ECE7850 Wei Zhang

ECE7850 Lecture 4:

Basics of Stability Analysis

- Basic Stability Concepts
- Lyapunov Stability Theorems
- Converse Lyapunov Functions
- Semidefinite Programming (SDP)
- Basic Polynomial Optimization
- Computational Techniques for Stability Analysis

Basic Stability Concepts

Consider a time-invariant nonlinear system:

$$\dot{x} = f(x) \text{ with IC } x(0) = x_0 \tag{1}$$

- \bullet Assume: f Lipschitz continuous; origin is an isolated equilibrium f(0)=0
- x = 0 stable in the sense of Lyapunov, if

in the sense of Lyapunov

• x = 0 asymptotically stable if it is stable and δ can be chosen so that

$$\|x(0)\| \leq \delta \Rightarrow x(t) \to 0 \text{ as } t \to \infty \quad \Leftarrow \textbf{a} \text{ origin is attractive}$$

if the above condition holds for all δ , then globally asymptotically stable

otherwise, it is only locally asymp. stable.

- Region of Attraction: $R_A = \{x \in \mathbb{R}^n : \text{ whenever } x(0) = x, \text{ then } \underline{x(t)} \to 0\}$
- x=0 exponential stable if there exist positive constants δ,λ,c such that

$$||x(t)|| \le c||x(0)||e^{-\lambda t}$$

norm of state trajectory decays exponentially

- Does attractive implies stable in Lyapunov sense?
 - Answer is NO. e.g.: $\begin{cases} \dot{x}_1 = x_1^2 x_2^2 \\ \dot{x}_2 = 2x_1x_2 \end{cases}$

by inspection: ∀xo, (X(t) >0, as t→∞

However, it is not stable in the Lyapunou sense.

Why?: there is no S-ball that guarantees

trajectory remains inside a given E-ball.

Basic Stability Concepts

Stability Analysis Using Lyapunov Functions

How to verify stability of a system:

ullet Trivial answer: explicit solution of ODE x(t) and check stability definitions

Need to determine stability without explicitly solving the ODE

Preferably, analysis only depends on the vector field

• The most powerful tool is: Lyapunov function

• Classes of functions: (Assuming $0 \in D \subseteq \mathbb{R}^n$)

- $-g:D\to\mathbb{R}$ is called positive semidefinite (PSD) on D if g(0)=0 and $g(x)\geq 0, \forall x\in D$
- $g:D\to\mathbb{R}$ is called positive definite (PD) on D if g(0)=0 and $g(x)>0, \forall x\in D\setminus\{0\}$
- g is negative semidefinite (NSD) if -g is PSD $\frac{1}{2}$ $\frac{g}{2}$ is negative definite (ND) if -g in PD
- $-g:\mathbb{R}^n\to\mathbb{R} \text{ is radically unbounded if } \underbrace{V(x)\to\infty} \text{ as } \underbrace{\|x\|\to\infty} \text{ eg. } V(x)=\|X\| \text{ radially unbounded}$
- \mathcal{C}^n : n-times continuously differential functions $g: \mathbb{R}^n \to \mathbb{R}^m$
- Lie derivative of a \mathcal{C}^1 function $V: \mathbb{R}^n \to \mathbb{R}$ along vector field g is:

Scalar-valued function,

V: (Rh -) (R

We want tell whether

V(x(t)) a will go to a or not.

Along system trajectory.

Stability Analysis Using Lyapunov Functions

$$\left| \overline{\mathcal{L}_g V(x)} \right| \triangleq \left(\frac{\partial V}{\partial x}(x) \right)^T g(x) \stackrel{\text{d}}{=} \frac{\partial V}{\partial x} g(x) \stackrel{\text{enotation same people use}}{=} \frac{\partial V}{\partial x} g(x)$$

If we view V(X(t)) as a function of t (X(t)=[x,(t)...x,(t)]

$$\frac{dt}{dV} = \sum_{i=1}^{N-1} \frac{\partial x_i}{\partial v} \cdot \frac{\partial t}{\partial x_i} = \sum_{i=1}^{N-1} \frac{\partial x_i}{\partial v} \cdot f_i(x) = \left(\frac{\partial x}{\partial v}\right)^{T-1} f$$

$$\dot{\chi}(t) = \begin{bmatrix} \dot{\chi}_1(t) \\ \dot{\chi}_2(t) \end{bmatrix} = \begin{bmatrix} \dot{\chi}_1(x) \\ \dot{\chi}_2(x) \end{bmatrix} = \dot{\chi}(x) = (\nabla V)^T \dot{\chi}(t)$$

