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Abstract—An optimal three-dimensional (3-D) coefficient tree
structure for 3-D zerotree wavelet video coding is considered in
this paper. The 3-D zerotree wavelet video coding is inspired by
the success of the two-dimensional (2-D) zerotree wavelet image
coding. Existing 3-D zerotree wavelet video codecs use the either
symmetric or symmetric-alike 3-D tree structure, which is a
straightforward extension of the symmetric 2-D tree structure in
the zerotree wavelet image coding. In this paper, we show that the
3-D zerotree coding does not need to be applied symmetrically
along all the directions, as the 2-D zerotree image coding does. We
find that an asymmetric 3-D tree structure working with a more
flexible asymmetric 3-D wavelet transform can produce a higher
compression ratio than traditional symmetric approaches. The
new 3-D tree structure can be used to improve the rate-distortion
performance of many existing 3-D zerotree wavelet video codecs
without sacrificing other features such as scalability and compu-
tational efficiency. The new tree structure is applied to the 3-D set
partitioning in hierarchical trees method and receives convincing
peak signal-to-noise ratio improvements in experiments.

Index Terms—Set partitioning in hierarchical trees (SPIHT),
symmetric and symmetric-alike three-dimensional (3-D) tree
structure, 3-D zerotree coding, video compression, wavelet trans-
form.

I. INTRODUCTION

W ITH THE increasing demands of video streaming over
computer networks and video database browsing, more

features are desired for video compression, such as low com-
putational complexity and good scalability in addition to a good
rate-distortion performance [25], [28]. Conventional video com-
pression using hybrid motion compensation (MCP) and discrete
cosine transform (DCT) algorithms which have a number of
advantages, such as reasonably high compression ratio, mature
technology in DCT, and availability of industrial standards for
implementation. On the other hand, the MCP-DCT scheme has
difficulty in providing the feature just mentioned. The reason is
twofold. First, motion compensation involves a searching proce-
dure which is expensive in computation. Second, motion com-
pensation is applied to images with a fixed resolution, which
is not easily scalable. While much research is being performed
to solve these problems for MCP, a popular alternative is the
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three-dimensional (3-D) wavelet transform video coding [10].
The basic idea is to replace the motion compensation by wavelet
transforms along the temporal direction to remove temporal re-
dundancy. The temporal wavelet transform has a much lower
computational complexity than the motion compensation, since
no exhaustive searching computation is involved. In the early
3-D wavelet-based approaches [5], [8], [9], [21], [22], scalar or
vector quantization with run length coding is used to encode the
wavelet coefficients. These methods are not inherently scalable.

Scalability is an essential functionality in many image or
video applications, as discussed in [14]. The term scalability
means that the decoder can reconstruct the image or video to
different qualities by decoding various amounts of bits from a
single bit stream. The more bits the decoder uses, the higher
the quality of the reconstructed image or video it produces.
As a result, an encoder does not need to encode the original
content at many different bit rates or resolutions to serve users
with difference bandwidths. It can generate only one bitstream
to meet many needs.

Since the invention of the embedded zerotree wavelet algo-
rithm (EZW) [24], many zerotree wavelet image codecs such
as set partitioning in hierarchical trees (SPIHT) [23], signifi-
cance-linked connected component analysis (SLCCA) [3], and
listless SPIHT [18] have been proposed. In addition to such ad-
vantages as simpler codec structure, lower computational com-
plexity, and better rate-distortion performance, most of them are
scalable very well.

Motivated by the success of the zerotree methods in image
compression, researchers have extended nearly all of them from
two-dimensional (2-D) to 3-D for video coding [2], [4], [11],
[12], [17], [19], [20], [25], [27]–[29]. The basic structure of
these codecs is relatively straightforward. First, a 3-D wavelet
transform is applied on a number of consecutive frames called
a group of frames (GOF) of the video. Second, a 3-D tree struc-
ture is defined for the wavelet coefficients. Finally, the wavelet
coefficients are coded using the zerotree algorithms. The exten-
sion of the EZW algorithm has been done in [2] and [4]. The
work of [28] is the extension of the SLCCA. Thamet al. [25]
use the TriZTR idea, which defines three zerotrees. In [11], a
general low-delay method is proposed. The first extension of the
SPIHT is the 3-D SPIHT [13]. In [17], an improved version of
the SPIHT with seven trees is developed. Reference [19] is the
Listless SPIHT’s extension, whose contribution is the low com-
putational complexity. Reference [12] is a modification of [13],
where an unbalanced zerotree is permitted for low-delay coding.
Another contribution of [12] is its color-embedded coding, in
which , , and components are coded by the SPIHT algo-
rithm all together to generate a fully color-embedded bit stream.
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In [30], the resolution and frame rate scalability is obtained
by partitioning and/or reordering the bit stream from the 3-D
SPIHT. A comprehensive version of the 3-D SPIHT is presented
in [14]. The 3-D SPIHT has also been used in content-based
coding in [20]. In general, the 3-D zerotree based methods are
comparable with H.263 in rate-distortion performance, but per-
form better in computational simplicity and scalability [14]. The
scalability here includes not only image resolution, but also
frame rate [14], [25], [30].

