in the curregood dependence on the root subband. For example, they are
and following frames. Unfortunately, this coefficient tree strud.99, 0.99, and 1.00 in Table Il. The dependence of these three
ture violates the first rule. The reason is that the coefficients $tibbands on the subbadd; Ly Lx Ly Hy L7V is also very
such a tree structure do not correspond to the same local reg@®ed because they are the result of the 2-D wavelet transform
References[12], [13], [19], [20], [29], and [30] just use the synef Hr Ly V. In fact, they are 0.93, 0.97, and 0.99 in Table II.
metric 3-D coefficient tree structure without considering the faéts a result, the parent of these three subbands could be selected
that the subbands are no longer symmetric after the decoupkegording to rule 3, which results in a longer and narrower tree.
3-D wavelet transform. In the sample coefficient tree shown lhwe choose the root subband as the parent, the depth of all the
Fig. 6, the coefficient3 is the parent of the coefficient block three subbands is one. If we chodse Ly Lx Ly Hp LtV as
C. The position ofB shows that it is related to the frames irthe parent, the depth is two. Clearlyx Ly Lx Ly Hr L7V is
the middle of the GOF because it is in the center of the subbalhe choice of the new tree structure.

LxHy Lx Ly Ly LV, butits child coefficient block” locates Now consider how to put the subbandsc Hy Hy L1V,
at the boundary of two subbands, which shows that it is relatét .y Hr LtV , andHx Hy Hy L7V in the tree. In [14], they
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/; O(PC): a set of child coefficients of PC.
if i<Fs and j< Rs and k< Cs

O(PC) = {WV (i,j + Rs, k), WV (i,j, k + Cs),
WV (i,j+ Rs,k+ Cs),WV(i+ Fs,j, k)}
elseif j< Rs and k < Cs
O(PC) ={WV(i,j+ Rs, k), WV (i,j,k + s),
WV (i,j+ Rs, k+Cs), WV (2i,7,k), WV (2i + 1,7,k)}
else
O(PC) = {WV(i,2],2k), WV (i,2] + 1,2k),
WV (i,24,2k +1), WV (i,2] + 1,2k + 1)}

end
i * if the child coefficient’'s position is
Fig. 8. New 3-D zerotree structure. L
9 BW = zeroliee stucire out of WV, it is removed from O(PC).

are attached as the sons of the subbdng&ly Lx Ly L+ LV,
HxLyLxLy Ly L7V, and HxHyLxLyLrLyV, respec-
tively. Similarly, we find that the dependences of the subban
LxHyHpLtV on LxHyLxLyHrLtV, HxLyHrLtV
on Hx Ly LxLyHrpLzV, and HxHyHrLyV on HxHy
LxLyHp LV are all very good. On the other hand, if
attachLXHyHTLTV, HxLvHy L7V, andHXHyHTLTV
toLxHyLxLyLyLyV,HxLyLxLyLpyLyV,andHx Hy
Lx Ly Ly L7V, respectively, we get a longer tree. Therefor
based on rule 3, these new parent—child relationships
adopted as the new tree structure.

The same idea is used to put all the remaining subbands in LpLyV — HrLrV — HrV. ®)
the subband tree structure. The final result is shown in Fig. |3. the second step, every subband undergoes a 2-D wavelet
The detailed coefficient parent—child relationship of the new zgansform in the spatial domain and is partitioned into seven
rotree is described iAlgorithm 3 This tree is longer and nar- smaller subbands. These seven subbands follow the symmetric
rower, while keeping the good dependence between the pangsé structure, since they are generated by the 2-D wavelet trans-
and child subbands. In the symmetric-alike 3-D coefficient trefarm. As a result, every node in the 1-D subband tree sown in (5)
a coefficient has up to eight child coefficients and the tree depjfows along theX andY dimensions, and the 3-D subband tree
is three. In the new 3-D tree, the numbers are five and five, rigfinally obtained as shown in (6) at the bottom of the next page,
spectively. As a result, this tree should provide a better zefhich is identical to the tree we construct in Fig. 8. This “auto-
clustering ability than the symmetric-alike tree. There is a siminatically growing” feature makes the new tree structure easily
larity between our tree and the tree used in [6] for multispectradiaptive to different 3-D wavelet or wavelet packet transforms.
image compression, but one may find three major differencesr any pattern of the transform, we can always find a consis-
between the two by a careful comparison. First, [6] is for mutent subband tree structure. For example, we can apply different
tispectral image compression, not for video. Second, [6] usesels of the wavelet transform alod§/Y” andT directions and
Karhunen—-Loeve decomposition in the spectral domain (c@enstruct a 3-D subband tree accordingly. More adaptively, we
responding to the time domain in video compression). Thergan even apply different levels of the 2-D wavelet transforms for
fore, it is not completely wavelet transform. Third, since theifferent temporal subbands after the cascadgdtransforms
Karhunen—-Loeve decomposition does not have the dyadic fe@d construct the corresponding 3-D subband tree.
ture of the wavelet transform, the tree structures along the time
(spectral) domain are different. In [6], a coefficient has, at mosty. | MPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS
one son along the spectral domain. In our tree, it is two.

