Optimal Multi-Agent Coordination under Tree Formation Constraints

Wei Zhang and Jianghai Hu, Member, IEEE

Abstract—This paper presents a framework for studying the centralized optimal multi-agent coordination problem under tree formation constraints. The geodesic equations characterizing the optimal coordinated motions are derived in a suitably chosen coordinate system for general tree formation constraints. The solutions to these equations, however, may fail to be optimal once extended beyond certain points called the conjugate points due to the failure of second order optimality condition. For the particular class of star formations, two methods for computing the conjugate points along a natural candidate solution are introduced. These, we derive analytically the conjugate points as well as the better solutions once the candidate solution is extended beyond its first conjugate point. The optimal centralized coordinated motions derived in this paper will yield a performance lower bound for those generated by decentralized algorithms.

I. INTRODUCTION

Due to their diverse applications in engineering fields, multi-agent coordination problems have attracted increasing attention of the control community in the recent years. Their applications include, for example, air traffic management (ATM [9], [17], [29]), robotics ([5]), Unmanned Aerial Vehicle (UAVs [25], [30]), and spacecraft [13], [28], etc. In these applications, the system under study consists of a group of agents that can coordinate their motions to achieve a common goal or complete a common task. Often times, the coordinated motions are subject to some formation constraints, namely, distances between certain pairs of agents need to be kept constant throughout the process. For example, a group of UAVs may need to fly in a certain formation to reduce their fuel expenditure and keep active communication links among them. As another example, a team of mobile robots may coordinate their motions to carry a common object from one end of the room to the other end without dropping it or running into the obstacles. This paper studies a class of optimal multi-agent coordination problem where the graph describing the formation constraint is a tree. Specifically, the goal is to find the coordinated motions with the minimum energy cost that can move a group of agents from given initial positions to given destination positions within a certain time horizon without violating certain tree formation constraints.

Previous studies on formation-constrained multi-agent coordination problems mainly focus on aspects such as stability (e.g., [7], [8], [10], [24], [27]), feasibility (e.g., [22], [26]), and consensus forming (e.g., [4], [20], [23]). In these works, the problems are usually formulated in a decentralized manner (e.g., [14], [19], [21]), and many of them (e.g., [2], [16], [26]) consider nonholonomic formation constraints. In contrast, this paper focuses on the optimality of the centralized coordinated motions with simple kinetic agent dynamics and holonomic formation constraints. Although these assumptions may be limiting for some practical applications, the resulting formulation has several benefits. First of all, it enables us to derive optimal solutions and to obtain higher order optimality conditions analytically. In comparison, for decentralized coordination problems, it is very difficult, if not impossible, to obtain the optimal solutions even numerically. Moreover, under the same cost function, decentralized solutions will inevitably have higher cost than the optimal centralized ones. Thus the optimal centralized coordinated motions derived in this paper can yield a performance lower bound for all the decentralized solution algorithms.

The multi-agent coordination problem studied in this paper is originally proposed in its preliminary form in [11], and studied for a special case in [12]. This paper is a generalization of these works, and contains several significant improvements. First of all, this paper studies the much more general tree formation constraints, for which the snake formation studied in [12] is only a very special case. Second, this paper derives equations for the optimal solutions whose coefficients are matrices dependent on the graph describing the tree formation constraint, and in particular, for the case studied in Section III-C, optimality conditions on the initial positions of the agents in accordance with the graph and their mechanical interpretations. For the snake formation studied in [12], these conditions are trivially satisfied. More importantly, from a computational point of view, the Jacobi equation derived for the tree formation constraint in this paper is of the form $\dot{x} + L_1 x + L_0 x = 0$ for some nonzero matrices L_1 and L_0, which necessitates the solution of a general second order matrix differential equation through matrix polynomial and latent roots/vectors analysis [18]; whereas in [12], the matrix L_1 is zero, and a simple eigenvalue/eigenvector analysis of L_0 will suffice. Hence this paper deals with a much more challenging problem than the one studied in [12]. See Remark 3 in Section III-D for further comments on this aspect. In another related work [1], the problem of optimal motions for a group of robots under rigid formation constraints is studied. The difference of the problem studied in [1] from our problem is that, in [1], each pair of the robots is required to keep a constant distance simultaneously, while for our problem, only a subset of robots pairs need to satisfy this requirement.

The main contributions of this paper are threefold: (i) We present a general framework for studying the optimal multi-agent coordination problem under tree formation constraints.
Under this framework, the geodesic equations for the optimal solutions are derived in a suitably chosen coordinate and a natural candidate solution satisfying these equations are obtained. The Jacobi equation characterizing the conjugate points along this candidate solution is also derived and two general methods are proposed to solve it. (ii) For a family of tree formation constraints, we derive analytically both the conjugate points along the natural candidate solution and the better solutions that consume less energy than the candidate solution after it is extended beyond its first conjugate point. This case study not only demonstrates the methodologies developed in the general framework, but also is in itself an important contribution. (iii) This paper also represents a nontrivial application of the matrix differential equation (MDE) theory in the solution of the Jacobi equation arising in the optimal multi-agent coordination problem.

This paper is organized as follows. In Section II, the general formation constrained optimal multi-agent coordination problem is formulated. We then focus on the tree formation constraints in Section III, for which we propose an optimal candidate solutions and derive the Jacobi equation characterizing the conjugate points along it. Two methods are proposed in Section IV to solve the Jacobi equation. These methods are illustrated in Section V, where for a family of tree formation constraints, we derive analytically the conjugate points and the better solutions when the candidate solution is extended beyond its first conjugate point. Finally, some concluding remarks are given in Section VI.

II. OPTIMAL FORMATION CONSTRAINED MULTI-AGENT COORDINATION

In this section, the problem of optimal multi-agent coordination under formation constraints is formulated. We first introduce some notations.

Consider $n+1$ agents moving on a plane \mathbb{R}^2. Their positions are denoted by the ordered $(n+1)$-tuple $(q_i)_{i=0}^n = (q_0, \ldots , q_n)$, where $q_i \in \mathbb{R}^2$ is the position of agent i, $i = 0, \ldots , n$. A formation constraint on the locations of the $n+1$ agents can be described in terms of an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, whose set of vertices $\mathcal{V} = \{0, \ldots , n\}$ consists of $n+1$ nodes that correspond to the $n+1$ agents, and whose set of edges \mathcal{E} is a subset of $\mathcal{V} \times \mathcal{V}$. An $(n+1)$-tuple $(q_i)_{i=0}^n$ is said to satisfy the \mathcal{G}-formation constraint if and only if for each edge $(i, j) \in \mathcal{E}$, $0 \leq i, j \leq n$, the distance of agent i and agent j is at a prescribed value (say, unity):

$$\|q_i - q_j\| = 1 \text{ for each } (i, j) \in \mathcal{E}.$$

Note that in the above definition, if (i, j) is not an edge in \mathcal{E}, there is no constraint on the distance between agents i and j: $\|q_i - q_j\|$ can be either greater or smaller than 1.

Problem 1: (Optimal Formation Constrained Multi-Agent Coordination) Given a formation graph \mathcal{G}, and the starting position $(a_i)_{i=0}^n$ and the destination position $(b_i)_{i=0}^n$ of the $n+1$ agents, find the motions $(q_i(t))_{i=0}^n$ of the agents over a time interval $[0, t_f]$ so that

1) for each agent i, it starts from a_i at time 0 and ends at b_i at time t_f, i.e., $q_i(0) = a_i$, $q_i(t_f) = b_i$;

2) the locations $(q_i(t))_{i=0}^n$ of the $n+1$ agents satisfy the \mathcal{G}-formation constraint at all times t in $[0, t_f]$;

3) the total energy expenditure J is minimized, where J is defined by

$$J = \frac{1}{2} \sum_{i=0}^n \int_0^{t_f} \|\dot{q}_i\|^2 \, dt.$$ \hspace{1cm} (1)

Remark 1: A justification for choosing the energy expenditure J as the cost function for the problem can be found in [11]. Intuitively, J is the sum of $n+1$ terms; and minimizing each term $\int_0^{t_f} \|\dot{q}_i\|^2 \, dt$ will tend to make the motion $q_i(t)$ for agent i follow a straighter path with less speed variations. If instead the term $\int_0^{t_f} \|\dot{q}_i\| \, dt$ is used in the definition of J, then, as $\int_0^{t_f} \|\dot{q}_i\| \, dt$ is the length of the curve $q_i(t)$, $0 \leq t \leq t_f$, motions that follows the same path but with drastically different speed variations will have the same cost. Obviously, in practice, smoother motions should be favored.

For brevity, in the rest of the paper, the above problem will be called the OFC problem. Thus the OFC problem tries to find the coordinated motions of the $n+1$ agents that can move them from $(a_i)_{i=0}^n$ at time 0 to $(b_i)_{i=0}^n$ at time t_f with the minimal energy expenditure, while at the same time maintaining the \mathcal{G}-formation constraint, namely, the distance between agents i and j is kept at the constant 1 at all times t_f.

The starting position $(a_i)_{i=0}^n$ and the destination position $(b_i)_{i=0}^n$ are called aligned if they have the same centroid: $\frac{1}{n+1} \sum_{i=0}^n a_i = \frac{1}{n+1} \sum_{i=0}^n b_i = c$. In [11], it is proved that the OFC problem with general initial and destination positions can be reduced to the OFC problem where the initial and the destination positions are aligned. Hence without loss of generality we assume in the rest of this paper that $(a_i)_{i=0}^n$ and $(b_i)_{i=0}^n$ have a common centroid c, say, at the origin.

