ECE5463: Introduction to Robotics

Lecture Note 6: Forward Kinematics

Prof. Wei Zhang

Department of Electrical and Computer Engineering
Ohio State University
Columbus, Ohio, USA

Spring 2018
Outline

• Background

• Illustrating Example

• Product of Exponential Formula

• Body Form of the PoE Formula
Kinematics is a branch of classical mechanics that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the mass of each or the forces that caused the motion.
Kinematics of Robotic Manipulator

- **Forward Kinematics**: calculation of the position p and orientation R of the end-effector frame from its joint variables $\theta = (\theta_1, \ldots, \theta_n)$

- Two commonly adopted approaches

 - Approach 1: Assign a frame at each link, typically at the joint axis, then calculate the end-effector configuration through intermediate frames.
 - Denavit-Hartenberg parameters: most widely adopted convention for frame assignment

 - Approach 2: **Product of Exponential (PoE)** formula: directly compute the end-effector frame configuration relative to the fixed frame through screw motion along the screw axis associated with each joint.
Forward Kinematics: Basic Setup

- Suppose that the robot has n joints and n links. Each joint has one degree of freedom represented by joint variable θ_i, $i=1,\ldots,n$
 - Revolute joint: θ_i represents the joint angle
 - Prismatic joint: θ_i represents the joint displacement

- Specify a fixed frame $\{s\}$: also referred to as frame $\{0\}$

- Attach frame $\{i\}$ to link i at joint i, for $i=1,\ldots,n$

- Use one more frame $\{b\}$ at the end-effector: sometimes referred to as frame $\{n+1\}$

- **Goal:** Find an analytical expression of $T_{sb}(\theta_1,\ldots,\theta_n)$
A Simple Example: Approach 1 (D-H Parameters)

Illustrating Example

Lecture 6 (ECE5463 Sp18)
Wei Zhang (OSU) 6 / 15

Frame assignment & numbering can be quite tricky for 3D robots.
A Simple Example: Approach 2 (PoE Formula)

- Start with a simple special case.

\[T_{sb}(\theta_1, \theta_2, \theta_3) = ? \]

Special case: \(\theta_1 = \theta_2 = \theta_3 \Rightarrow T_{sb}(0,0,0) = \begin{bmatrix} 1 & 0 & 0 & L_1 + L_2 + L_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

- Rotate about joint 3 by \(\theta_3 \):

\[T_{sb}(0,0, \theta_3) = e^{[S_3]_3 \theta_3} T(0,0,0) \]

This is a screw motion with axis \(S_3 \).

\[S_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \omega_3 = -\omega_2 x q_3 + \omega_3 = -\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} L_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -L_1 \\ 0 \end{bmatrix} \]

\[v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = -\omega_2 x q_3 + v_3 = -\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} L_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -L_1 \\ 0 \end{bmatrix} \]

- Rotate about joint 2 (screw axis) by \(\theta_2 \):

\[T_{sb}(0, \theta_2, \theta_3) = e^{[S_2]_2 \theta_2} T(0,0,0) \]

\[e^{[S_2]_2 \theta_2} e^{[S_3]_3 \theta_3} T(0,0,0) = e^{[S_1]_1 \theta_1} e^{[S_2]_2 \theta_2} e^{[S_3]_3 \theta_3} \]

\[T_{sb}(0, \theta_2, \theta_3) = e^{[S_1]_1 \theta_1} e^{[S_2]_2 \theta_2} e^{[S_3]_3 \theta_3} \]

Similarly, we can obtain:

\[T_{sb}(\theta_1, \theta_2, \theta_3) = e^{[S_1]_1 \theta_1} e^{[S_2]_2 \theta_2} e^{[S_3]_3 \theta_3} \]

where \(S_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \).
Outline

- Background
- Illustrating Example
- Product of Exponential Formula
- Body Form of the PoE Formula
Product of Exponential: Main Idea

- **Goal:** Derive $T_{sb}(\theta_1, \ldots, \theta_n)$

- First choose a zero position ("home" position): $\theta_1 = \theta_1^0, \ldots, \theta_n = \theta_n^0$ such that $M \triangleq T_{sb}(\theta_1^0, \ldots, \theta_n^0)$ can be easily found.