There are three issues involved in the 3-D zerotree wavelet
video coding. The first issue is the sequence of the 3-D wavelet
transform. For the 2-D image, the symmetric 2-D wavelet trans-
form, which performs the 1-D wavelet transforms alongand

dimensions alternately, is an obvious choice. For the 3-D
video, the decoupled 3-D wavelet transform (or called wavelet
packet transform) is better than the symmetric sequence. The
second issue is the extension of the dimensions of the zerotree
coding algorithms. This problem is trivial since there is no lim-
itation on the dimensions in almost all the 2-D zerotree coding
algorithms. The last issue is how to define an efficient 3-D tree
structure for the wavelet coefficients. Unfortunately, most of the
existing 3-D zerotree codecs do not consider the structure of
the tree systematically. A commonly used tree is the symmetric
3-D tree [4], [11], [13], [17], [19], [20], [28]. The performance
of the symmetric 3-D tree is not optimal because the properties
of the video signal and the wavelet coefficients are not sym-
metric along all three dimensions. In [25], an asymmetric tree
structure is defined, but it does not follow the idea of the ze-
rotree coding exactly. In [14], a symmetric-alike tree structure
is proposed which performs better than the strictly symmetric
tree structure. Unfortunately, its performance is still limited by
some symmetric requirements in its tree structure. For example,
the transform stages along all the dimensions are equal, the basic
coefficient unit for arithmetic coding is a symmetric 22 2
block, and the tree structure is modified from the symmetric
tree in order to fit the subband structure after the decoupled 3-D
wavelet transform.

The 3-D zerotree coding is also used in multispectral image
compression [6]. In [6], the Karhunen–Loeve transform is used
along the temporal direction to remove very strong correlation
among images. A different 3-D tree is used there because of the
Karhunen–Loeve transform. First, a 2-D tree is defined in each
frame. Then, the roots of these 2-D trees are attached one by one
to form a 3-D tree.

In this paper, we present a more efficient 3-D tree structure for
zerotree wavelet video coding. We propose three rules which are
drawn from the principles of the zerotree algorithms. The most
important rule is that a longer tree is better in clustering zeros,
and therefore better for compression. Following these rules, we
develop a new asymmetric 3-D tree structure which can improve
the rate-distortion performance while maintaining all other fea-
tures of the 3-D zerotree wavelet video codecs. The new 3-D
tree structure is applied to the 3-D SPIHT and achieves a signif-
icant peak signal-to-noise ratio (PSNR) improvement.

The paper is organized as follows. Section II presents an anal-
ysis of the structures of the video signal and the 3-D wavelet
transform, respectively. In Section III, we study the efficient tree
structure and describe the three tree construction rules. A more

Fig. 1. Symmetric 3-D wavelet transform.

TABLE I
AVERAGE STANDARD DEVIATIONS (STD) OF VIDEO

SEQUENCES ALONG HORIZONTAL, VERTICAL,
AND TEMPORAL DIRECTIONS

efficient 3-D tree structure is developed by following the three
rules. In Section IV, the implementation of the 3-D SPIHT using
the new 3-D tree is described. Finally, conclusions are given in
Section V.

II. 3-D WAVELET TRANSFORM

The first part of a 3-D zerotree wavelet video codec is a 3-D
wavelet transform applied to a GOF. In order to clearly describe
the 3-D wavelet transform, we define the following notations:
1) , , and are the wavelet transforms along the,

, and directions, respectively; 2) , , and are the
operators which produce low-pass subbands after the, ,
and transforms, respectively; 3) , , and are the
operators which produce high-pass subbands after the, ,
and transforms, respectively; and 4)is the GOF which the
wavelet transform is applied to.

If the 3-D wavelet transform is applied in a sequence of
, it is a symmetric 3-D wavelet

transform (Fig. 1) because the wavelet transforms are applied
alternately along the , , and directions. The symmetric
3-D wavelet transform has been used in [4], [11], [17], and
[28] as a straightforward extension from the popular symmetric
2-D wavelet transform in the image compression. Furthermore,
since the transform is symmetric, a simple symmetric 3-D tree
structure can be used directly in the following zerotree coding
algorithms.

The symmetric way is not the best for the video signal be-
cause the 3-D video does not have symmetric statistical proper-
ties along all the directions. Table I shows the average standard
deviation (STD) of the first 128 illumination frames of the three
video sequences used in [14] along the horizontal, vertical
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Fig. 2. Decoupled 3-D wavelet transform.