Assumption 1: Assume that the initial and the destination positions are aligned at the same centroid $c = 0$:

$$\frac{1}{n+1} \sum_{i=0}^n a_i = \frac{1}{n+1} \sum_{i=0}^n b_i = 0.$$

Under this assumption, the following result can be used to reduce the complexity of solving the OFC problem.

Lemma 1 ([11]): Suppose that in the OFC problem the starting position $(a_i)_{i=0}^n$ and the destination position $(b_i)_{i=0}^n$ are aligned at the common centroid $c = 0$. Then the optimal solutions $(q_i)_{i=0}^n$ to the OFC problem under any formation constraint \mathcal{G} satisfy

$$\frac{1}{n+1} \sum_{i=0}^n q_i(t) = 0, \forall t \in [0, t_f].$$

In other words, the positions of the $n+1$ agents during the optimal coordinated motions are also centered at the origin under arbitrary formation constraints. This in effect reduces the dimension of the problem by two: the optimal solution (q_0, \ldots , q_n) as a curve in $\mathbb{R}^{2(n+1)}$ lies in a subspace of codimension two.

III. OFC PROBLEM UNDER TREE FORMATION CONSTRAINTS

In this paper, we focus on the OFC problem with a particular formation constraint structure, namely, when \mathcal{G} is a tree. A
connected undirected graph is called a tree if it has no loop. For a tree \(G = (\mathcal{V}, E) \), typically a node, say, node \(0 \), is identified as the root, and a layered structure can be established for the rest of the nodes according to their distances to the root. More precisely, a partial order \(\preceq \) can be defined on \(\mathcal{V} \) so that two nodes \(i \) and \(k \) satisfy \(i \preceq k \) if and only if node \(i \) is a predecessor of node \(k \), or equivalently, if and only if node \(i \) is on the shortest path between node \(k \) and the root. Otherwise, we write \(i \not\preceq k \). Note that \(i \leq i \), and that it is possible that both \(i \not\preceq k \) and \(k \not\preceq i \) are true for certain nodes \(i \) and \(k \). As an example, in the tree shown in Fig. 1, we have \(1 \preceq 2 \), \(1 \preceq 3 \), and \(1 \not\preceq 6 \).

![Fig. 1. An example of an \((n+1)\)-tuple satisfying a tree formation constraint \((n = 6)\).](image)

A. A New Coordinate System

It turns out that in studying the OFC problem with a tree formation constraint \(G \), it is more convenient to work in a different coordinate system than the canonical \((q_0, \ldots, q_n)\) for representing the agents’ positions, as the formation constraint is not intrinsically encoded in the latter system. To see this, let \(\langle q_i \rangle_{i=0}^n \) be an \((n+1)\)-tuple satisfying the \(G \)-formation constraint. For each edge \((i, k) \in E\) where node \(i \) is an immediate predecessor of node \(k \), we can associate an angle \(\theta_k \) defined as the phase angle of the vector \(q_k - q_i \). See Fig. 1 for an example when \(n = 6 \). Note that since \((i, k) \in E\) and \(\langle q_i \rangle_{i=0}^n \) satisfies the \(G \)-formation constraint, we must have \(|q_i - q_k| = 1\). Thus if we identify \(\mathbb{R}^2 \) with the complex plane \(\mathbb{C} \), then from the above definition, we have \(q_k - q_i = e^{j\theta_k} \) where \(j = \sqrt{-1} \). As a result, the position \(q_i \) of an arbitrary node \(i \) can be expressed in terms of the position \(q_0 \) of the root and the angles associated with all the edges on the shortest path from the root to node \(i \):

\[
q_i = q_0 + \sum_{k \preceq i, k \not\preceq 0} e^{j\theta_k}, \quad i = 0, \ldots, n. \tag{2}
\]

Note that the summation in (2) is over all the predecessors of node \(i \), including node \(i \) itself, except the root.

By Assumption 1 and Lemma 1, the optimal solutions \(\langle q_i \rangle_{i=0}^n \) must satisfy \(\sum_{i=0}^n q_i = 0 \) at all times. Substituting

1In this paper, \(j \) can either denote \(\sqrt{-1} \) or be an integer index. There should be no ambiguity in its meaning as we have ensured that \(j \) with the two different interpretations will not appear in the same expression in the rest of the paper.

in (2), we have

\[
(n + 1)q_0 + \sum_{i=1}^n \sum_{k \preceq i, k \not\preceq 0} e^{j\theta_k} = 0,
\]

or equivalently,

\[
q_0 = -\frac{1}{n + 1} \sum_{i=1}^n \sum_{k \preceq i, k \not\preceq 0} e^{j\theta_k} = -\frac{1}{n + 1} \sum_{k=1}^n \chi_k e^{j\theta_k}. \tag{3}
\]

In the above equation, for an arbitrary node \(i \) other than the root, \(\chi_i \) is an integer associated with node \(i \) defined as the number of successors of node \(i \), including node \(i \) itself. More precisely,

\[
\chi_i = \# \{ k \neq 0 : i \preceq k \}. \tag{4}
\]

As an example, in Fig. 1, we have \(\chi_1 = 5, \chi_2 = \chi_3 = \chi_5 = \chi_6 = 1 \), and \(\chi_4 = 3 \). Using (3), for each \(i = 0, \ldots, n \), we can rewrite (2) as

\[
q_i = \sum_{k=1}^n \frac{n + 1 - \chi_k e^{j\theta_k}}{n + 1} e^{j\theta_k} - \sum_{k=1, k \not\preceq i}^n \frac{\chi_k}{n + 1} e^{j\theta_k}. \tag{5}
\]

Equation (5) defines a coordinate transformation between the canonical \((q_0, \ldots, q_n)\) and the new coordinates \((\theta_1, \ldots, \theta_n)\). Note that in the new coordinate system, the formation constraint, namely, \(|q_i - q_k| = 1\) whenever \((i, k) \in E\), is implicitly encoded.

We now derive the expression of the energy \(J \) defined in (1) in the new coordinate system. Differentiating (5) and taking the norm square, we have

\[
\|q_i\|^2 = \left\| \sum_{k \preceq i} \frac{n + 1 - \chi_k e^{j\theta_k}}{n + 1} e^{j\theta_k} - \sum_{k \not\preceq i} \frac{\chi_k}{n + 1} e^{j\theta_k} \right\|^2
\]

\[
= \left(\sum_{k \preceq i} \frac{n + 1 - \chi_k e^{j\theta_k}}{n + 1} e^{j\theta_k} - \sum_{k \not\preceq i} \frac{\chi_k}{n + 1} e^{j\theta_k} \right) \cdot \left(\sum_{k \preceq i} \frac{n + 1 - \chi_k e^{j\theta_k}}{n + 1} e^{-j\theta_k} + \sum_{k \not\preceq i} \frac{\chi_k}{n + 1} e^{-j\theta_k} \right)
\]

\[
= \sum_{k \preceq i} \frac{(n + 1 - \chi_k)^2}{(n + 1)^2} \theta_k^2 + \sum_{k \not\preceq i} \frac{\chi_k^2}{(n + 1)^2} \theta_k^2
\]

\[
+ \sum_{k_1 \preceq i, k_2 \not\preceq i, k_1 \neq k_2} \frac{\chi_k \chi_{k_1}}{(n + 1)^2} \cos(\theta_{k_1} - \theta_{k_2}) \dot{\theta}_{k_1} \dot{\theta}_{k_2}
\]

\[
+ \sum_{k_1 \preceq i, k_2 \not\preceq i, k_1 \neq k_2} \frac{\chi_k \chi_{k_1}}{(n + 1)^2} \cos(\theta_{k_1} - \theta_{k_2}) \dot{\theta}_{k_1} \dot{\theta}_{k_2}
\]

for \(i = 0, \ldots, n \). Note that the running indices \(k_1, k_2 \) in the above equation are all assumed implicitly to take values in the range \(1, \ldots, n \). Moreover, the summations involving \(k_1 \) and \(k_2 \) are over ordered pairs: \((k_1, k_2)\) and \((k_2, k_1)\) are counted
separately. As a result, the energy expenditure J can be written as

$$J = \frac{1}{2} \int_{t_0}^{t_f} \left(\sum_{i=0}^{n} \| \dot{q}_i \|^2 \right) dt$$

$$= \frac{1}{2} \int_{t_0}^{t_f} \left(\sum_{k} \left[\frac{k \chi_k (n+1-\chi_k)^2}{(n+1)^2} + \frac{\chi_k^2 (n+1-\chi_k)}{(n+1)^2} \right] \right) \dot{\theta}_k^2$$

$$+ \sum_{k_1 \neq k_2} \left[\frac{(n+1-\chi_{k_1}) (n+1-\chi_{k_2})}{(n+1)^2} \right] \# \{ i : k_1 \leq i, k_2 \leq i \}$$

$$= \frac{(n+1-\chi_k)^2}{(n+1)^2} \cdot \dot{\chi}_k + \frac{\chi_k^2}{(n+1)^2} \cdot (n+1-\chi_k)$$

$$= \frac{\chi_k (n+1-\chi_k)}{n+1}.$$ (6)

Define the (column) vector $\theta = (\theta_1, \ldots, \theta_n) \in \mathbb{R}^n$ and the matrix $G(\theta) = [g_{ij}(\theta)]_{1 \leq i, j \leq n} = [\Delta_{ij} \cos(\theta_i-\theta_j)]_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}.$

Then (8) can be simplified as

$$J = \frac{1}{2} \int_{t_0}^{t_f} \dot{\theta}^T G(\theta) \dot{\theta} dt.$$ (11)

Thus the OFC problem is reduced to the following optimal control problem:

Minimize $\int_{t_0}^{t_f} \frac{1}{2} u^T (t) G(\theta) u(t) dt,$

subject to $u(t) = \dot{\theta}(t), t \in [0, t_f],$

$\theta(0) = \theta_0, \theta(t_f) = \theta_f.$

Here $\theta_0, \theta_f \in \mathbb{R}^n$ are chosen to match the initial position $(x_{i_1})_{i=0}^n$ and the final position $(x_{i_n})_{i=0}^n$, respectively.