Without loss of generality, suppose home position is given by $\theta_i^0 = 0, i = 1, \ldots, n$.

- Let S_1, \ldots, S_n be the screw axes expressed in $\{s\}$, corresponding to the joint motions when the robot is at its home position

- Apply screw motion to joint n: $T_{sb}(0, \ldots, 0, \theta_n) = e^{[S_n] \theta_n} M$

- Apply screw motion to joint $n - 1$ to obtain:

$$T_{sb}(0, \ldots, 0, \theta_{n-1}, \theta_n) = e^{[S_{n-1}] \theta_{n-1}} e^{[S_n] \theta_n} M$$

- After n screw motions, the overall forward kinematics:

$$T_{sb}(\theta_1, \ldots, \theta_n) = e^{[S_1] \theta_1} e^{[S_2] \theta_2} \cdots e^{[S_n] \theta_n} M$$
Forward Kinematics: Steps for PoE

- **Goal:** Derive $T_{sb}(\theta_1, \ldots, \theta_n)$

- **Step 1:** Find the configuration of $\{b\}$ at the home position

$$M = T_{sb}(0, \ldots, 0)$$

- **Step 2:** Find screw axes S_1, \ldots, S_n expressed in $\{s\}$, corresponding to the joint motions when the robot is at its home position

- Forward kinematics:

$$T_{sb}(\theta_1, \ldots, \theta_n) = e^{[S_1]\theta_1} e^{[S_2]\theta_2} \cdots e^{[S_n]\theta_n} M$$
PoE: Screw Motions in Different Order (1/2)

- PoE was obtained by applying screw motions along screw axes S_n, S_{n-1},
 What happens if the order is changed?

- For simplicity, assume that $n = 2$, and let us apply screw motion along S_1 first:
 \[T_{sb}(\theta_1, 0) = e^{[S_1]\theta_1} M \]

- Now screw axis for joint 2 has been changed. The new axis S'_2 is given by:

In general: suppose S is rigidly attached to the body,
\[T_{sb}' = T T_{sb} \]
where $T = (R, \tau)$

- $S = (w, v)$, $S' = (w', v')$
\[(\hat{s}, h, q) \quad (\hat{s}', h', q') \]

\[h' = h, \quad \omega' = R w, \quad q' = R q + \tau \]

we know $v = -wx_q + hw$
PoE: Screw Motions in Different Order (2/2)

\[T_{sb}(\theta_1, \theta_2) = e^{[S_2']\theta_2} T_{sb}(\theta_1, 0) \]

After first screw motion

\[S_2 \text{ becomes } S'_2 = [Ad_{\theta_1}] S_2 \]

where \(T(e^{[S_2] \theta_1}) \)

\[T_{sb}(\theta_1, \theta_2) = e^{[S'_2] \theta_2} e^{[S_1] \theta_1} M \]

\[= T e^{[S_2] \theta_2} T^{-1} e^{[S_1] \theta_1} M \]

\[= e^{[S_1] \theta_1} e^{[S_2] \theta_2} M \]

\[\Rightarrow w' = R w, q' = R q + p, h' = h \]

\[v' = -w' \times q' + h' w' \]

V.F.T.

\[R v + [p] R w \]

\[S' = [Ad_T] S \]
PoE Example: 3R Spatial Open Chain

Let's pick $\{s_3\}$ coincide with the initial T_1 frame

Pick $\{p\} = \{s_3\} - \text{frame}$

- Step 1: $M = T_{qb}(0,0,0) = \begin{bmatrix} 0 & 0 & 1 \cdot L_1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

- Step 2: $s_1 = (w_1, v_1) : w_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_1 = -w_1 \times q_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$s_2 = (w_2, v_2) : w_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}, v_2 = -w_2 \times q_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} L_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -L_1 \end{bmatrix}$

$s_3 = (w_3, v_3) : w_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_3 = -w_3 \times q_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ -L_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -L_2 \end{bmatrix}$

$T_{sb}(\theta_1, \theta_2, \theta_3) = e^{s_1} \theta_1, e^{s_2} \theta_2, e^{s_3} \theta_3, M$
Body Form of PoE Formula

• Fact: \(e^{M^{-1}PM} = M^{-1}e^P M \Rightarrow Me^{M^{-1}PM} = e^P M \) (can be verified using Taylor expansion of matrix

• Let \(B_i \) be the screw axis of joint \(i \) expressed in end-effector frame when the robot is at zero position.