, and temporal directions, respectively. As an example, the
average STD along the temporal directionis calculated by

where is the GOF, is the function of STD with
respect to, and is the mean function with respect to
and . The result shows that the STD alongis much smaller
than the STDs along the other two directionsand , while the
STDs along and are very close. Therefore, it is reasonable
to apply the transforms along thedirection in a different way
from the transforms along the and directions in the 3-D
wavelet transform.

This problem has been investigated in [1] and [14], and a de-
coupled 3-D wavelet transform (or so-called 3-D wavelet packet
transform) is used there. The decoupled wavelet transform has a
pattern of as shown in Fig. 2. In
the decoupled 3-D wavelet transform, several cascaded wavelet
transforms along the direction remove the correlation along
the temporal direction first. Then, a set of alternate wavelet
transforms along the and directions remove the correla-
tion in the spatial domain. Most recent 3-D wavelet video codecs
use the decoupled 3-D wavelet transform [1], [5], [8], [12], [13],
[15], [16], [19]–[21], [25], [29], [30] for its better signal decom-
position ability [1], [14].

III. 3-D WAVELET COEFFICIENT TREE STRUCTURE

FOR ZEROTREECODING

After the 3-D wavelet transform, a 3-D coefficient tree struc-
ture needs to be defined for the zerotree coding algorithms to
code the wavelet coefficients. Although the symmetric or sym-
metric-alike tree is most used in 3-D zerotree wavelet video
codecs, the zerotree coding algorithms are quite flexible with the
structure of the tree. Any tree structure can be used as long as it
covers all the wavelet coefficients. Certainly, different trees have
different performances in compression. Therefore, the structure
of the tree is of importance for the compression. The symmetric
tree may perform very well in 2-D image coding, but not the
best choice for coding videos for the reasons stated earlier. In
this section, we will discuss how to construct an efficient tree
for the 3-D zerotree wavelet video coding. It is not feasible to

quantitatively relate the tree structure with the performance of
compression because we do not have a constant model for the
video signal, as its content changes constantly. For the sake of
discussion, we will make some assumptions and simplifications,
and will use the result of experiments to support our analysis.

A. Rules for Constructing Optimal Tree

The wavelet transform is an energy compacting process.
After the transform and quantization, only a few coefficients
are nonzero (significant) while many other coefficients are zero
(insignificant). Compression can be achieved by efficiently
coding the positions of the nonzero and zero coefficients and
the values of the former. Thus, a zerotree coded bit stream
contains two kinds of bits, for value and position, respectively.
It is not simple to reduce the bits for value because the wavelet
transform is a signal decomposition process, and there is not
close correlation among the values of the wavelet coefficients.
Fortunately, the bits for position can be saved significantly due
to the fact that the positions of zero and nonzero coefficients
often follow certain patterns. For example, if we scan the
wavelet coefficients in one subband in a predefined order such
as a zig-zag, we may see many sequences of zeros. Run length
and stack run [26] coding algorithms take advantage of this
pattern by using a single symbol to represent a sequence of
zeros. Another popularly utilized pattern is the zerotree. The
zero (after quantization or thresholding) wavelet coefficients
corresponding to the same local area in the original signal
often form a tree structure in the wavelet domain. A high
compression ratio is achieved by using a single symbol or bit
to represent a tree of zero coefficients (zerotree) [23], [24]. In
general, the more zero coefficients an algorithm can cluster
together, the higher compression ratio it can achieve.

The zero wavelet coefficients can form a tree structure be-
cause a low-frequency wavelet coefficient of an image is usu-
ally larger than its corresponding high-frequency wavelet coef-
ficients [24]. If a low-frequency wavelet coefficient is zero, it is
highly likely that all its corresponding high-frequency wavelet
coefficients are also zero. This zero distribution pattern gives us
a chance to cluster zero coefficients efficiently in a tree struc-
ture. Fig. 3 shows 16 coefficients in a sym-
metric 2-D tree structure for the zerotree coding. These coeffi-
cients correspond to the same local region of the image because
they occupy the same relative position in each subband. We call
them a coefficient set. In this way, all the wavelet coefficients
can be grouped into coefficient sets and the amount of the coeffi-
cient set is the amount of the coefficients in the lowest subband.
In the figure, the number on the right side of each coefficient
is the magnitude (before quantization). In each subband, coef-
ficients belonging to the same coefficient set form a coefficient
block such as . Arrows represent the parent–child
relationships. A tree can be partitioned into isolated coefficients
and small trees. For example, the tree in Fig. 3 can be partitioned
into an isolated coefficient and three smaller trees with roots
in , , and , respectively. If a tree’s root is located at the
lowest subband, it is a full length tree. If a tree’s coefficients
are all zero, it is a zerotree. The idea of the zerotree coding is
to represent all the wavelet coefficients as a combination of the
isolated coefficients and the zerotrees, and then output the value
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Fig. 3. 2-D coefficient tree structure.