Remark 2: The matrix $G(\theta)$ is indeed the Riemannian metric in the coordinate system $(\theta_1, \ldots, \theta_n)$ transformed from the canonical Euclidean metric on $\mathbb{R}^{2(n+1)}$ via the coordinate transformation (5), and J in (11) is the energy of the curve $(\theta(t), 0 \leq t \leq t_f)$, as measured by this metric. Thus the optimal control problem (12) is equivalent to finding the shortest distance curves from θ_0 to θ_f parameterized with constant speed [6].

B. Optimality Condition Obtained by First Variation

We now solve the optimal control problem (12). Define the Hamiltonian

$$H = \frac{1}{2} u^T G(\theta) u + \lambda^T u,$$

where $\lambda \in \mathbb{R}^n$ is the co-state. Then by the Maximum Principle [3], the optimal u is determined by

$$u = \arg\min_u H = \arg\min_u \left[\frac{1}{2} u^T G(\theta) u + \lambda^T u \right]$$

$$\Rightarrow \ G(\theta) u + \lambda = 0,$$

while the dynamics of λ is given by

$$\lambda = -\frac{\partial H}{\partial \theta} = \frac{1}{2} \frac{\partial}{\partial \theta} [u^T G(\theta) u].$$

Combining the above two equations, we obtain

$$-\frac{1}{2} \frac{\partial}{\partial \theta} [u^T G(\theta) u] = \dot{\lambda} = -G(\theta) \dot{u} - \frac{d}{dt} G(\theta) \cdot u.$$ (13)

Since $u = \dot{\theta}$, the above equation can be rewritten as

$$G(\theta) \dot{\theta} = \frac{1}{2} \frac{\partial}{\partial \theta} [u^T G(\theta) \dot{\theta}] - \frac{d}{dt} G(\theta) \cdot \dot{\theta}.$$ (13)

Equation (13) is called the geodesic equation and its solutions are called geodesics, as the optimal control problem (12) under study is an instance of the shortest distance problem under a suitable Riemannian metric [6] (see Remark 2).
Evaluating the k-th component of the above vector equation (13), we obtain
\[
\left[G(\theta)\dot{\theta} \right]_k = \frac{1}{2} \frac{\partial}{\partial \theta_k} \left[\theta^T G(\theta) \dot{\theta} \right] - \frac{d}{dt} G(\theta) \cdot \dot{\theta} \bigg|_k \\
= \frac{1}{2} \frac{\partial}{\partial \theta_k} \left[\sum_{i,j=1}^n \Delta_{ij} \cos(\theta_i - \theta_j) \dot{\theta}_i \dot{\theta}_j \right] \\
+ \sum_{1 \leq j \leq n} \Delta_{kj} \sin(\theta_k - \theta_j) (\dot{\theta}_k - \dot{\theta}_j) \\
= \frac{1}{2} \left[- \sum_{1 \leq j \leq n} \Delta_{kj} \sin(\theta_k - \theta_j) \dot{\theta}_j \right] \\
+ \sum_{1 \leq j \leq n} \Delta_{kj} \sin(\theta_k - \theta_j) (\dot{\theta}_k - \dot{\theta}_j) \\
= - \sum_{1 \leq j \leq n} \Delta_{kj} \sin(\theta_k - \theta_j) \dot{\theta}_j^2,
\]
where $[\cdot]_k$ denotes the k-th component of a vector. Therefore, the geodesic equation (13) is equivalent to
\[
\left[G(\theta)\dot{\theta} \right]_k = - \sum_{1 \leq j \leq n} \Delta_{kj} \sin(\theta_k - \theta_j) \dot{\theta}_j^2, \quad k = 1, \ldots, n. \tag{14}
\]

From the standard result of optimal control theory, equation (14) gives a necessary condition for a curve $\theta(t)$ to be a solution to the OFP problem. Conversely, a curve $\theta(t)$, $t \in [0, t_f]$, satisfying the geodesic equation (14) is a solution to the OFP problem if t_f is sufficiently small [3], [6]. However, for large t_f, the optimality of $\theta(t)$ may be lost due to various reasons. Later in this section, we will study one of them, namely, the occurrence of conjugate points.

C. A Special Instance of the OFC Problem and Its Candidate Solutions

Instead of studying the general solutions to the geodesic equation (14), we consider a special case. Suppose that the initial position $\langle a_i \rangle_{i=0}^n$ and the destination position $\langle b_i \rangle_{i=0}^n$ of the $n+1$ agents are not only aligned at the common centroid 0, but they can be obtained from each other by a rotation around the origin. More precisely, we assume that $b_i = R_\alpha(a_i)$, $i = 0, \ldots, n$, where for each $\alpha \in \mathbb{R}$, R_α denotes the rotation operation around the origin by the angle α counterclockwise.

Under this assumption, a natural candidate solution $q^* = \langle q^*_i \rangle_{i=0}^n$ to the OFP problem under any formation constraint G can be described as follows: $q^*_i(t) = R_\alpha(a_i)$, $t \in [0, t_f]$, $i = 0, \ldots, n$. In other words, all the $n+1$ agents rotate at unit angular velocity counterclockwise around the origin from $\langle a_i \rangle_{i=0}^n$ at time 0 to $\langle b_i \rangle_{i=0}^n$ at time t_f. In the coordinate system $\theta = (\theta_1, \ldots, \theta_n)$ constructed in Section III-A, this candidate solution q^* corresponds to
\[
\theta^* = \theta_0 + t \cdot 1,
\]
where $\theta_0 = (\theta_0^1, \ldots, \theta_0^n)$ is the new coordinate corresponding to the initial position $\langle a_i \rangle_{i=0}^n$, and $1 \in \mathbb{R}^n$ is the vector whose components are all 1’s.

In order for q^* to be a solution to the OFP problem, θ^* must satisfy the geodesic equation (14). Since $\theta^* \equiv 0$, $\theta^*_j \equiv 1$, and $\theta^*_k - \theta^*_j \equiv \theta_0^k - \theta_0^j$ are constant for $1 \leq j, k \leq n$, we must have
\[
\sum_{1 \leq j \leq n} \Delta_{kj} \sin(\theta_0^k - \theta_0^j) = 0, \quad k = 1, \ldots, n. \tag{16}
\]
Equation (16) is the condition on θ_0 so that starting from the corresponding initial position $\langle a_i \rangle_{i=0}^n$, the coordinated motion q^* obtained by rotating around the origin satisfies the first order optimality condition (13).

1) A Mechanical Interpretation of Condition (16): To better understand the implication of condition (16), we next develop a mechanical analogy. To this purpose, we first prove a useful identity. Suppose that $\langle \theta_1, \ldots, \theta_n \rangle$ is the new coordinate for an $(n+1)$-tuple $\langle q_i \rangle_{i=0}^n$ satisfying the G formation constraint under the coordinate transformation (5) described in Section III-A, and let Δ_{ij} be defined as in (9).

Lemma 2: For each $l = 1, \ldots, n$, we have
\[
\sum_{\{i : l \leq i \}} q_i = \sum_{1 \leq k \leq n} \Delta_{lk} e^{\theta_0^k}.
\]

Proof: Substituting in (5), we have
\[
\sum_{\{i : l \leq i \}} q_i = \sum_{\{i : l \leq i \}} \left(\sum_{k : l \leq k} \frac{n+1 - \chi_k}{n+1} e^{\theta_0^k} - \sum_{k \nmid l} \frac{\chi_k}{n+1} e^{\theta_0^k} \right) \\
= \sum_{\{k : l \leq k \}} \left[\frac{n+1 - \chi_k}{n+1} \chi_l - \frac{\chi_k}{n+1} \chi_k \right] e^{\theta_0^k} \\
+ \sum_{\{k : k \leq l, l \nmid k \}} \frac{n+1 - \chi_k}{n+1} \chi_l e^{\theta_0^k} - \sum_{\{k : k \leq l, l \nmid k \}} \frac{\chi_k}{n+1} \chi_l e^{\theta_0^k} \\
= \sum_{\{k : l \leq k \}} \left(\frac{n+1 - \chi_k}{n+1} \right) e^{\theta_0^k} \\
+ \sum_{\{k : k \leq l, l \nmid k \}} \frac{\chi_l(n+1-\chi_k)}{n+1} e^{\theta_0^k} + \sum_{\{k : k \nmid l, l \nmid k \}} \frac{-\chi_k \chi_l}{n+1} e^{\theta_0^k}.
\]
The desired conclusion can be obtained by comparing the coefficients in the last equation with (9). ■