Algorithm 3  Coefficient parent—child relationship for the
new 3-D zerotree.

Another advantage of the new 3-D subband tree is its con-
istency with the transform sequence of the 3-D wavelet trans-
m, which means that the subband tree can “grow automati-
cally” by following the transform sequence of the 3-D wavelet
transform. At the beginning, there is only one subband (orig-
Wenhal video cuboidV), and the subband tree has only one node.
In the first step, the video is 1-D wavelet transformed along the
temporal direction. Following this transform, the original video
%uboid is partitioned into three small cuboids (subbands) and
#% subband tree grows to a 1-D tree

We apply the new 3-D subband tree structure to the 3-D
SPIHT video codec to test its efficiency, since the 3-D SPIHT
has been studied extensively [14]. We use the same sample
color video sequences in the experiment which are Carphone,

WV: wavelet coefficients of the video. Mother and Daughter, and Hall Monitor sequences, respec-
F's: total frames of the lowest subband. tively. The same parameters are used during the test. That is,
Rs: total rows of the lowest subband. the video size is quarter common intermediate format (QCIF)
Cs: total columns of the lowest subband. which is 176« 144, the frame rate is 10 fps, the color space is
PC = WV(ijk): a coefficient at frame i, 4:2:0, and the length of GOF is 16. The implementation of

row 7, and column k£ of WV. the 3-D SPIHT follows the algorithm presented in [23]. Since
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TABLE Il
PSNR ResuLTS THE SECOND COLUMN (3-D DWT) DESCRIBESLEVELS OF THETRANSFORMSALONG T/X /Y DIRECTION. CU MEANS COEFFICIENTUNIT. SAT
IS SYMMETRIC-ALIKE TREE, AND OT IS OURNEW TREE STRUCTURE AC IS ARITHMETIC CODING. BPS ISBIT RATE. PSNRIS DISPLAYED IN ORDER OFYUV IN

LAST 3 COLUMNS. Rows 3 AND 9 CORRESPOND TO THEORIGINAL 3-D SPIHT

Test ID. | 3DDWT | CU [ Tree | bps | AC | PSNR Car PSNR Mtdr PSNR Hall
1 4/4/4 1x1x1 | SAT | 30k | No | 29.60 36.66 37.41 | 32.14 38.68 38.39 | 32.19 37.59 39.89
2 4/4/4 1x1x1| OT | 30k | No | 30.41 37.28 38.02 | 32.67 39.46 39.20 | 34.51 38.70 40.96
3 3/3/3 2x2x2 | SAT | 30k | Yes | 30.15 36.76 37.65 | 32.65 38.81 38.47 | 32.79 37.66 40.01
4 3/3/3 2x2x2 | OT | 30k | Yes | 30.26 36.79 37.74 | 32.74 38.99 38.71 | 33.39 37.78 40.09
5 4/3/3 1x2x2 | SAT | 30k | Yes | 30.66 37.22 38.07 | 33.06 39.60 39.34 | 34.76 38.81 41.03
6 4/3/3 1x2x2 | OT | 30k | Yes | 30.74 37.49 38.26 | 33.08 39.69 39.45 | 35.16 39.17 41.31
7 4/4/4 1x1x1 | SAT | 60k | No | 32.02 38.34 38.95 | 34.70 40.58 40.42 | 36.63 39.67 41.63
8 4/4/4 1x1x1 | OT | 60k | No | 32.88 39.16 39.67 | 35.23 41.03 40.89 | 39.06 40.91 42.83
9 3/3/3 2x2x2 | SAT | 60k | Yes | 32.83 38.48 39.31 | 35.41 40.59 40.36 | 37.61 39.83 41.78
10 3/3/3 2x2x2 | OT | 60k | Yes | 32.91 38.62 39.42 | 35.47 40.72 40.57 | 37.94 40.18 42.11
11 4/3/3 1x2x2 | SAT | 60k | Yes | 33.17 39.26 39.74 | 35.68 41.21 41.09 | 39.31 40.99 42.91
12 4/3/3 1x2x2 | OT | 60k | Yes | 33.21 39.37 39.84 | 35.69 41.26 41.14 | 39.72 41.10 43.05

