Follow the steps below to write a Python script to simulate general rigid body motion.

1. Write a Python function:
 - Input arguments: unit screw axis $\mathbf{S} = (\omega, v)$, $\theta > 0$, and initial frame configuration $T_0 \in SE(3)$
 - Output: the end configuration $T_{\text{new}} = e^{[\mathbf{S}]\theta}T_0$

 Test your function with two simple (interpretable) cases of your choice. For each testing case, provide the numerical values of T_0, T_{new}, \mathbf{S}, and θ, and also plot the frames on the same figure.

2. Use the above function to simulate screw motion. Your codes should be able to work for any given values of: Screw axis $\mathbf{S} = (\hat{s}, h, q)$, speed $\dot{\theta} \in \mathbb{R}$, initial configuration T_0, and simulation time steps $t = 0, \Delta t, ..., N\Delta t$. Test your simulation using two different screw axes (non-parallel with any unit axis of $\{s\}$-frame) with different speeds $\dot{\theta}$.

 (a) For each test, please draw the screw axis and the trace of a point p rigidly attached to frame $\{b\}$ with $p_b = (1, 2, 3)$

 (b) Show the frame $T_{sb}(t)$ for a few interesting time steps $t_1, t_2, ...$ on the same plot.

Attach your codes and write a report with good explanations and discussions.