Now suppose $\theta_0 = (\theta_0^1, \ldots, \theta_0^n)$ is the new coordinate corresponding to the initial position $\langle a_i \rangle_{i=0}^n$, and that it satisfies condition (16). By Lemma 2, for each $l = 1, \ldots, n$,
\[
\sum_{\{i : l \leq i \}} a_i = \sum_{1 \leq k \leq n} \Delta_{lk} e^{\theta_0^k}.
\]
Thus, if $\text{Im}[\cdot]$ denotes the imaginary part of a complex number, then
\[
\text{Im} \left[\left(\sum_{i:t \leq i} a_i \right) \cdot e^{-j\theta_i^0} \right] = \text{Im} \left[\sum_{1 \leq k \leq n} \Delta_{lk} e^{j(\theta_k^0 - \theta_l^0)} \right] = \sum_{1 \leq k \leq n} \Delta_{lk} \sin(\theta_k^0) = 0,
\]
where the last equality follows from condition (16). Since every step of the above derivation is reversible, we conclude that condition (16) is equivalent to the following:
\begin{equation}
\text{the vector } \sum_{i:t \leq i} a_i \text{ is of the same direction as } e^{j\theta_l^0} \text{ for } l = 1, \ldots, n.
\end{equation}
\[\text{(19)}\]
Note that for each $l = 1, \ldots, n$, since node l is not the root, it has an immediate predecessor, say, node i. By the definition of θ_i^0, $e^{j\theta_l^0}$ is the direction of the vector $a_i - a_l$. Hence condition (19) says that the sum of the positions of all successors of node l, including node l itself, is of the same direction as the vector pointing from the immediate predecessor of node l to node l. In particular, if node l is a leaf, namely, a node with no other successors other than itself, then condition (19) says that its immediate predecessor must be located on the line connecting a_l and the origin. For example, the agent a_2 in Fig. 2-(b) is a leaf, but its predecessor a_1 is not on the line connecting a_2 and the origin; thus the initial position in Fig. 2-(b) does not satisfy condition (19).

A mechanical interpretation of condition (19) can be given as follows. Corresponding to the $n+1$ agents, there are $n+1$ unit point masses located at a_0, \ldots, a_n. For each edge $(i, j) \in \mathcal{E}$, there is a rigid rod of zero mass and unit length connecting the i-th and the j-th agents. Moreover, for each agent i, there is a centrifugal force pointing from the origin to a_i with the strength $|a_i|$. Then it can be easily verified that the initial condition $\langle a_i \rangle_{i=0}^{n}$ satisfies condition (19) if and only if the centrifugal force and the forces by the rods connecting to it, add up to zero.

By noting the constraint that $\sum_{i=0}^{n} a_i = 0$, an alternative mechanical interpretation can be given as follows. Instead of the centrifugal forces, assume that in the $(n+1)$-point mass system connected by rods described above, for each pair $0 \leq i, j \leq n$, the point mass located at a_i has a repulsive force of $a_j - a_i$ acting on the point mass located at a_j. Then it can also be verified that condition (19) is equivalent to that this mechanical system is in a balance of forces.

If the initial position satisfies condition (19), or equivalently, condition (16), then θ^* defined in (15) is a solution to equation (13), hence is a candidate solution to the corresponding OFC problem. The above mechanical analogies provide much easier-to-use criteria for checking whether θ^* with a given initial position is a candidate solution. As examples, one can immediately see that θ^* is a candidate solution for the initial position shown in Fig. 2-(a), but not for (b) and (c). The reason is that the point-mass system corresponding to (b) is not in a balance of forces, while although (c) satisfies condition (19), it violates Assumption 1.

D. Optimality Condition Obtained by Second Variation

Consider the special instance of the OFC problem described in Section III-C. Suppose that $\langle a_i \rangle_{i=0}^{n}$ satisfies condition (16). Then the candidate solution θ^* defined in (15) satisfies the first order optimality condition (14), and, as a result, is an optimal solution to the OFC problem if t_f is sufficiently small.

However, as the time horizon t_f increases, θ^* may fail to be an optimal solution to the OFC problem. One possible reason is the occurrence of conjugate points [15], namely, the failure of θ^* to meet the second order optimality condition. Intuitively, a conjugate point is encountered along a geodesic when infinitesimally there are more than one geodesic connecting its two end points. For the simplest example of conjugate points, consider a sphere. Geodesics on the sphere are great circles. A great circle emitting from the south pole will no longer be distance-minimizing between its two end points after passing its first conjugate point, namely, the north pole. The reason that the north pole is a conjugate point is because there is more than one great circle connecting it to the south pole.

In order to characterize the conjugate points along θ^*, we need to find the variation of θ in equation (14) around the nominal solution θ^*. To this purpose, let $\delta \theta(t) \in \mathbb{R}^n$ be a variation of $\theta^*(t)$ for $t \in [0, t_f]$. Since the two end points of θ^* are fixed, the variation must be proper, i.e., $\delta \theta(0) = \delta \theta(t_f) = 0$. Taking the variation $\delta \theta$ in (14) along the solution
obtain
\[G(\theta^*) \cdot \delta \theta + \frac{d}{dt} G(\theta^*) \cdot \delta \dot{\theta} \]
\[= - \sum_{1 \leq j \leq n} \Delta_{kj} \cos(\theta_k^* - \theta_j^*) (\delta \theta_k - \delta \theta_j) (\dot{\theta}_j^*)^2 \]
\[- \sum_{1 \leq j \leq n} 2 \Delta_{kj} \sin(\theta_k^* - \theta_j^*) \dot{\theta}_j^* \delta \theta_j, \]
for \(k = 1, \ldots, n \). Note that \(\dot{\theta}^* \equiv 0, \dot{\theta}_j^* \equiv 1, \) and \(\theta_k^* - \theta_j^* = \delta \theta_k^* - \delta \theta_j^* \). Thus, the above equation is reduced to
\[G(\theta^*) \cdot \delta \theta_k = - \sum_{1 \leq j \leq n} \Delta_{kj} \cos(\theta_k^* - \theta_j^*) \delta \theta_k \]
\[- \sum_{1 \leq j \leq n} 2 \Delta_{kj} \sin(\theta_k^* - \theta_j^*) \delta \theta_j \]
\[+ \sum_{1 \leq j \leq n} \Delta_{kj} \cos(\theta_k^* - \theta_j^*) \delta \theta_j - \sum_{1 \leq j \leq n} 2 \Delta_{kj} \sin(\theta_k^* - \theta_j^*) \delta \theta_j. \]
(20)
To simplify the above equation, define the constants
\[\mu_k = \sum_{1 \leq j \leq n} \Delta_{kj} \cos(\theta_k^* - \theta_j^*), \quad k = 1, \ldots, n. \]
(21)
Define the matrices \(\Lambda \) and \(G_s(\theta^*) \in \mathbb{R}^{n \times n} \) as
\[\Lambda = \text{diag} (\mu_1, \ldots, \mu_n), \]
\[G_s(\theta^*) = [\Delta_{ij} \sin(\theta_k^* - \theta_j^*)]_{1 \leq i, j \leq n}. \]
(22)
Then equation (20) can be written in matrix form as
\[G(\theta^*) \delta \theta = -\Lambda \delta \theta + G(\theta^*) \delta \dot{\theta} - 2G_s(\theta^*) \delta \theta, \]
or equivalently,
\[\delta \dot{\theta} = -2G(\theta^*)^{-1} G_s(\theta^*) \delta \theta = -[G(\theta^*)^{-1} \Lambda - I] \delta \theta. \]
(23)
Equation (23) is called the Jacobi equation. A conjugate point along \(\theta^* \) (or along \(q^* \) in the canonical coordinates) occurs at time \(\tau \) if there is a nontrivial solution to the Jacobi equation that vanishes at both time 0 and time \(\tau \), i.e., if there is a solution \(\delta \theta(t) \) not identically zero for \(t \in [0, \tau] \) with \(\delta \theta(0) = \delta \theta(\tau) = 0 \). By the standard result of optimal control theory [3], [15], once \(t_f > \tau, \theta^* \) will no longer be optimal, or equivalently, the corresponding \(q^* \) will no longer be the optimal coordinated motion of the \(n + 1 \) agents from \((a_i)_{i=0}^n \) at time 0 to \((b_i)_{i=0}^n \) at time \(t_f \).

In the next section, we will find the conjugate points along \(\theta^* \) by solving the Jacobi equation. From the above discussions, this will give us upper bounds on \(t_f \) for the optimality of \(\theta^* \).

Remark 3: In theory, the Jacobi equation (23) can also be derived through a purely differential geometric approach by computing the curvature tensors of the Riemannian metric \(G(\theta) \), similar to the one adopted in [12] in studying the special snake formation case. However, such an approach is almost infeasible here due to the increased problem complexity caused by the general tree formation structure. Hence the direct variational approach is adopted here.

Remark 4: As another remark, although in this section we only carry out the second variation for the special instance of the OFC problem described in Section III-C, Jacobi equation similar to equation (23) can be derived for an arbitrary instance of the OFC problem around any candidate solution satisfying equation (14) by using a similar approach. In these general cases, however, the coefficient matrices in the Jacobi equation are no longer constant, but time-varying instead. Thus finding the solution of the Jacobi equation becomes a much more challenging task.