the source code of the SPIHT is not available, our 3-D SPIHTansform, not by the arithmetic coding. We run another test
implementation is largely based on the 2-D SPIHT in QccPacising 1x2x 2 coefficient block and a 3-D wavelet transform
[7]. As mentioned in [7], QccPack’s implementation is up tavith four levels of temporal transforms. The symmetric-alike
0.17 dB worse than the reported PSNR in [23] due to differetree can also use such a configuration after small modification.
arithmetic coding implementation. Our result shows that thEhe biorthogonal 9/7 wavelet is used along all the directions
3-D SPIHT with the new 3-D tree outperforms the originaéxcept the last temporal direction transform, which uses a
3-D SPIHT. The SPIHT algorithm has an option to apply theimple Haar wavelet. Our experimental results show that the
arithmetic coding to further improve the compression ratitdaar wavelet can reduce the computational complexity, and
We compare our tree structure with the symmetric-alike trémprove the PSNR slightly simultaneously.

structure in two cases: with and without arithmetic coding. The results on the three sequences at 30 and 60 kb/s are shown
In the experiments without the arithmetic coding, we use tleTable Ill. The results show that the new asymmetric tree struc-
same decoupled 3-D wavelet transform, but the levels of thee consistently outperforms the symmetric-alike tree. Table IV
wavelet transforms along all the dimensions are four instealows the PSNR improvement of the new structure in various
of three, since we do not need to keepZx2 (T' x Y x X) settings. It can be noticed that if there is no arithmetic coding,
coefficient units for the arithmetic coding. In the experimenthe improvement is quite big (rows 1 and 2), but if there is arith-
with the arithmetic coding, the decoupled 3-D wavelet trangaetic coding, the improvement is very limited for the first two
form with three levels of transform along each direction, argequences (rows 3—6). That shows the arithmetic coding is very
the symmetric 22x2 coefficient unit are used. Furthermoregfficient in removing the redundant information which is not re-
since the new 3-D tree does not have any restriction on theved by the baseline zerotree coding. One can see from the
3-D wavelet transform structure, we can use different levetisble that the new 3-D tree generates a larger improvement for
of wavelet transforms along each direction. Therefore, we doe Hall Monitor sequence. The reason is that the Hall Mon-
not keep the 2 coefficient width in the lowest subband alongpr sequence is more asymmetric, as shown in Table I. Its STD
the temporal direction because we believe the correlatidiffers more between the temporal direction and the other two
in the temporal direction should be removed by the waveldirections than that of the other two sequences.

/' LxHyLxLyLrL7V — LxHyLrLyV

LxLyLxLyLyLyV —HxLyLxLyLyLyV — HxLyLpLrtV
! N\HxHyLxLyLrLrV — HxHyLrLrtV
/LxHyLxLyHyLtV — LxHyHrpLptV
LxLyLxLyHyL7V —HxLyLxLyHrLyV — HxLyHpLpV
! N\HxHyLxLyHrL7V — HxHyHrLpV

/‘LXHyL);LyHTV - LXHYHTV
LxLyLxLyHrV —Hx Ly LxLyHrpV Hx Ly HpV
N\NHxHyLxLyHyV — HxHyHpV

