Lecture Note 4: Basic Lyapunov Stability

Wei Zhang

Assistant Professor
Department of Electrical and Computer Engineering
Ohio State University, Columbus, Ohio, USA

Spring 2017
Outline

This lecture introduces basic concepts and results on Lyapunov stability of traditional nonlinear systems (non-hybrid).

- Lyapunov Stability Definitions
- Lyapunov Function Theorems
- Lyapunov Stability of Linear Systems
- Converse Lyapunov Function
- Conclusion
Lyapunov Stability Definitions

Consider a time-invariant autonomous (with no control) nonlinear system:

\[\dot{x} = f(x) \text{ with I.C. } x(0) = x_0 \]

(1)

- **Assumptions**: (i) \(f \) Lipschitz continuous; (ii) origin is an isolated equilibrium \(f(0) = 0 \)
- **Stability Definitions**: The equilibrium \(x = 0 \) is called
 - **stable** in the sense of Lyapunov, if

\[\forall \epsilon > 0, \exists \delta > 0, \text{ s.t. } \|x(0)\| \leq \delta \Rightarrow \|x(t)\| \leq \epsilon, \forall t \geq 0 \]
Lyapunov Stability Definitions II

- **asymptotically stable** if it is stable and δ can be chosen so that

\[
\|x(0)\| \leq \delta \Rightarrow x(t) \to 0 \text{ as } t \to \infty
\]

- **exponentially stable** if there exist positive constants δ, λ, c such that

\[
\|x(t)\| \leq c\|x(0)\|e^{-\lambda t}, \quad \forall \|x(0)\| \leq \delta
\]

- **globally asymptotically/exponentially stable** if the above conditions holds for all $\delta > 0$

• **Region of Attraction**: $R_A \triangleq \{x \in \mathbb{R}^n : \text{whenever } x(0) = x, \text{ then } x(t) \to 0\}$
Lyapunov Stability Definitions III

- Does attractiveness implies stable in Lyapunov sense?
 - Answer is NO. e.g.:
 \[
 \begin{align*}
 \dot{x}_1 &= x_1^2 - x_2^2 \\
 \dot{x}_2 &= 2x_1x_2
 \end{align*}
 \]
 - By inspection of its vector field, we see that
 \(x(t) \to 0 \) for all \(x(0) \in \mathbb{R}^2 \)
 - However, there is no \(\delta \)-ball satisfying the Lyapunov stability condition
Stability Analysis

How to verify stability of a system:

• Find explicit solution of the ODE \(x(t) \) and check stability definitions
 - typically not possible for nonlinear systems

• Numerical simulations of ODE do not provide stability guarantees and offer limited insights

• Need to determine stability without explicitly solving the ODE

• Preferably, analysis only depends on the vector field

• The most powerful tool is: Lyapunov function
 - State trajectory \(x(t) \) governed by complex dynamics in \(\mathbb{R}^n \)
 - Lyapunov function \(V : \mathbb{R}^n \to \mathbb{R} \) maps \(x(t) \) to a scalar function of time \(V(x(t)) \)
 - If the function is designed such that: \([x(t) \to \text{equilibrium}] \iff [V(x(t)) \to 0]\).
 Then we can study \(V(x(t)) \) as function of time \(t \) to infer stability of the state trajectory in \(\mathbb{R}^n \).
Before giving a formal definition of Lyapunov function, we first introduce some classes of functions. Assume that $0 \in D \subseteq \mathbb{R}^n$

- $g : D \to \mathbb{R}$ is called positive semidefinite (PSD) on D if $g(0) = 0$ and $g(x) \geq 0, \forall x \in D$
 - For quadratic function: $g(x) = x^T P x$: $[g$ is PSD] $\iff [P$ is a PSD matrix$]$

- $g : D \to \mathbb{R}$ is called positive definite (PD) on D if $g(0) = 0$ and $g(x) > 0, \forall x \in D \setminus \{0\}$
 - Similarly, if $g(x) = x^T P x$ is quadratic, then $[g$ is PD] $\iff [P$ is a PD matrix$]$

- g is negative semidefinite (NSD) if $-g$ is PSD

- $g : \mathbb{R}^n \to \mathbb{R}$ is radically unbounded if $g(x) \to \infty$ as $\|x\| \to \infty$
Lie Derivative

Definition 1 (Lie Derivative).