IV. SOLUTION OF THE JACOBI EQUATION

To solve the Jacobi equation (23), we first write it in the generic form
\[L_2 \ddot{x} + L_1 \dot{x} + L_0 x = 0, \]
(24)
where \(x = \delta \theta \), and \(L_0, L_1, \) and \(L_2 \) are constant matrices defined by
\[L_2 = I, \quad L_1 = 2G(\theta^*)^{-1} G_s(\theta^*), \quad L_0 = G(\theta^*)^{-1} \Lambda - I. \]
From the discussions at the end of Section III-D, in order to find the conjugate points along \(\theta^* \), we need to solve equation (24). In particular, we need to find those nontrivial solutions \(x(t) \) that vanish at both time 0 and a positive time \(\tau \). For each such solution, a corresponding conjugate point is located at \(\theta^*(\tau) \). In this section, two methods are proposed to solve equation (24): a direct method suitable for analytical calculation and an indirect method suitable for numerical verification.

A. Direct Method

The equation (24) is a second order homogeneous matrix differential equation (MDE) with constant coefficient matrices \(L_0, L_1, L_2 \in \mathbb{R}^{n \times n} \). A standard way of solving a general MDE is described in [18] and can be adopted to solve our problem. We now review some of the important results. The interested reader can refer to [18] for proofs and other details.

Definition 1: Consider the constant-coefficient MDE of order \(l \) given by
\[L_l x^{(l)}(t) + \cdots + L_1 x(1)(t) + L_0 x(t) = 0, \]
(25)
where \(L_0, \ldots, L_l \in \mathbb{C}^{n \times n}, \det(L_l) \neq 0, \) and \(x : \mathbb{R}_+ \to \mathbb{C}^n \) is \(l \)-time differentiable. Define the matrix polynomial as: \(L(x) = \sum_{i=0}^l \lambda^i L_i \) for \(\lambda \in \mathbb{C} \).

1) \(\lambda_0 \) is a latent root of \(L(x) \) if \(\det(L(\lambda_0)) = 0; \)
2) A nonzero vector \(v_0 \in \mathbb{C}^n \) is a latent vector of \(L(x) \) associated with a latent root \(\lambda_0 \) if \(L(\lambda_0) v_0 = 0; \)
3) A sequence of vectors, \(v_0, \ldots, v_k-1 \in \mathbb{C}^n \) with \(v_0 \neq 0, \) is a Jordan chain of length \(k \) for \(L(x) \) corresponding to the latent root \(\lambda_0 \), if for each \(m = 0, \ldots, k - 1, \) we have
\[\sum_{i=0}^m \frac{L^{(i)}(\lambda_0)}{i!} v_{k-1-i} = 0. \]
(26)
Here $L^{(i)}(\lambda)$ denotes the i-th order derivative of $L(\lambda)$ with respect to λ.

The above definition for a matrix polynomial is conceptually similar to the eigenpairs and the Jordan chains of a numerical matrix except that the number of the latent roots of $L(\lambda)$ (counting multiplicity) is $l \cdot n$, and that the latent vectors associated with different latent roots are not necessarily linearly independent. Vectors in the same Jordan chain of $L(\lambda)$ could also be linearly dependent. On the other hand, most other facts about the Jordan chains of numerical matrices still apply here. For example, if λ_i is a latent root of $L(\lambda)$ with algebraic multiplicity n_i and geometric multiplicity m_i, then there are m_i sets of Jordan chains associated with λ_i and the numbers of vectors in these Jordan chains sum up to n_i. See [18] for more details.

With the above definitions, the following theorem (see [18, Chap. 14]) describes the relationship between the Jordan chains of $L(\lambda)$ and the primitive solutions of the MDE (25).

Theorem 1: Let $L(\lambda)$ be the matrix polynomial associated with MDE (25).

1. If v_0 and v_1 are two latent vectors of $L(\lambda)$ associated with latent roots λ_0 and λ_1 ($\lambda_0 \neq \lambda_1$), respectively, then $x_0(t) = v_0 e^{\lambda_0 t}$ and $x_1(t) = v_1 e^{\lambda_1 t}$ are two linearly independent solutions of the MDE (25).

2. If $v_0, v_1, \ldots, v_{k-1}$ is a Jordan chain of length k for $L(\lambda)$ corresponding to the latent root λ_0, then

$$x_0(t) = v_0 e^{\lambda_0 t}, \quad x_1(t) = (tv_0 + v_1) e^{\lambda_0 t}, \ldots, \quad x_{k-1}(t) = \left(\sum_{j=0}^{k-1} j v_{k-1-j} \right) e^{\lambda_0 t}$$

are k linearly independent solutions of the MDE (25).

3. Solutions of the form (27) but belonging to different Jordan chains of $L(\lambda)$ are linearly independent.

MDE (25) has an $l \cdot n$-dimensional solution space. By Theorem 1, a Jordan chain of length k for $L(\lambda)$ can provide exactly k linearly independent solutions. Thus the whole solution space of the MDE (25) is fully characterized by the Jordan chains of the corresponding matrix polynomial $L(\lambda)$.

The conjugate points along θ^* can be located by finding particular solutions $x(t)$ of the equation (24) that start from zero and come back to zero at a later time. Since equation (24) is just a second order MDE, by Theorem 1, its $2n$-dimensional solution space is spanned by linearly independent vector functions defined in terms of the latent roots and the corresponding Jordan chains of $L(\lambda)$. Therefore, the problem of finding the conjugate points of θ^* can be transformed to computing the latent roots and the Jordan chains of $L(\lambda)$.

B. Indirect Method

Another way of solving equation (24) is to transform it into a first-order MDE. Denote $y = \begin{bmatrix} x \\ \dot{x} \end{bmatrix} \in \mathbb{C}^{2n}$. Then equation (24) is equivalent to

$$\dot{y} = \begin{bmatrix} 0 & I \\ -L_2^{-1}L_0 & -L_2^{-1}L_1 \end{bmatrix} y \equiv Ay.$$ \hspace{1cm} (28)

Hence, by the standard result of linear system theory, the solution to equation (28) is

$$y(t) = e^{At} \begin{bmatrix} x(0) \\ \dot{x}(0) \end{bmatrix} = \begin{bmatrix} M_{11}(t) & M_{12}(t) \\ M_{21}(t) & M_{22}(t) \end{bmatrix} \begin{bmatrix} x(0) \\ \dot{x}(0) \end{bmatrix}. \hspace{1cm} (29)$$

We are interested in those non-trivial solutions $x(t)$ that start from 0 at time 0 and come back to 0 at some finite time $\tau > 0$, i.e., $x(0) = x(\tau) = 0$. Since $x(0) = 0$, by (29), such a solution is of the form

$$x(t) = M_{12}(t) \cdot \dot{x}(0).$$

For non-trivial solutions, $\dot{x}(0) \neq 0$. In order for $x(\tau)$ to be zero, $M_{12}(\tau)$ must be singular. Thus, we can find the conjugate points of θ^* by looking for those $\tau > 0$ at which $M_{12}(\tau)$ is singular.

The indirect method is conceptually much simpler than the direct method. However, in our case, it is difficult to analytically compute the matrix exponential e^{At} and thus in turn the conjugate points. On the other hand, under tree formation constraints, the matrices L_0, L_1, and L_2 usually have some special structures that one can employ to analytically characterize the latent roots, latent vectors, and in turn the solutions to the Jacobi equation (24). In the next section, we will illustrate this by using first the direct method to analytically compute the conjugate points of θ^* for a particular class of tree formation constraints and then the indirect method to numerically verify the results.

V. OFC Problem Under a Special Class of Tree Formation Constraints

Consider the tree formation pattern $G_0 = (\mathcal{V}_0, \mathcal{E}_0)$ where the root node 0 has n ($n \geq 2$) immediate successors, i.e., $\mathcal{V}_0 = \{0, 1, \ldots, n\}$ and $\mathcal{E}_0 = \{(0, i) : i = 1, \ldots, n\}$. Suppose that the starting positions $(\theta_i)_{i=0}^n$ of the $n + 1$ agents are given by: $a_0 = 0, a_i = (\cos((i-1)\phi_n), \sin((i-1)\phi_n))$, $i = 1, \ldots, n$, where

$$\phi_n = \frac{2\pi}{n}.$$ \hspace{1cm} (30)

In other words, at time $t = 0$, agent 0 is located at the origin while all the other agents are evenly distributed on the unit circle. Thus in the new coordinate system, $\theta_0 = (\theta_i)_{i=0}^n = ((i-1)\phi_n)_{i=0}^n$. See Fig. 3 for an example when
n = 5. Suppose that the destination positions are \((b_i)^n_{i=0} = (R_{ij}(a_i))^n_{i=0}\). As in Section III-C, we consider the candidate solution \(q^*(t) = (q^*_i(t))^n_{i=0} = (R_{ij}(a_i))^n_{i=0}, 0 \leq t \leq t_f\), which in the new coordinate system is given by \(\theta^*\) defined in (15). It is easy to see that \(a_i^n_{i=0}\) satisfies condition (19), hence condition (16). Thus \(\theta^*\) is a solution to the geodesic equation (13). As a result, if \(t_f\) is sufficiently small, the coordinated motion described by \(q^*\), namely, agent 0 remains at the origin while all the other agents rotate around it at constant unit angular velocity, is a solution to the OFC problem. However, the first conjugate point along \(\theta^*\) occurs at \(\theta^*(\tau_n)\) for some positive time \(\tau_n\) dependent on \(n\), implying that \(\theta^*\), hence \(q^*\), is no longer optimal if \(t_f > \tau_n\). In this section, we shall use the two methods in Section IV to derive \(\tau_n\).