Fig. 4. Longest sorted coefficient tree structure.

Fig. 5. Widest coefficient tree structure.

of the isolated coefficients. In general, the zerotree coding algo-
rithm generates two kinds of bits: the position bits (positions
of the isolated coefficients and the zerotrees) and the value bits
(values of the isolated coefficients). Without considering the op-
tional entropy coding, we can clearly separate the output bits
for every coefficient set. That means we can study the zerotree
coding of each coefficient set independently.

We use the coefficient set in Fig. 3 as an example. The tree
structure of the 16 coefficients can be arbitrary instead of sym-
metric, as shown in Fig. 3. Figs. 4 and 5 show two examples
of such. We argue that for a single coefficient set, the longest
sorted tree produces the best compression ratio.

To prove our argument, we first useAlgorithm 1as a zerotree
coding algorithm to code a single coefficient tree. Given a quan-
tization step size, the first step generates the position bits, and
the second step generates the value bits. Notice that this simple
algorithm is close to the space–frequency quantization (SFQ)
algorithm in [31]. It can also be viewed as a simplified version
of EZW or SPIHT.

Algorithm 1: A simple coefficient tree coding algorithm.

1) Quantize all the coefficients, and browse the coefficient
tree from top to bottom and from left to right. Skip the
coefficients included in a coded zerotree (which will be
defined later). If the current coefficient is the root of a
zerotree (which means that all its offspring coefficients
and itself are zero), output bit “0” to code this zerotree;

otherwise, output bit “1” to indicate this coefficient is an
isolated coefficient.

2) Code the value of all the isolated coefficients.
Suppose we have a coefficient set

with coefficients which are sorted from large to small. Corre-
sponding to a threshold , suppose we have zero coefficients
which are defined as .
Given a tree structure , we runAlgorithm 1. After the first
step, the isolated coefficients are . It should be
noticed here that isolated coefficients may include zero coef-
ficients, but nonzero coefficients must be isolated coefficients.
Consequently, we have .
For an arbitrary zerotree structure , the total amount of bits
of the zerotree coding is the sum of the amount
of the position bits from the first step and
the amount of the value bits from the
second step

(1)

We want to find a which can minimize

(2)

First, we consider how to minimize position bits

Obviously, we have

The maximum amount is when every coefficient needs one
bit to represent whether it is the root of a zerotree or an iso-
lated coefficient. The minimum amount is , since
every nonzero coefficient needs one bit of “1” to indicate it is
an isolated coefficient, and zero coefficients need at least one
bit. The minimum amount is obtained when all zero coeffi-
cients form one zerotree. For a given threshold, the coeffi-
cient tree structure which clusters all the zero coef-
ficients is thus the optimal tree and generates the
least amount of the position bits.

For the tree , we have
. Therefore,

. Then for an abritary tree , one
has
because . That means
that minimizes not only but also

. As a result, we have

(3)

In many zerotree coding methods such as EZW and SPIHT, a
large threshold is set at the beginning and divided by two after
each recursive coding pass. Therefore, we have to find a tree
which is optimal for any threshold, but not just one. We argue
that the longest sorted tree is such a tree. We define the longest
sorted tree as the tree structure of the coefficient set

which satisfies the following conditions: 1) is the only
son of ; 2) is the root without parent; and 3) is the deepest
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TABLE II
SUBBAND DEPENDENCE. ROW INDEX IS i AND COLUMN INDEX IS j

leaf without son. Fig. 4 shows the longest sorted tree. For any
given threshold , since has been sorted, we know that
those zero coefficients are . In
the longest sorted tree, all the zero coefficients are clustered as
a zerotree with root at . Therefore, is optimal
for any threshold

for all (4)

Unfortunately, it is not possible to apply to every
coefficient set , because there is no way to guarantee that all
the coefficient sets have the same orders of magnitude, and a lot
of extra bits must be used to describe the order of coefficients.
A simple way to solve this problem is to associate a coefficient
position with the information of its number subband, and as-
sume all the coefficients in one coefficient block to be neigh-
bors/brothers spatially. This restriction and the definition of the
coefficient set enable us to use a subband tree to represent all the
coefficient trees. A subband tree is a tree structure in which each
node is a subband in the wavelet transform domain.Algorithm
2 describes how to derive the coefficient tree structure from the
subband tree structure for the 2-D case.

If the magnitude orders of the coefficient sets are completely
random, the zerotree idea may not work at all, since there is not
a single subband tree structure which can claim to be efficient
for every coefficient set. Fortunately, the magnitude order of
the wavelet coefficients is highly related to the subband that
they are in. In general, the lower (frequency) a subband is, the
larger the magnitude of the coefficients is in the subband, and
the coefficients in the subbands at the same level tend to have
similar magnitudes. This general observation of the magnitude
order gives us a possibility to construct a subband tree which
can give the best average performance among all the coefficient
sets.