• Theorem 1 (Lyapunov Theorem) Let $D \subset \mathbb{R}^n$ be a set containing an open neighborhood of the origin. If there exists a PD function $V:D \to \mathbb{R}$ such that

L_fV is NSD the Value of V along system (2)

trajectory is non increasing

 $\mathcal{L}_f V$ is ND decrease along sys traj

then the origin is stable. If in addition,

then the origin is asymptotically stable.

- Remarks:
 - A PD \mathcal{C}^1 function satisfying (2) or (3) will be called a Lyapunov function
 - For the latter case, if V is also radially unbounded \Rightarrow globally asymptotically stable

• Proof of Lyapunov Theorem:

Shw stability:

If we define, sublevel set SZb = {xelk": V(x) <b}

V nonincreasing = XXID) EDG then, XXI) EDG Vt

Therefore, if we can choose 6>0 Sit Nbc B(0,E) --- ci) and choose 8>0, sit. B(0,8) = Sib - Kis then we are done.

Q: Can we find b and S to sonsatisfy is and cits

1°: because V is continuous $\Rightarrow m = \min_{x \in X} V(x)$ exists due to

V is P.D. \Rightarrow m>0

Weierstrass thm

⇒ we car can choose b∈(0, m)

```
2: V(x) is continuous at origin, so for any b>0
                   ) 38>0 Sit. Y KEB(0,8) We have |V(x)-V(0)|=V(x) <6
                                      ⇒ B(0,8) ⊆ J26
                   (), b. D.
(2): Show asymptotically stability, assuppose (X10) \in Blo,S)

we know V(x14) electrosing monotonically and V(x(4)) > 0

\( \int_{-\infty}^{C=} \text{lim V(x14)} \text{ exists.} \text{ due to monotic convergence theorem} \)
 We just need to Show C=0

Show! If NOT: i.e. C>0 \Rightarrow \chi(+) \in \mathcal{R}_C = \{\chi \in |\mathcal{R}^n | V(\chi) \leq C\}
            choose B(O,B) \( \int \int C \) (due to continuity of V at o)
```

2-ball

VisND

$$=) \bigvee (\chi(t)) = \bigvee (\chi(s)) + \int_{t}^{t} \bigvee (\chi(s)) ds$$

$$\leq \bigvee (\chi(D)) \oplus - \psi +$$

$$\stackrel{\longrightarrow}{\longrightarrow}$$
 $C=0$

ullet Definition: $V:D o\mathbb{R}$ is called an Exponential Lyapunov Function (ELF) on $D\subset\mathbb{R}^n$ if

$$\exists k_1, k_2, k_3 > 0 \text{ such that}$$

$$\begin{cases} k_1 \|x\|^{\mbox{$\stackrel{\bullet}{N}$}} \le V(x) \le k_2 \|x\|^{\mbox{$\stackrel{\bullet}{N}$}} & \\ \mathcal{L}_f V(x) \le -k_3 \|x\|^{\mbox{$\stackrel{\bullet}{N}$}} & \cdots & \\ \end{pmatrix}$$

• Theorem 2 (ELF Theorem) If system (1) has an ELF, then it is exponentially stable.

• Proof:
$$(2)$$
 $(x(t)) \le -k_3 |x(t)|^{\alpha} \le -\frac{k_3}{k_1} |y(x(t))| = 0$ $(x(t)) = 0$

1. show
$$V(x(t)) \leq V(x(0))e^{-(k_3/k_1)t}$$

$$\Rightarrow \bigvee(x(t)) \leq e^{-ct} \bigvee(x(t)), \text{ where } c = \frac{k_3}{k_1}$$