A. Analytical Solution

The analytical computation of the conjugate points along \(\theta^*\) can be divided into three steps. First, we compute the constant coefficient matrices in the Jacobi equation for this particular example. To solve the Jacobi equation, we next find all the latent roots and latent vectors of the corresponding matrix polynomial. Using these latent roots/ vectors, we can then obtain the general solutions of the Jacobi equation, as well as the conjugate points.

1) Computation of the Coefficient Matrices in the Jacobi Equation: To find the conjugate points along \(\theta^*\), we need to solve the Jacobi equation (24). First we compute the coefficient matrices \(L_0, L_1, \) and \(L_2\). Under the formation pattern \(G_0\), we have \(\chi_0 = n + 1\), and \(\chi_1 = \cdots = \chi_n = 1\). Thus \(\Delta_{ij}\) defined in (9) becomes

\[
\Delta_{ij} = \begin{cases} \frac{n}{n+1}, & \text{if } i = j, \\ \frac{1}{n+1}, & \text{if } i \neq j, \end{cases} 1 \leq i, j \leq n, \tag{31}
\]

and the matrix \(G(\theta)\) defined in (10) evaluated along \(\theta^*\) can be simplified to

\[
G(\theta^*) = [\Delta_{ij} \cos((\theta_i^0 - \theta_j^0))]_{1 \leq i, j \leq n} = [\Delta_{ij} \cos((i - j)\phi_n)]_{1 \leq i, j \leq n}. \tag{32}
\]

Similarly, the matrix \(G_s(\theta^*)\) defined in (22) becomes

\[
G_s(\theta^*) = [\Delta_{ij} \sin((i - j)\phi_n)]_{1 \leq i, j \leq n} = \left[-\frac{1}{n+1} \sin((i - j)\phi_n) \right]_{1 \leq i, j \leq n}. \tag{33}
\]

To find analytical expressions of the matrices \(G(\theta^*)^{-1}\) and \(\Lambda\) in (23), a standard result from discrete Fourier transform is introduced in the following lemma (a simple proof can be found in [31]).

Lemma 3: Let \(m\) be an integer that is not an integer multiple of \(n\), i.e., \(m \neq l \cdot n, \forall l \in \mathbb{Z}\). Let \(\beta \in \mathbb{R}\) be arbitrary. Then the following relations hold:

\[
\sum_{k=0}^{n-1} \cos(km\phi_n + \beta) = 0, \quad \sum_{k=0}^{n-1} \sin(km\phi_n + \beta) = 0.
\]

Using Lemma 3, assuming \(n \geq 3\), the inverse of \(G(\theta^*)\) defined in (32), \(G(\theta^*)^{-1} = [g^{ij}]_{1 \leq i, j \leq n}\), is given by

\[
g^{ij} = \begin{cases} \frac{n+1}{n+2}, & i = j, \\ \frac{2}{n+2} \cos((i - j)\phi_n), & i \neq j. \end{cases} \tag{34}
\]

Remark 5: The result in equation (33) can be directly verified using Lemma 3 with \(m = 2\). Thus (33) is valid only when \(n \geq 3\) as can be seen from the condition of Lemma 3. In the subsequent discussions, we shall assume \(n \geq 3\) temporarily, and then deal with the \(n = 2\) case separately at the end of this section.

Furthermore, using Lemma 3, it can also be checked that \(\mu_k\) defined in (21) is

\[
\mu_k = \sum_{j \neq k} \frac{-\cos((k - j)\phi_n)}{n+1} + \frac{n}{n+1} = 1.
\]

Therefore, the matrix \(\Lambda = \text{diag}(\mu_1, \ldots, \mu_n)\) in (22) is simply the identity matrix, \(\Lambda = I\).

Given the simplified \(G(\theta^*)^{-1}\) and \(\Lambda\), the coefficient matrices in equation (24) can now be computed as

\[
L_2 = I, \quad [L_0]_{ij} = \frac{2}{n+2} \cos((i - j)\phi_n),
\]

\[
\text{and} \quad [L_1]_{ij} = -\frac{4}{n+2} \sin((i - j)\phi_n).
\]

Then, the matrix polynomial associated with the MDE (24) becomes, for \(1 \leq i, j \leq n\),

\[
[L(\lambda)]_{ij} = \left[\frac{\lambda^2 + \frac{2}{n+2}}{n+1} \lambda + \frac{2}{n+2} \cos((i - j)\phi_n), \quad i = j, \right.
\]

\[
\left. \frac{1}{n+2} \sin((i - j)\phi_n) \lambda + \frac{2}{n+2} \cos((i - j)\phi_n), \quad i \neq j. \right) \tag{34}
\]

2) Latent Roots and Latent Vectors of the Matrix Polynomial \(L(\lambda)\): By Theorem 1, solutions to equation (24) can be expressed in terms of the latent roots and the Jordan chains of the matrix polynomial \(L(\lambda)\). We now compute them for the \(L(\lambda)\) in (34). We will show that \(L(\lambda)\) has a zero latent root with multiplicity \(2(n - 1)\), associated with which there are \(n - 1\) Jordan chains of length 2, as well as four distinct nonzero latent roots of multiplicity one.

First observe that each row of \(L(0) = L_0 = \left[\frac{2}{n+2} \cos((i - j)\phi_n) \right]_{1 \leq i, j \leq n}\) sums up to zero. This indicates that \(\lambda = 0\) is a latent root of \(L(\lambda)\) with a corresponding latent vector \(1 = (1, \ldots, 1)^T\). However, this is only part of the latent vectors associated with the latent root 0. To find the other latent vectors, observe that the rows of \(L(0)\) are cyclic permutations of the same vector that can be thought of as the real part of a basis of the Discrete Fourier Transform (DFT). In light of the orthogonality of the DFT bases, it is possible to find the other latent vectors corresponding to the latent root \(\lambda = 0\) from the set of DFT bases defined as follows.

Lemma 4: Define a set of vectors \(v^c_k, v^s_k \in \mathbb{R}^n, k = 0, \ldots, n\), as

\[
v^c_k = [\cos(k\phi_n), \cos(2k\phi_n), \ldots, \cos(nk\phi_n)]^T, \quad v^s_k = [\sin(k\phi_n), \sin(2k\phi_n), \ldots, \sin(nk\phi_n)]^T.
\]
Let \(V \triangleq V^c \cup V^s \triangleq \{ v^c_k : 0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \} \cup \{ v^s_k : 1 \leq k < \frac{n}{2} \} \), where \(\lfloor \cdot \rfloor \) denotes the integer part of a real number. Then \(V \) is an orthogonal basis of \(\mathbb{R}^n \).

The proof of Lemma 4 is a simple application of Lemma 3; hence it is omitted here.

Remark 6: \(v^c_0 \) and \(v^s_0 \) (when \(n \) is even) are zero vectors; thus they are not included in \(V^s \). It is easily seen that \(V \) defined above contains exactly \(n \) linearly independent vectors of \(\mathbb{R}^n \), for any \(n \geq 2 \).

Using Lemma 4, we are able to characterize all the Jordan chains of \(L(\lambda) \) associated with \(\lambda = 0 \).

Proposition 1: Let \(\lambda_0 = 0 \) be a latent root of the matrix polynomial \(L(\lambda) \) defined in (34), and for each \(v \in V \setminus \{ v^c_0, v^s_0 \} \), the pair of vectors \(\{ v, v \} \) constitute a Jordan chain of \(L(\lambda) \) corresponding to \(\lambda_0 \) of length 2.

Proposition 1 can be proved by showing that \(L(0)v = 0 \) and that \(L(0)v + L^{(1)}(0)v = 0 \) for each \(v \in V \setminus \{ v^c_0, v^s_0 \} \), which is again a simple application of Lemma 3.

Since \(V \setminus \{ v^c_0, v^s_0 \} \) has \(n - 2 \) vectors, Proposition 1 describes \(n - 2 \) Jordan chains, each of which is of length 2. Together, by Theorem 1, these Jordan chains characterize \(2n - 4 \) independent solutions of the Jacobi equation (24). Indeed, let \(u_i, i = 1, \ldots, n - 2 \), be an enumeration of the vectors in \(V \setminus \{ v^c_0, v^s_0 \} \), and define

\[
U_0(t) \triangleq [u_1, tu_1, \ldots, u_{n-2}, tu_{n-2}].
\]

Then any linear combination of the columns of \(U_0(t) \) is a solution to equation (24). On the other hand, equation (24) should have \(2n \) independent solutions in total. It turns out that the four missing independent solutions are provided by the latent vectors associated with the nonzero latent roots of \(L(\lambda) \).

Proposition 2: Define the complex vector \(v_1 = v^c_1 + jv^s_1 \), where \(j = \sqrt{-1} \). Its conjugate is \(\bar{v}_1 = v^c_1 - jv^s_1 \). Define

\[
\omega_1 = -\frac{n + j\sqrt{2n(n+1)}}{n + 2}, \quad \omega_2 = -\frac{n - j\sqrt{2n(n+1)}}{n + 2}.
\]

Then the nonzero latent roots of \(L(\lambda) \) and their corresponding latent vectors can be characterized as follows:

1. \(\lambda_1 = j\omega_1 \) and \(\lambda_2 = -j\omega_1 \) are two latent roots of \(L(\lambda) \) with latent vectors \(v_1 \) and \(\bar{v}_1 \), respectively;
2. \(\lambda_3 = j\omega_2 \) and \(\lambda_4 = -j\omega_2 \) are two latent roots of \(L(\lambda) \) with latent vectors \(v_1 \) and \(\bar{v}_1 \), respectively.