—

(6)
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TABLE IV
PSNR MPROVEMENT FROM THE NEW TREE STRUCTURE
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Test | 3DDWT | CU [ bps [ AC | Car Mtdr Hall
1vs2 4/4/4 | 1xIx1 | 30k | No | 0.81 0.62 0.61 | 0.53 0.78 0.81 | 2.32 1.11 1.07
7 vs 8 4/4/4 | 1xix1 | 60k | No | 0.86 0.82 0.72 | 0.53 0.45 0.47 | 2.43 1.24 1.20
3vs4 3/3/3 | 2x2x2 | 30k | Yes | 0.11 0.03 0.09 | 0.09 0.18 0.24 | 0.60 0.12 0.08
9 vs 10 3/3/3 | 2x2x2 | 60k | Yes | 0.08 0.14 0.11 | 0.06 0.13 0.21 | 0.33 0.35 0.33
5 vs 6 4/3/3 | 1x2x2 | 30k | Yes | 0.08 0.27 0.19 | 0.02 0.09 0.11 | 0.40 0.36 0.28

10vs11 | 4/3/3 [ 1x2x2 | 60k | Yes [ 0.04 0.11 0.10 | 0.01 0.05 0.05 | 0.41 0.11 0.14
3vs5 30k | Yes [ 0.51 0.46 0.42 | 0.41 0.79 0.83 | 1.97 1.15 1.02
9 vs 11 60k | Yes | 0.34 0.78 0.43 | 0.27 0.62 0.73 | 1.80 1.17 1.13
3 vs 6 30k | Yes | 0.59 0.73 0.61 | 0.43 0.88 0.98 | 2.37 1.51 1.30
9 vs 12 60k | Yes | 0.38 0.89 0.53 | 0.28 0.67 0.78 | 2.11 1.27 1.27

TABLE V

COMPUTATION TIME COMPARISON FORCOMPRESSING16 FRAMES OF THECARPHONE VIDEO SEQUENCE TO48 000 BTs

Encoder Decoder
CPU Time (sec) Test ID | Load Video DWT SPIHT encode SPIHT decode IDWT | Save Video
3D-SPIHT w/o AC 0 0.26 19.29 4.05 0.33 19.57 0.20
3D-SPIHT w AC 3 0.25 18.23 1.41 0.30 18.37 0.21
Our method w/o AC 1 0.24 19.38 4.69 0.33 19.57 0.21
Our method w AC 6 0.25 19.19 2.15 0.32 19.43 0.21

The other interesting result is the differences between testsolution, and frame-rate scalability in the same way and as
3 and 5, and between tests 9 and 11, respectively. Tests 3 #raloriginal 3-D SPIHT does.
9 correspond to the original 3-D SPIHT in [14]. The results The above comparisons are the results of two fixed bit rates.
from tests 5 and 11 show larger improvements over 3 andlf,order to study the behavior of the tree structures in different
which prove that the 22 x 2 coefficient unit with an extra Haar bit rates, we have tested the video sequences with different bit
wavelet transform in temporal direction works much more effrates and plot a rate-distortion curve in Fig. 9. In this figure,
ciently than the 22x 2 coefficient unit. Although the improve- we compare the performance of three different tree structures,
ment is not directly from the new asymmetric tree structure,symmetric tree (ST), symmetric-alike tree (SAT), and our new
is consistent with our initial consideration: the zerotree codirigee (OT), respectively. The symmetric tree works with the
does not need to be applied symmetrically. In summary, the begtnmetric 3-D wavelet transform, while the other trees work
result comes from tests 6 and 12, where the 4/3/3 3-D waveleith the decoupled 3-D wavelet transform. The transform
1x2x 2 coefficient block, and the new tree structure are usedevels along all the directions are four, and no arithmetic coding