• Then body-form of the PoE formula is:

\[
T_{sb}(\theta_1, \ldots, \theta_n) = Me^{[B_1]\theta_1} e^{[B_2]\theta_2} \ldots e^{[B_n]\theta_n}
\]
More Discussions

- twist $\mathbf{v} = (w, v)$: just think of it as "velocity" of rigid body.
 any point q attached to the body $\dot{q} = w \times q + v$

- srew motion: particular motion
 $S = \{ \mathbf{v}(s), h q \}$
 unit srew axis (w, v): twist representation of the srew
 $\mathbf{v} = -w \times q + hw$

- Any rigid body transformation $T \in SE(3)$, there exists $\Theta \in S^3$ such that $e^{\Theta} = T$
 interpretation: e^{Θ} moves (point or frames) along $s \times$ axis for amount Θ
 or \cdots at speed Θ for time $t = \frac{\Theta}{\dot{\Theta}}$

- Now suppose: rigid body initial conf is $T_0 = (R_0, P_0)$, and follows srew motion with Θ for time t, what's $T_{sb}(t)$?
 $T_{sb}(t) = e^{\Theta t} T_0 = \begin{bmatrix} R_{sb}(t) & P_{sb}(t) \\ 0 & 1 \end{bmatrix}$
Now \[\dot{T}_{sb}(t) = e^{[S] \dot{\theta} + T_0} \Rightarrow [V_s] = \dot{T}_{sb}(t) T_{sb}^{-1}(t) = \frac{d}{dt} \left(e^{[S] \dot{\theta} + T_0} \right) \left(T_{sb}^{-1}(t) \right)^{-1} = [S] \dot{\theta} \left(T_{sb}^{-1}(t) \right)^{-1} = [S] \dot{\theta} \]

\[\implies V_s = S \dot{\theta} \]

\[V_s = (\omega_s, v_s) \]

\[V_b = [\text{Ad}_{T_{sb}^{-1}}] V_s = [\text{Ad}_{T_{sb}^{-1}}] V_s \]

2. Method: directly use formula \[w_b = R_{sb}^T w_s, \quad v_b = R_{sb}^T \dot{v}_s \]

Consider rigid body velocity in different frame:

\[V_{bc}: \text{velocity of } s_c \text{ relative to } \{b\}; \quad V_{ac}: \text{velocity of } s_c \text{ relative to } \{a\} \]

\[V_{ab}: \text{velocity of } b_s \text{ relative to } \{a\} \]

\[[V_{ac}] = \dot{T}_{ac}^{-1} = \left(\begin{array}{c} (\dot{T}_{ab} T_{bc}) + (T_{ab} \dot{T}_{bc}) \end{array} \right) \left(T_{ab} T_{bc} \right)^{-1} = \dot{T}_{ab} T_{bc}^{-1} \dot{T}_{bc}^{-1} + T_{ab} \left(T_{bc} \dot{T}_{bc} \right) \dot{T}_{bc}^{-1} \]

\[V_{ac} = V_{ab} + [\text{Ad}_{T_{ab}}] V_{bc} \]

\[= \dot{T}_{ab} T_{bc}^{-1} \dot{T}_{bc}^{-1} + T_{ab} \left(T_{bc} \dot{T}_{bc} \right) \dot{T}_{bc}^{-1} = [V_{ab}] + T_{ab} \left[V_{bc} \right] T_{bc}^{-1} \]
If \(\{b\} \) is stationary, \(\Rightarrow \quad \nu_{ac} = [\text{Ad}_{T_{ab}}] \nu_{bc} \)