Algorithm 2: Derive the coefficient tree from the subband
tree.

: matrix representation of the parent
subband.

: a coefficient in .
: array holding ’s child subbands.
: array holding ’s child coefficients.

for

for
for

end
end

end

We already know that for the zerotree coding of one coeffi-
cient set, the longest sorted coefficient tree is the best. This result
has two implications: 1) the magnitude of the parent coefficient
should be larger than that of the child coefficient; and 2) a longer
tree is better for compression. We assume that the same rules
can also be applied in the design of the subband tree. However,
the first rule needs to be modified since we now have subbands
rather than coefficients. Instead of comparing the magnitude of
the parent and child coefficients, we calculate the dependence
between two subbands and . The dependence
is defined as the fraction of the parent coefficients inwhose
magnitude is equal to or larger than that of all its childrens’ coef-
ficients in . Here, the magnitude is that after the quantization
which we do to remove the effect of small noisy coefficients.
Table II is an example of the values of the subband dependences.
The decoupled 3-D wavelet transform in Fig. 2 is used where the
wavelet transform is applied three times along each of the three
axes. The video sequence used is Hall Monitor, the frame rate is
10 frames per second (fps), and the quantization step size is 16.

From the above discussion, we draw three rules for the sub-
band tree construction.

1) Every subband is a node of the subband tree, and the co-
efficient tree structure is uniquely determined by the sub-
band tree.

2) There is good dependence between the parent subband
and the child subband . .

3) Always attempt to construct a longer subband tree.
It should be pointed out that the above rules are not the result of a
rigorous mathematical derivation but that of a heuristic analysis.
We feel that this is a realistic and effective approach considering
the random nature of the contents of images. Since assumptions
about the magnitudes of the coefficients and their relations are
correct in most cases, the rules are effective in constructing an
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Fig. 6. Symmetric 3-D zerotree after decoupled 3-D wavelet transform.

efficient subband tree, which can be proved by results of appli-
cations. Our experimental results also prove that these rules are
effective.

In the 2-D image coding, one can see that the symmetric tree
structure in Fig. 3 satisfies all the three rules, and is, therefore,
the best. We can certainly try different tree structures such as
attaching the subband to the
subband. However, the experiment results show that any other
tree structure cannot consistently improve the coding perfor-
mance, and the improvement, if any, is very small. We thus con-
clude that the symmetric tree is the best. In the 3-D case, the
problem becomes more complex, which will be studied in the
next subsection.

B. New and More Efficient 3-D Coefficient/Subband
Tree Structure

For the symmetric 3-D wavelet transform, it is natural and
reasonable to use the symmetric 3-D subband tree structure [4],
[11], [17], [28]. However, the decoupled 3-D wavelet trans-
form performs better than the symmetric 3-D wavelet trans-
form as mentioned earlier. Unfortunately, the construction of the
3-D subband tree is difficult when one uses the decoupled 3-D
wavelet transform, since the latter generates asymmetric sub-
bands, as shown in Fig. 2.

In [25], a 3-D coefficient tree is defined for the decoupled 3-D
wavelet transform. When a coefficient is zero, a symmetric 2-D
coefficient tree is generated in the same frame. Then this 2-D
tree is copied to all the following frames. Finally, the 3-D coef-
ficient tree is the combination of all the 2-D trees in the current
and following frames. Unfortunately, this coefficient tree struc-
ture violates the first rule. The reason is that the coefficients in
such a tree structure do not correspond to the same local region.
References [12], [13], [19], [20], [29], and [30] just use the sym-
metric 3-D coefficient tree structure without considering the fact
that the subbands are no longer symmetric after the decoupled
3-D wavelet transform. In the sample coefficient tree shown in
Fig. 6, the coefficient is the parent of the coefficient block

. The position of shows that it is related to the frames in
the middle of the GOF because it is in the center of the subband

, but its child coefficient block locates
at the boundary of two subbands, which shows that it is related

Fig. 7. Symmetric-alike 3-D zerotree after decoupled 3-D wavelet transform.

to the beginning and ending frames of the GOF. In [14], a sym-
metric-alike 3-D tree structure is used to solve this problem. The
coefficient tree structure is shown in Fig. 7. For simplicity, only
two dimensions, and , are shown. Instead of assigning the
coefficients block as the child of the coefficient (shown as
dot arrow), two child blocks and are assigned as the chil-
dren of . This structure fits the subband structure, and there-
fore follows rule 1.