2. show
$$x(t) \le ce^{-\lambda t} ||x(0)||$$

$$= \frac{1}{k_1} e^{-ct} |\chi(x)|^d$$

$$= \frac{k_2}{k_1} e^{-ct} |\chi(x)|^d$$

• Example 1
$$\begin{cases} \dot{x}_1 = -x_1 + x_2 + x_1 x_2 \\ \dot{x}_2 = x_1 - x_2 - x_1^2 - x_2^3 \end{cases} \qquad \text{Try } V(x) = \|x\|^2 \quad \equiv \chi \downarrow \chi \downarrow \chi \downarrow$$

$$Try V(x) = ||x||^2 = \chi^2 + \chi^2$$

000 Whether system stable on NOT?

$$= 2 \left[-\frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}\chi_{2}}{\chi_{1}^{2} + \chi_{1}\chi_{2} - \chi_{2}^{2} - \chi_{2}^{2}\chi_{2} - \chi_{2}^{2}\chi_{2} - \chi_{2}^{2}\chi_{2} - \chi_{2}^{2}\chi_{2} - \chi_{2}^{2}\chi_{2} - \chi_{2}^{2}\chi_{2} \right]$$

$$= 2 \left[-(x_1 - x_2)^2 - x_2^4 \right]$$
is ND = asym stable.

Remark: fail to find Lt.

dogs not mean instability

- Example 2 $\begin{cases} \dot{x}_1 = -x_1 + x_1 x_2 \\ \dot{x}_2 = -x_2 \end{cases}$ - Fact: The system is GAS (Homework: try $V(x) = \ln(1 + x_1^2) + x_2^2$)
 - Can we find a simple quadratic Lyapunov function? First try: $V(x) = x_1^2 + x_2^2$

$$\dot{V} = \begin{bmatrix} 2\alpha_1 & 2\alpha_2 \end{bmatrix} \begin{bmatrix} -\alpha_1 + \alpha_1 \alpha_2 \\ -\alpha_2 \end{bmatrix} = 2 \begin{bmatrix} -\alpha_1^2 + \alpha_1^2 \alpha_2 - \alpha_2^2 \end{bmatrix} = -2 \begin{bmatrix} \alpha_1^2 & (1-\alpha_2) + \alpha_2^2 \\ -\alpha_2 \end{bmatrix}$$

$$\exists c \quad \dot{V} \quad \text{ND in the NR}^2 ; \qquad \text{A try let } \alpha_1 = \sqrt{8}$$

$$\Re ty Let x_1 = Jg$$

In fact, the system does not have any (global) polynomial Lyapunov function

When there is a Lyapunov Function?

Converse Lyapunov Theorem for Asymptotic Stability

$$\begin{cases} \text{origin asymptotically stable;} \\ f \text{ is locally Lipschitz on } D \\ \text{with region of attraction } R_A \end{cases} \Rightarrow \exists V \text{ s.t.} \begin{cases} V \text{ is continuous and PD on } R_A \\ \mathcal{L}_f V \text{ is ND on } R_A \\ V(x) \to \infty \text{ as } x \to \partial R_A \end{cases} \end{cases}$$

Converse Lyapunov Theorem for Exponential Stability

$$\begin{cases} \text{origin exponentially stable on } D; \\ f \text{ is } \mathcal{C}^1 \end{cases} \Rightarrow \exists \text{ an ELF } V \text{ on } D \end{cases} \Rightarrow \exists \text{ an ELF } V \text{ on } D \end{cases}$$

- Proofs are involved especially for the converse theorem for asymptotic stability
- IMPORTANT: proofs of converse theorems often assume the knowledge of system solution.

Semi-definite Programming

Converse Lyapunov function theorems are not constructive

Basic idea for Lyapunov function synthesis

$$\int (x) = x_{\perp} x \qquad \int (x) = (x_{1} + (x_{2} + (x_{3} + (x$$

- Select Lyapunov function structure (e.g. quadratic, polynomial, piecewise quadratic, ...)
- Parameterize Lyapunov function candidates

Find values of parameters to satisfy Lyapunov conditions

 Many Lyapunov synthesis problems can be formulated as Semidefinite programming (SDP) problems.

Convex Cone

- Recall: A set S is convex if $x_1, x_2 \in S$ implies $\lambda x_1 + (1 \lambda)x_2 \in S$, $\forall \alpha \in [0, 1]$.
- A set S is a cone if $\lambda > 0$, $x \in S \Rightarrow \lambda x \in S$.