The proof of Proposition 2 can be found in the appendix of this paper.

By Theorem 1, there are four independent solutions to the MDE (24) corresponding to the four distinct nonzero latent roots \(\lambda_i, i = 1, \ldots, 4 \). We arrange these solutions into the columns of a matrix defined by

\[
U_0(t) = [e^{j\omega_1 t} v_1, e^{-j\omega_1 t} \bar{v}_1, e^{j\omega_2 t} v_1, e^{-j\omega_2 t} \bar{v}_1] = V_1 \cdot [e^{\Omega_1 t}, e^{\Omega_2 t}],
\]

where \(V_1, \Omega_1, \) and \(\Omega_2 \) are complex matrices defined by

\[
V_1 = [v_1, \bar{v}_1], \quad \Omega_1 = \begin{bmatrix} j\omega_1 & 0 \\ 0 & -j\omega_1 \end{bmatrix}, \quad \Omega_2 = \begin{bmatrix} j\omega_2 & 0 \\ 0 & -j\omega_2 \end{bmatrix}.
\]

Any complex linear combination of the columns of \(U_0(t) \) of the form \(x(t) = U_0(t)z \) for some \(z = [z_1, z_2, z_3, z_4]^T \) in \(\mathbb{C}^4 \) is a solution to equation (24). However, we are only interested in those real solutions. For this purpose, \(z \) must be chosen so that \(z_2 = \bar{z}_1 \) and \(z_4 = \bar{z}_3 \). Plugging into \(x(t) = U_0(t)z \), we conclude that the four dimensional real solution space of equation (24) corresponding to the nonzero latent roots of \(L(\lambda) \) is spanned by the columns of two real matrices in \(\mathbb{R}^{n \times 2} \):

\[
U_1^{Re}(t) = [\text{Re}(e^{j\omega_1 t} v_1), \text{Im}(e^{j\omega_1 t} v_1)] = [v^c_1, v^s_1] \begin{bmatrix} \cos(\omega_1 t) & \sin(\omega_1 t) \\ -\sin(\omega_1 t) & \cos(\omega_1 t) \end{bmatrix},
\]

\[
U_2^{Re}(t) = [\text{Re}(e^{j\omega_2 t} v_1), \text{Im}(e^{j\omega_2 t} v_1)] = [v^c_1, v^s_1] \begin{bmatrix} \cos(\omega_2 t) & \sin(\omega_2 t) \\ -\sin(\omega_2 t) & \cos(\omega_2 t) \end{bmatrix}.
\]

To sum up the results in this section, we can now characterize all the real solutions to equation (24).

Proposition 3: Every real solution to the MDE (24) is of the form

\[
x(t) = U_0(t)c_0 + U_1^{Re}(t)c_1 + U_2^{Re}(t)c_2,
\]

for some constants \(c_0 \in \mathbb{R}^{2(n-2)}, c_1 \in \mathbb{R}^2, \) and \(c_2 \in \mathbb{R}^2 \). Here the matrices \(U_0(t), U_1^{Re}(t) \) and \(U_2^{Re}(t) \) are defined in (35), (39), and (40), respectively.

3) **Conjugate Points Along \(\theta^* \):** To find the conjugate points along \(\theta^* \), we need to look for those nontrivial real solutions \(x(t) \) to the Jacobi equation (24) that start from 0 and return to 0 at some positive time \(\tau \), i.e., \(x(0) = 0 \), and \(x(\tau) = 0 \). Let \(x(t) \) be one such solution. By Proposition 3, \(x(t) \) is of the form \(x(t) = U_0(t)c_0 + U_1^{Re}(t)c_1 + U_2^{Re}(t)c_2 \) for some constants \(c_0, c_1 \) and \(c_2 \). Observe that the first term \(U_0(t)c_0 \) is an affine function of time \(t \), and always lies in the subspace spanned by the \(n - 2 \) basis vectors \(v_1 \) and \(\bar{v}_1 \). Hence, in order for \(x(0) = x(\tau) = 0 \) to hold for some \(\tau > 0 \), we must have \(c_0 = 0 \). Thus \(x(t) = U_1^{Re}(t)c_1 + U_2^{Re}(t)c_2 \).

By (39) and (40), at time 0, \(U_1^{Re}(0) = U_2^{Re}(0) = [v_1, \bar{v}_1] \). Hence to satisfy \(x(0) = 0 \), we must have

\[
x(0) = U_1^{Re}(0)c_1 + U_2^{Re}(0)c_2 = [v_1, \bar{v}_1] (c_1 + c_2) = 0,
\]

which implies that \(c_2 = -c_1 \) by the linear independence of \(v_1 \) and \(\bar{v}_1 \). Thus, if we write \(c_1 = [a, b]^T, \) then

\[
x(t) = U_1^{Re}(t)c_1 + U_2^{Re}(t)c_2 = \left[U_1^{Re}(t) - U_2^{Re}(t) \right] c_1 = 2 \sin(\omega_+ t) [v_1, \bar{v}_1] \begin{bmatrix} -a \sin(\omega_+ t) + b \cos(\omega_+ t) \\ -a \cos(\omega_+ t) - b \sin(\omega_+ t) \end{bmatrix},
\]

where \(\omega_+ \) and \(\omega_- \) are constants defined by

\[
\omega_+ = \frac{\omega_1 + \omega_2}{2} = -\frac{n}{n + 2}, \quad \omega_- = \frac{\omega_1 - \omega_2}{2} = \sqrt{\frac{2n(n+1)}{n + 2}}.
\]

Note that \(a \) and \(b \) can not be zero at the same time (otherwise \(x(t) \equiv 0 \) is trivial). Under this constraint, it can be easily checked that the two entries of the last factor in (42), \(-a \sin(\omega_+ t) + b \cos(\omega_+ t) \) and \(-a \cos(\omega_+ t) - b \sin(\omega_+ t) \), can not be zero at the same time. Thus, in order to satisfy \(x(\tau) = 0 \)
for some $\tau > 0$, we must have $\sin(\omega_- \tau) = 0$, i.e., $\tau = \frac{k\pi}{\omega_-}$ for some $k = 1, 2, \ldots$. This gives us the times when conjugate points along θ^* are encountered.

Theorem 2: For the particular OFC problem studied in this section, the set of conjugate points along the candidate solution θ^* is given by

$$\left\{ \theta^*(\tau) : \tau = \frac{k(n + 2)\pi}{\sqrt{2n(n + 1)}}, k = 1, 2, \ldots \right\}.$$

As a result, the first conjugate point along θ^* occurs at time

$$\tau_n = \frac{\pi}{\omega_-} \left(\frac{n + 2}{\sqrt{2n(n + 1)}}\right).$$

(44)

From the expression (44), we can see that τ_n decreases as n increases, and $\tau_n \to \frac{\pi}{\sqrt{2}}$ as $n \to \infty$.

Since a geodesic is no longer distance-minimizing beyond its first conjugate point, we have

Theorem 3: θ^* is not an optimal solution to the OFC problem if $t_f > \tau_n$.

As mentioned in Remark 5, the above derivations are valid only under the condition $n \geq 3$. When $n = 2$, the coefficient matrices L_0, L_1, and L_2 in equation (24) are all 2×2. Hence, analytical solution can be obtained much more easily compared with the general n case. After some careful computation, the first conjugate point along θ^* occurs at the time $\tau_2 = \frac{\pi}{\sqrt{2}}$ for $n = 2$, which, interestingly, is exactly the limit of τ_n as $n \to \infty$.

Remark 7: In the $n = 2$ case, there are three agents, with the root agent at the middle of the other two. Thus the example tree formation degenerates into the snake formation studied in [12]. The time τ_2 that the first conjugate point occurs computed above is consistent with the result obtained in [12] using a different approach.

B. Numerical Verification

We now use the indirect method discussed in Section IV-B to numerically verify our results in Theorem 2.

![Fig. 4. The smallest singular value of matrix $M_{12}(t)$ as a function of t for different n.](image)

<table>
<thead>
<tr>
<th>n</th>
<th>4</th>
<th>6</th>
<th>9</th>
<th>11</th>
<th>15</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_n (analytical)</td>
<td>2.9804</td>
<td>2.7422</td>
<td>2.5758</td>
<td>2.5316</td>
<td>2.437</td>
<td>2.393</td>
</tr>
<tr>
<td>τ_n (numerical)</td>
<td>2.9809</td>
<td>2.7428</td>
<td>2.5763</td>
<td>2.5141</td>
<td>2.4382</td>
<td>2.3937</td>
</tr>
</tbody>
</table>

Table I

Numerical Verification For τ_n

Our approach is as follows. Given the agent number $n + 1$, we first compute the coefficient matrices L_0, L_1, and L_2 in equation (24), and assemble them into the matrix A according to (28). Then we compute the exponential matrix e^{At} starting from 0 and increasing at a certain step size. For each t, we partition e^{At} into blocks as defined in (29) and compute the singular values of $M_{12}(t)$. If the smallest singular value of $M_{12}(t)$ is sufficiently close to 0, then we declare that $M_{12}(t)$ is singular, and that the first conjugate point is found. See Section IV-B for the detailed explanation of the above procedures.