The symmetric-alike subband tree structure follows rules
1 and 2, but does not consider rule 3. Next, we will show
how to generate a better 3-D subband tree which follows all
the rules. We use Fig. 2 as example. First of all, it should
be made clear that the root subband is the lowest subband

. Secondly, for all the subbands calcu-
lated from the intermediate subband , it is reasonable
to follow the way for constructing the 2-D symmetric tree
structure since they are the result of the 2-D wavelet transform
of the subband , and it has been shown that the 2-D
symmetric tree is very efficient for the 2-D wavelet transform.
Then, the subband should be the child
of the root subband, since it is the low resolution representa-
tion of the subbands , and , which are low-
and high-pass subbands after applying to the subband

, respectively. Now we consider the positions of the
subbands , , and

. These subbands are attached to the
root subband by the previous works, because they have very
good dependence on the root subband. For example, they are
0.99, 0.99, and 1.00 in Table II. The dependence of these three
subbands on the subband is also very
good because they are the result of the 2-D wavelet transform
of . In fact, they are 0.93, 0.97, and 0.99 in Table II.
As a result, the parent of these three subbands could be selected
according to rule 3, which results in a longer and narrower tree.
If we choose the root subband as the parent, the depth of all the
three subbands is one. If we choose as
the parent, the depth is two. Clearly, is
the choice of the new tree structure.

Now consider how to put the subbands ,
, and in the tree. In [14], they
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Fig. 8. New 3-D zerotree structure.

are attached as the sons of the subbands ,
, and , respec-

tively. Similarly, we find that the dependences of the subbands
on ,

on , and on
are all very good. On the other hand, if we

attach , , and
to , , and

, respectively, we get a longer tree. Therefore,
based on rule 3, these new parent–child relationships are
adopted as the new tree structure.

The same idea is used to put all the remaining subbands in
the subband tree structure. The final result is shown in Fig. 8.
The detailed coefficient parent–child relationship of the new ze-
rotree is described inAlgorithm 3. This tree is longer and nar-
rower, while keeping the good dependence between the parent
and child subbands. In the symmetric-alike 3-D coefficient tree,
a coefficient has up to eight child coefficients and the tree depth
is three. In the new 3-D tree, the numbers are five and five, re-
spectively. As a result, this tree should provide a better zero
clustering ability than the symmetric-alike tree. There is a simi-
larity between our tree and the tree used in [6] for multispectral
image compression, but one may find three major differences
between the two by a careful comparison. First, [6] is for mul-
tispectral image compression, not for video. Second, [6] uses
Karhunen–Loeve decomposition in the spectral domain (cor-
responding to the time domain in video compression). There-
fore, it is not completely wavelet transform. Third, since the
Karhunen–Loeve decomposition does not have the dyadic fea-
ture of the wavelet transform, the tree structures along the time
(spectral) domain are different. In [6], a coefficient has, at most,
one son along the spectral domain. In our tree, it is two.

Algorithm 3 Coefficient parent–child relationship for the
new 3-D zerotree.

: wavelet coefficients of the video.
: total frames of the lowest subband.
: total rows of the lowest subband.
: total columns of the lowest subband.

: a coefficient at frame ,
row , and column of .

: a set of child coefficients of .
if and and

elseif and

else

end
* if the child coefficient’s position is
out of , it is removed from .

Another advantage of the new 3-D subband tree is its con-
sistency with the transform sequence of the 3-D wavelet trans-
form, which means that the subband tree can “grow automati-
cally” by following the transform sequence of the 3-D wavelet
transform. At the beginning, there is only one subband (orig-
inal video cuboid ), and the subband tree has only one node.
In the first step, the video is 1-D wavelet transformed along the
temporal direction. Following this transform, the original video
cuboid is partitioned into three small cuboids (subbands) and
the subband tree grows to a 1-D tree

(5)

In the second step, every subband undergoes a 2-D wavelet
transform in the spatial domain and is partitioned into seven
smaller subbands. These seven subbands follow the symmetric
tree structure, since they are generated by the 2-D wavelet trans-
form. As a result, every node in the 1-D subband tree sown in (5)
grows along the and dimensions, and the 3-D subband tree
is finally obtained as shown in (6) at the bottom of the next page,
which is identical to the tree we construct in Fig. 8. This “auto-
matically growing” feature makes the new tree structure easily
adaptive to different 3-D wavelet or wavelet packet transforms.
For any pattern of the transform, we can always find a consis-
tent subband tree structure. For example, we can apply different
levels of the wavelet transform along/ and directions and
construct a 3-D subband tree accordingly. More adaptively, we
can even apply different levels of the 2-D wavelet transforms for
different temporal subbands after the cascadedtransforms
and construct the corresponding 3-D subband tree.