• Conic combination of x_1 and x_2 :

$$x = \alpha_1 x_1 + \alpha_2 x_2$$
 with $\alpha_1, \alpha_2 \ge 0$

• convex cone: (i) a cone that is convex; (ii) equivalently, a set that contains all the conic combinations of points in the set

Real Symmetric Matrices:

- S^n : set of real symmetric matrices
- All eigenvalues are real

symmetric matrix is diagonalizable

There exists a full set of orthogonal eigenvectors

• Spectral decomposition: If $A \in \mathcal{S}^n$, then $A = Q\Lambda Q^T$, where Λ diagonal and Q is unitary.

Dis unitary if $Q = QQ^{\dagger} = I$ $Q = QQ^{\dagger} =$

Positive Semidefinite Matrices

- $A \in \mathcal{S}^n$ is called *positive semidefinite (p.s.d.)*, denoted by $A \succeq 0$, if $x^T A x \geq 0$, $\forall x \in \mathbb{R}^n$ it defines a PSD quadratic form V(x)= xTAX
- $A \in \mathcal{S}^n$ is called *positive definite (p.d.)*, denoted by $A \succ 0$, if $x^T A x > 0$ for all nonzero $x \in \mathbb{R}^n$ V(x)=xPx is PD
- S_{+}^{n} : set of all p.s.d. (symmetric) matrices **1**~~/
- S_{++}^n : set of all p.d. (symmetric) matrices **~**~✓
- p.s.d. or p.d. matrices can also be defined for non-symmetric matrices. But we focus on

symmetric ones.

but 1915 Minethic

e.g.:
$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 is P.D
$$V(\chi) = \sqrt[4]{x_1} \sqrt[4]{x_2}$$

$$\sqrt[4]{x_1} = \sqrt[4]{x_1} \sqrt[4]{x_2}$$

Other equivalent definitions for symmetric p.s.d. matrices:

- All $2^n - 1$ principal minors of A are nonnegative

$$A = \begin{bmatrix} A & 1 & 2^n - 1 & principal minors of A are nonnegative \\ A & 1 & 2^n - 1 & 2^n - 1 \\ A_{21} & 2^n - 1 & 2^n - 1 \\ A_{31} &$$

All eigs of A are nonnegative

- There exists a factorization $A = B^T B$

- Other equivalent definitions for p.d. matrices:
 - All n leading principal minors of A are positive
 - All eigs of A are strictly positive

There exists a factorization $A = B^T B$ with B square and nonsingular.

- TAT : Similarity transfirmation. Useful facts:
 - If T nonsingular, $A \succ 0 \Leftrightarrow T^TAT \succ 0$; and $A \succeq 0 \Leftrightarrow T^TAT \succeq 0$;

- S^n_+ is a convex cone: positive semidefinite cone

St, Sty are invariant under congruent transformation

- Inner product on $\mathbb{R}^{m \times n}$: $\langle A, B \rangle \triangleq tr(A^T B) \triangleq A \bullet B$.

 $= \int for A, B \in S$ $= > \langle A, B \rangle = tr(AB)$ VAIBEIR TO (ATB) = SIS Aij Bij (similar to "dot" product in the hefines are inner product in IR

. You for
$$A,B\in\mathcal{S}^n_+$$
, $tr(AB)\geq 0$ (the cone \mathcal{S}^n_+ is acute) from the second of the cone of t

- Schur complement lemma: Define $M = \left[egin{array}{cc} A & B \\ B^T & C \end{array} \right]$
 - 1. $M \succ 0 \Leftrightarrow \begin{cases} A \succ 0 \\ C B^T A^{-1} B \succ 0 \end{cases} \Leftrightarrow \begin{cases} C \succ 0 \\ A B C^{-1} B^T \succ 0 \end{cases}$
 - 2. If $A \succ 0$, then $M \succeq 0 \Leftrightarrow C B^T A^{-1} B \succeq 0$
 - 3. If $C \succ 0$, then $M \succeq 0 \Leftrightarrow A BC^{-1}B^T \succeq 0$

P.J.: Suppose:
$$AA^T \leq I = I - A \cdot I^{-1} \cdot A^{-1} \geq 0$$
 $A^T \leq I = A \cdot I^{-1} \cdot A^{-1} \geq 0$

- Proof of Schur complement lemma:

The assumption is: A>D, AEStt

Define assume
$$M > 0 \iff [x]^T \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}[x] > 0, \forall x, y \in \mathbb{R}^n$$

$$\Leftrightarrow$$
 min ($x^{T}Ax + 2x^{T}By + y^{T}Cy$) > 0 , $yy = x^{T}Ax + 2x^{T}By + 5^{T}Cy > 0$

$$(=) \frac{39}{87} = 0 (=) \sqrt{x} = -A^{-1}By = \sqrt{y}(C - B^{-1}B)y > 0, \forall v$$