To illustrate our results, the above procedures are carried out for six integers selected randomly between 3 and 20. In Fig. 4, for each n, we plot the smallest singular value of $M_{12}(t)$ as a function of the time t and annotate the smallest t such that $M_{12}(t)$ is singular. In Table I, the numerical results are compared with the analytical results obtained according to (44) and rounded to 4 decimal digits. As can be seen from the table, considering the numerical errors, the numerical results agree very well with the analytical ones.

C. Better Solutions Beyond the Conjugate Points

Once extended beyond its first conjugate point, θ^* will no longer be an optimal solution to the OFC problem. The reason is that, although it still satisfies the first order optimality condition, namely, the geodesic equation (13), it fails to meet the second order optimality condition, and better solutions can be obtained by infinitesimal equation around θ^*. We will illustrate these for the example studied in this section.

We first derive the second-order variation of the cost function $J(\theta)$ at θ^*. Recall that $J(\theta)$ as defined in (11) can be written as

$$J(\theta) = \frac{1}{2} \int_{t_0}^{t_f} L(\theta, \dot{\theta}) \, dt,$$

where $L(\theta, \dot{\theta}) = \dot{\theta}^T G(\theta) \dot{\theta}$. Let $x = \delta\theta$ be a proper variation of θ^* over $[0, t_f]$. Then $x(0) = x(t_f) = 0$. The first variation of J around θ^*, $\left. \frac{d}{d\epsilon} \right|_{\epsilon=0} J(\theta^* + \epsilon x)$, is zero since θ^* satisfies the geodesic equation (13). The second variation of J around θ^* can be computed as

$$\delta^2 J(\theta^*, x) = \frac{d^2}{d\epsilon^2} \Bigg|_{\epsilon=0} J(\theta^* + \epsilon x)$$

$$= \frac{1}{2} \int_{t_0}^{t_f} \left(x^T L_{\theta\theta} x + 2 x^T L_{\theta\theta} \dot{x} + \dot{x}^T L_{\theta\theta} \dot{x} \right) \, dt,$$

where $L_{\theta\theta}$, $L_{\theta\dot{x}}$, and $L_{\dot{x}\dot{x}}$ are $n \times n$ matrices with entries...
Note that the last factor of the integrand is exactly the left hand side of the Jacobi equation (24).

With equation (47), we now show that, if \(n > 2 \) and \(t_f > \tau_n \), a proper variation \(x_f \) can be constructed such that \(\delta^2 J(\theta^*; x_f) < 0 \). As a result, for \(\epsilon \) small enough, the perturbation of \(\theta \) along \(x_f \), \(\theta^*(t) + \epsilon \cdot x_f(t) \) for \(t \in [0, t_f] \), will correspond to a smaller cost function \(J \), leading to a better solution than \(\theta^* \).

Assume \(t_f > \tau_n \). Consider \(x_f \) of the form

\[
x_f = V_1 (e^{\Omega_1 t} - e^{\Omega_2 t}) z,
\]

where \(z = [z_1 \ z_2]^T \in \mathbb{C}^2 \) for some \(z_1 \in \mathbb{C} \); \(V_1 \) and \(\Omega_2 \) are defined in (38); and \(\Omega_f \) is defined by

\[
\Omega_f = \begin{bmatrix} j\omega_f & 0 \\ 0 & -j\omega_f \end{bmatrix} \quad \text{with} \quad \omega_f = \omega_2 + \frac{2\pi}{t_f}.
\]

It is easy to check that \(x_f \) defined above is a real function satisfying \(x_f(0) = x_f(t_f) = 0 \). Thus \(x_f \) is a proper variation over \([0, t_f] \). It can be verified (31) that the second variation for this particular \(x_f \) is

\[
\delta^2 J(\theta^*; x_f) = \frac{8\pi^2 \pi^2}{\left(n+1 \right) \tau_n t_f^2 \omega_+} \int_0^{t_f} \sin^2(\pi t/t_f) \, dt.
\]

By (43), \(\omega_+ < 0 \). Since the integral in (50) is positive and \(t_f > \tau_n \), we have \(\delta^2 J(\theta^*; x_f) < 0 \).

As a result, if \(t_f > \tau_n \), a solution \(\theta^*_f \) better than \(\theta^* \) can be obtained by an infinitesimal perturbation of \(\theta^* \) along the \(x_f \) direction: \(\theta^*_f = \theta^* + \epsilon \cdot x_f \) for \(\epsilon \) small enough. In Fig. 5, we illustrate the coordinated motions corresponding to \(\theta^* \) and \(\theta^*_f \) by plotting the snapshots of these two motions at six evenly spaced time epochs between 0 and \(t_f = 2\pi > \tau_3 \) for \(n = 3; t = 0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}, 2\pi \). For illustration purpose, a relatively large \(\epsilon \) is chosen in the plots to better render the difference between the two motions. In Fig. 6, we compare the perturbed motions (\(\theta^*_f \)) with \(\theta^*_f \) for more agents (\(n = 10 \)): their differences, \(\left| \theta^*_f - \theta^*_f \right| \), are plotted over \([0, t_f] \) for each agent \(i = 1, \ldots, 10 \).

VI. Conclusion

In this paper, the problem of optimal multi-agent coordination under tree formation constraint is formulated. The geodesic equation characterizing the optimal coordinated motions is derived in a suitably chosen coordinate system. For a special instance of the problem when the group of agents rotate around a common centroid, optimality conditions of a natural candidate solution are studied. In particular, we conclude that, under certain condition on the initial position, the candidate solution is optimal when short enough, and is
no longer optimal after surpassing its first conjugate point. To compute the conjugate points, two methods, one analytical and one numerical, are proposed to solve the corresponding Jacobi equation. These methods are illustrated through an example where the first method is applied to obtain the analytical expressions of all the conjugate points, and the second method is used to verify the results. Furthermore, better solutions after the candidate solution is extended beyond its first conjugate point are also derived for this example.

The approaches adopted in this paper are general enough to make the results meaningful in a variety of applications involving optimal multi-agent coordination. As extensions, our future research will focus on the OFC problem with general formation constraints that are not necessarily described by trees.

APPENDIX

PROOF OF PROPOSITION 2

Proof: Note that $v_1 = v_1^* + jv_2^*$, $v_1 = [\cos(\phi_n) + j \sin(\phi_n)]_{1 \leq i, j \leq n}$. Thus, for each $i, 1, \ldots, n$,

$$[L_0 v_1]_i = \sum_{k=1}^{n} \frac{2}{n+2} \cos((i-k)\phi_n) e^{jk\phi_n} = \frac{n}{n+2} e^{j(i-k)\phi_n},$$

$$[L_1 v_1]_i = \sum_{k=1}^{n} \frac{-4}{n+2} \sin((i-k)\phi_n) e^{jk\phi_n} = \frac{2n}{n+2} e^{j(i-k)\phi_n},$$

or equivalently,

$$L_0 v_1 = \frac{n}{n+2} v_1, \quad L_1 v_1 = \frac{2n}{n+2} v_1. \quad (51)$$

In other words, v_1 is an eigenvector of L_0 and L_1 corresponding to the eigenvalue $\frac{n}{n+2}$ and $\frac{2n}{n+2}$, respectively. Since $L_2 = I$, we have

$$L(\lambda) v_1 = (L_0 + \lambda L_1 + \lambda^2 L_2) v_1 = \left(\frac{n}{n+2} + \frac{j2n}{n+2} \lambda + \lambda^2 \right) v_1 = \left(\frac{n+2}{n+2} \lambda^2 + \frac{j2n\lambda + n}{n+2} \right) v_1.$$

It is easy to verify that λ_1 and λ_3 are two roots of the quadratic equation $(n+2)\lambda^2 + j2n\lambda + n = 0$. Hence, from the above equation, $L(\lambda_1) v_1 = 0$ and $L(\lambda_3) v_1 = 0$, which implies that v_1 is a (common) latent vector associated with the two latent roots λ_1 and λ_3 of $L(\lambda)$. By taking the complex conjugate, we conclude that $\lambda_2 = \bar{\lambda}_1$ and $\lambda_4 = \bar{\lambda}_3$ are two latent roots of $L(\lambda)$ with a common latent vector $\bar{v_1}$. $

REFERENCES

List of Figure Captions

Fig. 1. An example of an \((n+1)\)-tuple satisfying a tree formation constraint \((n = 6)\).

Fig. 2. Examples of different initial positions: (a) and (c) satisfy condition (19) while (b) does not. However, (c) does not satisfy Assumption 1.

Fig. 3. Initial position for an example formation of agents with \(n = 5\).

Fig. 4. The smallest singular value of the matrix \(M_{12}(t)\) as a function of \(t\) for different \(n\).

Fig. 5. Snapshots of the coordinated motions corresponding to \(\theta^*\) (dashed) and \(\theta^*_f\) (shaded), for \(n = 3\). (Diamond: Agent 1; Circle: Agent 2; Square: Agent 3)

Fig. 6. Relative phase angles between \(\theta^*_f\) and \(\theta^*\) for \(n = 10\). For each agent \(i\), the phase deviation \(\left\lvert (\theta^*_f - \theta^*)_i \right\rvert\) is plotted as a smooth curve with a unique marker shape.