IV. I MPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS

We apply the new 3-D subband tree structure to the 3-D
SPIHT video codec to test its efficiency, since the 3-D SPIHT
has been studied extensively [14]. We use the same sample
color video sequences in the experiment which are Carphone,
Mother and Daughter, and Hall Monitor sequences, respec-
tively. The same parameters are used during the test. That is,
the video size is quarter common intermediate format (QCIF)
which is 176 144, the frame rate is 10 fps, the color space is
4 : 2 : 0, and the length of GOF is 16. The implementation of
the 3-D SPIHT follows the algorithm presented in [23]. Since
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TABLE III
PSNR RESULTS. THE SECONDCOLUMN (3-D DWT) DESCRIBESLEVELS OF THETRANSFORMSALONG T /X /Y DIRECTION. CU MEANS COEFFICIENTUNIT. SAT
IS SYMMETRIC-ALIKE TREE, AND OT IS OURNEW TREE STRUCTURE. AC IS ARITHMETIC CODING. BPS ISBIT RATE. PSNRIS DISPLAYED IN ORDER OFYUV IN

LAST 3 COLUMNS. ROWS 3 AND 9 CORRESPOND TO THEORIGINAL 3-D SPIHT

the source code of the SPIHT is not available, our 3-D SPIHT
implementation is largely based on the 2-D SPIHT in QccPack
[7]. As mentioned in [7], QccPack’s implementation is up to
0.17 dB worse than the reported PSNR in [23] due to different
arithmetic coding implementation. Our result shows that the
3-D SPIHT with the new 3-D tree outperforms the original
3-D SPIHT. The SPIHT algorithm has an option to apply the
arithmetic coding to further improve the compression ratio.
We compare our tree structure with the symmetric-alike tree
structure in two cases: with and without arithmetic coding.
In the experiments without the arithmetic coding, we use the
same decoupled 3-D wavelet transform, but the levels of the
wavelet transforms along all the dimensions are four instead
of three, since we do not need to keep 22 2 ( )
coefficient units for the arithmetic coding. In the experiments
with the arithmetic coding, the decoupled 3-D wavelet trans-
form with three levels of transform along each direction, and
the symmetric 2 2 2 coefficient unit are used. Furthermore,
since the new 3-D tree does not have any restriction on the
3-D wavelet transform structure, we can use different levels
of wavelet transforms along each direction. Therefore, we do
not keep the 2 coefficient width in the lowest subband along
the temporal direction because we believe the correlation
in the temporal direction should be removed by the wavelet

transform, not by the arithmetic coding. We run another test
using 1 2 2 coefficient block and a 3-D wavelet transform
with four levels of temporal transforms. The symmetric-alike
tree can also use such a configuration after small modification.
The biorthogonal 9/7 wavelet is used along all the directions
except the last temporal direction transform, which uses a
simple Haar wavelet. Our experimental results show that the
Haar wavelet can reduce the computational complexity, and
improve the PSNR slightly simultaneously.

The results on the three sequences at 30 and 60 kb/s are shown
in Table III. The results show that the new asymmetric tree struc-
ture consistently outperforms the symmetric-alike tree. Table IV
shows the PSNR improvement of the new structure in various
settings. It can be noticed that if there is no arithmetic coding,
the improvement is quite big (rows 1 and 2), but if there is arith-
metic coding, the improvement is very limited for the first two
sequences (rows 3–6). That shows the arithmetic coding is very
efficient in removing the redundant information which is not re-
moved by the baseline zerotree coding. One can see from the
table that the new 3-D tree generates a larger improvement for
the Hall Monitor sequence. The reason is that the Hall Mon-
itor sequence is more asymmetric, as shown in Table I. Its STD
differs more between the temporal direction and the other two
directions than that of the other two sequences.

(6)
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TABLE IV
PSNR IMPROVEMENT FROM THE NEW TREE STRUCTURE

TABLE V
COMPUTATION TIME COMPARISON FORCOMPRESSING16 FRAMES OF THECARPHONEVIDEO SEQUENCE TO48 000 BITS

The other interesting result is the differences between tests
3 and 5, and between tests 9 and 11, respectively. Tests 3 and
9 correspond to the original 3-D SPIHT in [14]. The results
from tests 5 and 11 show larger improvements over 3 and 9,
which prove that the 12 2 coefficient unit with an extra Haar
wavelet transform in temporal direction works much more effi-
ciently than the 2 2 2 coefficient unit. Although the improve-
ment is not directly from the new asymmetric tree structure, it
is consistent with our initial consideration: the zerotree coding
does not need to be applied symmetrically. In summary, the best
result comes from tests 6 and 12, where the 4/3/3 3-D wavelet,
1 2 2 coefficient block, and the new tree structure are used.