Operations that preserve convexity

• intersection of possibly infinite number of convex sets:

– e.g.: polyhedron:

polytope is bounded polyhedron

– e.g.: PSD cone:

$$S_{+}^{n}$$
: define sets $G(z) = \{P \in S^{n} : z^{T} | 2 > 0\}$, for a particular $2 \in \mathbb{R}^{n}$

ullet affine mapping $f:\mathbb{R}^n \to \mathbb{R}^m$ (i.e. f(x) = Ax + b)

 $f(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex whenever } X \subseteq \mathbb{R}^n \text{ is convex}$ $F(X) = \{f(x) : x \in X\} \text{ is convex}$ $-f(X) = \{f(x) : x \in X\}$ is convex whenever $X \subseteq \mathbb{R}^n$ is convex

$$\Rightarrow E_{\lambda} = f(B), \quad f(x) = x_{c} + f(x) = \int_{a}^{b} (x - x_{c})^{b} f(x) = \int_{a}^{b} (x - x_{c})^{b$$

 $-f^{-1}(Y)=\{x\in\mathbb{R}^n:f(x)\in Y\}\text{ is convex whenever }Y\subseteq\mathbb{R}^m\text{ is convex }$

e.g.: $\{Ax \leq b\} = f^{-1}(\mathbb{R}^n_+)$, where \mathbb{R}^n_+ is nonnegative orthant $\mathbb{R}^n_+ = \{\chi \in \mathbb{R}^n: \chi_i \geqslant 0, \forall i\}$

 $f'(x) = \{b \mid b - Ax\}$

$$R_{+} = \{ x \in \mathbb{R}^{n} : x_{i} > 0, \forall i \}$$

Semi-definite Programming

Linear Matrix Inequality

• Given symmetric matrices $F_0, \ldots, F_m \in \mathcal{S}^n$, $\chi \in \mathbb{R}^h$ is variable

$$F(x) = F_0 + x_1 F_1 + \dots + x_n F_n \succeq 0 \qquad \left\{ \begin{matrix} \chi_1 & \chi_2 \\ \chi_1 & \chi_2 \end{matrix} \right\} \begin{matrix} \chi_0 \end{matrix}$$

is called a *Linear Matrix Inequality* in $x \in \mathbb{R}^n$

• The function F(x) is affine in $x : \bigvee F : F(x) = F_0 + G(x)$

• The constraint set $\{x \in \mathbb{R}^n : F(x) \succeq 0\}$ is nonlinear but convex

• Example 3 Characterize the constraint set:
$$F(x) = \begin{bmatrix} x_1 + x_2 & x_2 + 1 \\ x_2 + 1 & x_3 \end{bmatrix} \succeq 0$$

$$(1) \text{ is a lmt}$$

$$F(x) = \chi_1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \chi_2 \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} + \chi_3 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Set of mulinear inequalities

• Example 4 Find a Lyapunov function $V(x) = x^T P x$ for a linear system $\dot{x} = A x$

reguirements: (1): V P.D. (2) V is ND.; Here, our unknown variable is PERS

$$f = \frac{\sqrt{2}}{\sqrt{2}}$$

 $V(x) = (x^{T} px)' = \dot{x}^{T} px + x^{T} p\dot{x} = x^{T} A^{T} px + x^{T} pAx$

1 P is the unknown)

fig.: represent
$$p = \sum_{j=1}^{n} \frac{1}{i-1} \times_{ij} E^{ij}$$

$$| (Di) = (b) \text{ for all } x :$$

$$| (Di) = (b) \text{ for all } x :$$

$$| (Di) = (b) \text{ for all } x :$$

where Eij me ES": is a except

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

entities are 1. (a) (a) (b) $\begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} > 0$ $\begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} = \begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} > 0$ $\begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} = \begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} > 0$ $\begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} = \begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} > 0$ $\begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} = \begin{cases} \frac{n}{2} \leq x_i \in i \end{cases} > 0$

Semidefinite Programming (SDP)

• SDP: optimization problem with linear objective, and LMI and linear equality constraints:

The Standard LMI-form of SDP
$$\begin{cases} \text{minimize:} & \frac{c^Tx}{F_0+x_1F_1+\cdots+x_nF_n} \succeq 0 \\ & Ax=b \end{cases}$$
 variable $x \in \mathbb{R}^n$ (4)

- Global optimal solution of SDP can be found efficiently.
- Equivalent SDP (Standard Prime Form):

Standard Copic form:
$$\begin{cases} \text{minimize:} & f_p(X) = C \bullet X \\ \text{subject to:} & A_i \bullet X = b_i, i = 1, \dots, m \\ & X \succeq 0 \end{cases}$$
 (5)

Example: form (5): Let
$$C = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 $X = \begin{bmatrix} X_{11} & X_{12} \\ X_{11} & X_{22} \end{bmatrix}$

$$A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$b_1 = 2$$

$$b_1 = 3$$

$$(5) =) \quad \text{min} \quad \chi_{11} + 2\chi_{12} + \chi_{22}$$

Sugi to:
$$\chi_{11} + \chi_{21} = 2$$

• Dual form: for form (5)

Merive dual form H##3

$$f_d(y) = b^T y$$

 $\left\{ egin{aligned} \mathsf{maximize:} & f_d(y) = b^T y \ \mathsf{subject to:} & \Sigma_{i=1}^m \, y_i A_i \preceq C \ \end{smallmatrix}
ight. \end{aligned}
ight\}$

Variable yelk

• Weak duality: $f_p(X) \geq f_d(y)$ for any primal and dual feasible X and y

X teasible for (5), y is fersible for J

 $f_{P}(x) - f_{Q}(y) = C \cdot x - b^{T}y = C \cdot x - \sum_{i=1}^{m} f_{i}(A_{i} \cdot x) = (C - \sum_{i=1}^{m} f_{i}(A_{i}) \cdot x$

> 0 (PSD cone is Acute)

• Strong duality holds under Slater's condition: $f_p(X^*) = f_d(y^*)$

Slater condition: prime is Strictly feasible, i.e. =1 X st. A:X=5:

- Example 5 LMIs $A^TP + PA + I \leq 0$, $P \succeq 0$ indicate that the Lyapunov function $V(x) = x^TPx$ for linear system x = Ax proves the bound: $\int_0^\infty \|x(\tau)\|^2 d\tau \leq x(0)^TPx(0)$. Suppose x(0) is fixed. How to find the best possible such bound?
- Show bound: $V(xH) = xH^T [A^T P + PA] xH \le -l(xH)l^2$ $\sigma \le V(H) = V(D) + \int_{D}^{+} V(xH) dt \le V(D) + \int_{D}^{+} ||xH||^2 dt$ $\Rightarrow bound.$
- Bound.

 3 given (Xb): min (Xlo) P(G)

 5 P

 (Subj. to; -(ATP+APA+I)>0

 P>0

Basic Polynomial Optimization

Motivation: we want to consider General polynomial that the of LF $R_{n,d}$: Set of polynomials (with real coefficients) in n variables of degree d:

$$f(x) = \sum_{\alpha \in \mathcal{I}_{\uparrow}} c_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

where $d = \max_{\alpha \in \mathcal{I}} \sum_{i=1}^{n} \alpha_{i}$.

$$\ell_{1}^{n} = \chi_{1} \chi_{1} + \chi_{3}^{3} + \chi_{1} \chi_{3}^{2}$$

- $P_{n,d} = \{ f \in R_{n,d} : f(x) \ge 0, \forall x \in \mathbb{R}^n \}$: set of p.s.d. polynomials
- $\Sigma_{n,d} = \{f \in R_{n,d} : f = \Sigma_i g_i^2, \text{ for some } g_i \in R_{n,d}\}$: Sum of Squares (SOS)
- $\Sigma_{n,d} \subset P_{n,d}$

$$[x_1] \cdot \int (x_1) = (x_1) + (x_1 - x_2 - 2x_3x_1)^2$$

• checking $f \in P_{n,d}$ is NP-hard

nondeterministic Polymanial-time Hard

ullet checking $f\in \Sigma_{n,d}$ is a SDP problem

 $|dia(zd(x))| = {n+d \choose d} = {n+d \choose l}$

 $(e.g. (4) = \frac{4!}{2!2!} = 6$

Representation of Polynomials

• monomial bases $Z_d(x)$: $\chi_{i_1}^{\alpha_i} \cdot \chi_{i_2}^{\alpha_i} \cdot \chi_{i_1}^{\alpha_n} = \alpha_i \in \{0, \cdots, n\} \in \alpha_i \in \emptyset$

eg. $x \in \mathbb{R}^2$: $\mathfrak{P}_{1} \times_{2}(x) = [1 \times_{1} \times_{2} \times_{2} \times_{1} \times_{2} \times_{2}]$, If in \mathbb{R}^{n} with degree d:

 $x \in \mathbb{R}^1$ $z_3(x) = [1 x_1 x_1^2 x_1^3]$

• Linear representation: C $e_3 + 3\alpha_1^2 + 4\alpha_1\alpha_2 + 6\alpha_2 = [0 \ 0 \ 6 \ + 3 \ 0] \ Z_2(x)$

Coordinate of & with Zz(x)

 $\forall f \in \mathbb{R}_{n,d}$ has a unique representation $c \in \mathbb{R}^N$, where $N = \binom{n+d}{d}$

Quadratic representation (Gram matrix representation): f = 4¹/₁ +4¹/₁ x₂ - 1¹/₂ x₂ + 10 x₂ + 10 x₂

<> gkm felkn, 2d can be represented as 2dx) Q2d(x) with QESn

$$=> q_1 = 4$$
, $q_2 = 2$, $q_4 + 2q_3 = -7$, $q_5 = -1$, $q_6 = 10$

1

• Quadratic representation is not unique:

Y to se Y 0 ∈ Sn and with entries satisfying (xix) is a valid representation of (xi)

(3) Quadratic representation allows us to check f \(\int\{\int}\) in allows us to check f \(\int\{\int}\) in \(\int\{\int}\).

- Hilbert showed in 1888: $P_{n,d} = \Sigma_{n,d}$ iff
 - d=2 quadratic polynomials for all n
 - -n=1 univariate polynomials for all
 - -n=2, d=4, quartic polynomials in two variables.
- SOS decomposition for $f \in P_{n,d}$: if $\exists g_1, \ldots, g_s$ such that $f = \sum_i g_i^2$

Thus: If
$$f \in \mathbb{R}^n$$
, of is PSD, then $\exists r > 0$ sit. $f(x) \left(\sum_{i=1}^n x_i^2\right)^n \in \mathbb{Z}_n$, $d_{t \geq r}$

• Theorem 3 Let $Z_d(x)$ be the monomial basis of degree $\leq d$. Then $f(x) \in \Sigma_{n,d}$ iff there exists Q such that

$$\begin{cases} Q\succeq 0 &\leftarrow \text{LM I} \text{ with variable }Q\\ f(x)=Z_d(x)^TQZ_d(x) &\text{equality constraints on }Q \end{cases}$$
 — this is SDP problem (LMI feasibility problem)

- comparing terms gives affine constraints on the elements of Q

• Example 6
$$f=2x_1^4+2x_1^3x_2-x_1^2x_2^2+5x_2^4$$
 Some f in (x_1)

$$S(x) = \begin{bmatrix} x^{1} \\ x^{1} x^{2} \\ y^{1} \end{bmatrix}$$

$$Q = \begin{bmatrix} 4 & 2 & -\lambda \\ 2 & -\lambda \\ -\lambda & -1 & 10 \end{bmatrix}$$

$$\begin{array}{c}
(0) = \begin{bmatrix} 4 & 2 & -\lambda \\ 2 & -\frac{1}{2}\lambda & -1 \\ -\lambda & -1 & 10 \end{bmatrix}$$

$$\begin{array}{c}
2 & 93 + 94 = -7 \\
1 & 1 & 10 \\
2 & 1 & 2 & 1
\end{array}$$

$$\begin{array}{c}
2 & 93 + 94 = -7 \\
1 & 1 & 10 \\
2 & 1 & 2 & 1
\end{array}$$

$$\begin{array}{c}
1 & 1 & 1 & 1 & 1 \\
2 & 1 & 2 & 1 \\
2 & 1 & -3 & 1
\end{array}$$

$$\begin{array}{c}
1 & 1 & 1 & 2 & 1 \\
2 & 1 & 1 & -3 & 1
\end{array}$$

$$\begin{array}{c}
1 & 1 & 1 & 2 & 1 \\
2 & 1 & 1 & -3 & 1
\end{array}$$

$$\begin{array}{c}
1 & 1 & 2 & 1 & 1 \\
2 & 1 & 1 & -3 & 1
\end{array}$$

$$\begin{array}{c}
1 & 1 & 2 & 1 & 1 \\
2 & 1 & 1 & -3 & 1
\end{array}$$

Numerical Construction of Lyapunov Functions

Important conditions for many stability problems:

$$g_0(x) \ge 0 \text{ on } \{x \in \mathbb{R}^n | g_1(x) \ge 0, \dots, g_k(x) \ge 0\}$$