The new 3-D zerotree increases computational complexig/used. The three color video sequences are coded at 30 fps
slightly. Table V is the CPU time comparison between owvith the GOF size of 16. Only the average PSNR oftheolor
method and the original 3-D SPIHT. Itis based on our prograrspace is displayed. From the figure, we can conclude that the
running on a Pentium Il 500-MHz computer. The result showsew 3-D tree is consistently better than the symmetric and the
that the computational complexity of our method is close to thaymmetric-alike trees.
of the original 3-D SPIHT in both encoding and decoding. One We also compare the PSNR of each frame in the video.
can see several other interesting points from this table. Firstiif. 10 is the comparison of the PSNR of tiecolor space
all, most of the computational time is spent on the transforfar each frame of the Hall Monitor sequence. The video is
instead of the coding. This is because we use a set of loogded at 30 fps, 75 kb/s, 16 frames per GOF, and four levels
wavelet filters. Second, the SPIHT encoding spends much mafewvavelet transforms along each direction without arithmetic
time than the SPIHT decoding. This is because the encodicading. The small circle on the curves indicates the position of
part needs to check whether a tree is a zerotree (significarie first frame in each GOF. The figure clearly shows the PSNR
checking). Third, the compression with the arithmetic codindegrading of the boundary frames in a GOF which comes
uses less computation time, which seems to contradict dtom two sources. First, the temporal wavelet transform needs
expectation. It is also because of the significance checking.dignal padding at the boundary. Second, there are multilevel
compression without the arithmetic coding, we apply one motemporal wavelet transforms. If we replace all the 9/7 wavelet
level of wavelet transform along each direction. Therefore, thnsforms along the temporal direction with simple Haar
subband tree is longer and the significance checking needs mweeelet transforms, we can reduce the PSNR degrading, since
time even than arithmetic coding. Besides the computatiorthe Haar transform does not need padding at the boundary, but
efficiency, the new 3-D subband tree supports bit rate, PSN&,the same time, the overall PNSR drops about 0.2 dB.
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Fig. 9. Rate distortion comparison of different tree structures.
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Fig. 10. Frame-by-frame PSNR comparison of the Hall Monitor sequen&ggy. 11. Performance with different GOF size. Videos are encoded at 30 fps
encoded at 30 fps, 75 kb/s, and 16 frames per GOF. and 90 kb/s.

The new tree structure has no limitation on the levels of transizes, and the result is in Fig. 11. Three color video sequences
form along each direction. Therefore, the length of the GOF care coded at 30 fps and 90 kb/s. For different GOF lengths, we
be chosen flexibly according to the requirement of the delay, taivays apply the temporal wavelet transform to the end, and use
memory cost, and the speed of the coding. Theoretically, a larglee same levels of the spatial wavelet transforms. It shows that
GOF length may give a higher compression ratio, but requird®e optimal GOF length for the purpose of the compression is
more memory space and causes delay. For example, encodidg ar 32. Any GOF length greater than 32 does not improve the
video at 10 fps, a GOF length of 16 means the encoder delag@mpression ratio too much, but increases the memory require-
at least 1.6 s. We test the new tree structure with different G@kent and delay significantly.
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V. CONCLUSION [13]

In this paper, we study the optimal 3-D tree structure for 14]
the 3-D zerotree wavelet video compression. We present three
rules for constructing such a tree for image and video com-
pression. Using these rules, we design a new 3-D coefficieERS]
tree structure which can cluster zeros more efficiently, an
therefore achieve a higher compression ratio. The new tree
structure is applied to the state-of-the-art 3-D SPIHT colof16]
video compression scheme to demonstrate its efficiency undey
different conditions. The experimental results show that the
new tree has convincing PSNR improvement for all the testeﬂS]
video sequences when arithmetic coding is not involved. Whe
itis used, the new tree has considerable PSNR improvement for
certain video sequences which have limited motions betweel®!
frames. In both cases, however, the improvement is consistefg,
We also find that significant PSNR improvements can be
obtained by allowing asymmetric coefficient unit in the 3-D
SPIHT’s arithmetic coding. 21

With the improvement of the rate-distortion performance, the
new tree structure still maintains all the desired features of othd#?!
3-D zerotree-based methods, such as computational efficiency
and scalability. Furthermore, the new structure is not limited tg23]
the 3-D SPIHT algorithm, but also other 3-D zerotree-based
methods. The automatically growing feature of the new tregy
leads to easy implementation of the compression algorithm as
well as adaptation to different kinds of 3-D wavelet or wavelet

25
packet transforms. [25]
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