The new 3-D zerotree increases computational complexity
slightly. Table V is the CPU time comparison between our
method and the original 3-D SPIHT. It is based on our programs
running on a Pentium III 500-MHz computer. The result shows
that the computational complexity of our method is close to that
of the original 3-D SPIHT in both encoding and decoding. One
can see several other interesting points from this table. First of
all, most of the computational time is spent on the transform
instead of the coding. This is because we use a set of long
wavelet filters. Second, the SPIHT encoding spends much more
time than the SPIHT decoding. This is because the encoding
part needs to check whether a tree is a zerotree (significance
checking). Third, the compression with the arithmetic coding
uses less computation time, which seems to contradict our
expectation. It is also because of the significance checking. In
compression without the arithmetic coding, we apply one more
level of wavelet transform along each direction. Therefore, the
subband tree is longer and the significance checking needs more
time even than arithmetic coding. Besides the computational
efficiency, the new 3-D subband tree supports bit rate, PSNR,

resolution, and frame-rate scalability in the same way and as
the original 3-D SPIHT does.

The above comparisons are the results of two fixed bit rates.
In order to study the behavior of the tree structures in different
bit rates, we have tested the video sequences with different bit
rates and plot a rate-distortion curve in Fig. 9. In this figure,
we compare the performance of three different tree structures,
symmetric tree (ST), symmetric-alike tree (SAT), and our new
tree (OT), respectively. The symmetric tree works with the
symmetric 3-D wavelet transform, while the other trees work
with the decoupled 3-D wavelet transform. The transform
levels along all the directions are four, and no arithmetic coding
is used. The three color video sequences are coded at 30 fps
with the GOF size of 16. Only the average PSNR of thecolor
space is displayed. From the figure, we can conclude that the
new 3-D tree is consistently better than the symmetric and the
symmetric-alike trees.

We also compare the PSNR of each frame in the video.
Fig. 10 is the comparison of the PSNR of thecolor space
for each frame of the Hall Monitor sequence. The video is
coded at 30 fps, 75 kb/s, 16 frames per GOF, and four levels
of wavelet transforms along each direction without arithmetic
coding. The small circle on the curves indicates the position of
the first frame in each GOF. The figure clearly shows the PSNR
degrading of the boundary frames in a GOF which comes
from two sources. First, the temporal wavelet transform needs
signal padding at the boundary. Second, there are multilevel
temporal wavelet transforms. If we replace all the 9/7 wavelet
transforms along the temporal direction with simple Haar
wavelet transforms, we can reduce the PSNR degrading, since
the Haar transform does not need padding at the boundary, but
at the same time, the overall PNSR drops about 0.2 dB.
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Fig. 9. Rate distortion comparison of different tree structures.

Fig. 10. Frame-by-frame PSNR comparison of the Hall Monitor sequence
encoded at 30 fps, 75 kb/s, and 16 frames per GOF.

The new tree structure has no limitation on the levels of trans-
form along each direction. Therefore, the length of the GOF can
be chosen flexibly according to the requirement of the delay, the
memory cost, and the speed of the coding. Theoretically, a larger
GOF length may give a higher compression ratio, but requires
more memory space and causes delay. For example, encoding a
video at 10 fps, a GOF length of 16 means the encoder delay is
at least 1.6 s. We test the new tree structure with different GOF

Fig. 11. Performance with different GOF size. Videos are encoded at 30 fps
and 90 kb/s.

sizes, and the result is in Fig. 11. Three color video sequences
are coded at 30 fps and 90 kb/s. For different GOF lengths, we
always apply the temporal wavelet transform to the end, and use
the same levels of the spatial wavelet transforms. It shows that
the optimal GOF length for the purpose of the compression is
16 or 32. Any GOF length greater than 32 does not improve the
compression ratio too much, but increases the memory require-
ment and delay significantly.
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V. CONCLUSION

In this paper, we study the optimal 3-D tree structure for
the 3-D zerotree wavelet video compression. We present three
rules for constructing such a tree for image and video com-
pression. Using these rules, we design a new 3-D coefficient
tree structure which can cluster zeros more efficiently, and
therefore achieve a higher compression ratio. The new tree
structure is applied to the state-of-the-art 3-D SPIHT color
video compression scheme to demonstrate its efficiency under
different conditions. The experimental results show that the
new tree has convincing PSNR improvement for all the tested
video sequences when arithmetic coding is not involved. When
it is used, the new tree has considerable PSNR improvement for
certain video sequences which have limited motions between
frames. In both cases, however, the improvement is consistent.
We also find that significant PSNR improvements can be
obtained by allowing asymmetric coefficient unit in the 3-D
SPIHT’s arithmetic coding.

With the improvement of the rate-distortion performance, the
new tree structure still maintains all the desired features of other
3-D zerotree-based methods, such as computational efficiency
and scalability. Furthermore, the new structure is not limited to
the 3-D SPIHT algorithm, but also other 3-D zerotree-based
methods. The automatically growing feature of the new tree
leads to easy implementation of the compression algorithm as
well as adaptation to different kinds of 3-D wavelet or wavelet
packet transforms.
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