• Conservative but useful condition: \exists SOS $s_i(x)$ s.t.

$$g_0(x) - \sum_i s_i(x)g_i(x) \ge 0, \forall x \in \mathbb{R}^n$$

This is Generalized S-Procedure Simple 4. Prive

- Important special case: $g_i(x) = x^T G_i x, i = 0, 1, ...$ are quadratic polynomials:
 - Original condition: $\forall x \in \mathbb{R}^n, x^T G_1 x \geq 0, \dots, x^T G_k x \geq 0 \Rightarrow x^T G_0 x \geq 0$
 - Sufficient condition (S-procedure): $\exists \alpha_1, \dots, \alpha_k \geq 0$ with

$$\Rightarrow \quad G_0 \succeq \alpha_1 G_1 + \dots + \alpha_k G_k$$

- S-Procedure is lossless if k=1 and $\exists \hat{x}, \hat{x}^T G_1 \hat{x} > 0$ (constraint qualification)

Application to Stability Analysis

• Example 7 $\dot{x} = Ax + g(x)$ with $g(x) \leq \beta \|x\|^2$ (e.g. g(x) can be unknown disturbance or g(x) can be nonlinear term) (Croal: Find LF for exponential stability of form $V(x) = x^T P x$) => P>0 and $V(x) \le -\alpha V(x)$ (assume $\alpha > 0$ is given) teg: ded with glx) (Let's denote 2= glx)) $\Rightarrow \dot{V} + \alpha V = 2 \sqrt[4]{p} (Ax + g(x)) + \alpha \sqrt[4]{p} x = x^{T} (A^{T}p + pA + \alpha p) x + 2x^{T} p g(x)$ $= \begin{bmatrix} x \\ 5 \end{bmatrix}^{T} \begin{bmatrix} y \\ b \end{bmatrix} + A + \alpha p \quad \text{of } x \\ 5 \end{bmatrix} \begin{cases} x \\ 5 \end{cases} \leq 0$ $\lambda = \lambda$ So We want $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ for \$ [3] = 2 \$15 = \(\begin{array}{c} \delta_1 \alpha \end{array} \) Whenever & TE, & > 0 By 1-procedure: => Go / aip G, for some \$>0

LMI (variable P)

- Example 8 Find Lyapunov function for $\begin{cases} \dot{x}_1=-x_2-\frac{3}{2}x_1^2-\frac{1}{2}x_1^3\\ \dot{x}_2=3x_1-x_2 \end{cases}$
- Livok for polyn-mial Hapunov function: we want 4th-order poly

 i.e. $\emptyset V(x) = \mathbb{E}_{d(x)} \mathbb{Q} \mathbb{E}_{d(x)} = \sum_{0 \leq \lambda \neq j \leq k} C_{\lambda,j} \chi_{1}^{\lambda} \chi_{2}^{j}$
 - ① we want V ∈ SOS ⇒ Q>0
 - 2) We work -V ESOS

$$e.f.: L_{fV} = \sum_{i=1}^{2V} f_{i}(x) = \sum_{0 \le i \ne j \le K} (i \chi_{i}^{i-1}.(-\chi_{2} - \frac{3}{2}\chi_{1}^{2} - \frac{1}{2}\chi_{1}^{3}) + \hat{j} \chi_{i}^{\hat{j}-1}(3\chi_{1} - \chi_{2}))$$

We should see
$$\dot{V} = \frac{1}{4}V = \frac{1}{2}(x_1 \cdot P(0) \cdot P(0) \cdot P(0))$$
, where $P(0)$ is affine in Q $\Rightarrow P(0) \cdot Y(0) \cdot P(0) \cdot P(0)$

=> SOP. Solve using SOSTODL5.3