Lie derivative of a C^1 function $V : \mathbb{R}^n \to \mathbb{R}$ along vector field $f : \mathbb{R}^n \to \mathbb{R}^n$ is:

$$\mathcal{L}_f V(x) \triangleq \left(\frac{\partial V}{\partial x}(x) \right)^T f(x)$$

- Sometimes the Lie derivative $\mathcal{L}_f V(x)$ is also denoted by $\frac{\partial V}{\partial x} f(x)$
- Let $x(t)$ be a solution to ODE $\dot{x}(t) = f(x(t))$. If we view $V(x(t))$ as a function of t, then

$$\frac{dV}{dt} = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} \frac{\partial x_i}{\partial t} = \left(\frac{\partial V}{\partial x}(x(t)) \right)^T f(x(t)) = \mathcal{L}_f V(x(t))$$

- Therefore, the Lie derivative characterizes the time-course evolution of the value of V along the solution trajectory of $\dot{x} = f(x)$
Lyapunov Stability Theorem

Theorem 1 (Lyapunov Theorem).

Let $D \subset \mathbb{R}^n$ be a set containing an open neighborhood of the origin. If there exists a PD function $V : D \to \mathbb{R}$ such that

$$\mathcal{L}_fV \text{ is NSD}$$ \hspace{1cm} (2)

then the origin is stable. If in addition,

$$\mathcal{L}_fV \text{ is ND}$$ \hspace{1cm} (3)

then the origin is asymptotically stable.

Remarks:

- A PD C^1 function satisfying (2) or (3) will be called a **Lyapunov function**

- Under condition (3), if V is also radially unbounded
 \[\Rightarrow \text{globally asymptotically stable} \]
Proof of Lyapunov Stability Theorem I

Sketch of proof of Lyapunov stability theorem:

- First show stability under condition (2):
 - Define sublevel set: \(\Omega_b = \{x \in \mathbb{R}^n : V(x) \leq b\} \). Condition (2) implies \(V(x(t)) \) nonincreasing along system trajectory \(\Rightarrow \) If \(x(0) \in \Omega_b \), then \(x(t) \in \Omega_b \), \(\forall t \).

 - Given arbitrary \(\epsilon > 0 \), if we can find \(\delta, b \) such that \(B(0, \delta) \subseteq \Omega_b \subseteq B(0, \epsilon) \). Then the Lyapunov stability conditions are satisfied. Below is to show how we can find such \(b \) and \(\delta \).

 - \(V \) is continuous \(\Rightarrow m = \min_{\|x\| = \epsilon} V(x) \) exists (due to Weierstrass theorem). In addition, \(V \) is PD \(\Rightarrow m > 0 \). Therefore, if we choose \(b \in (0, m) \), then \(\Omega_b \subseteq B(0, \epsilon) \).

 - \(V(x) \) is continuous at origin \(\Rightarrow \) for any \(b > 0 \), there exists \(\delta > 0 \) such that \(|V(x) - V(0)| = V(x) < b, \forall x \in B(0, \delta) \). This implies that \(B(0, \delta) \subseteq \Omega_b \).
Proof of Lyapunov Stability Theorem II

- Second, show asymptotic stability under condition (3):
 - We know $V(x(t))$ decreases monotonically as $t \to \infty$ and $V(x(t)) \geq 0$, $\forall t$. Therefore, $c = \lim_{t \to \infty} V(x(t))$ exists. So it suffices to show $c = 0$. Let us use a contradiction argument.

 - Suppose $c \neq 0$. Then $c > 0$. Therefore, $x(t) \notin \Omega_c = \{x \in \mathbb{R}^n : V(x) \leq c\}, \forall t$. We can choose $\beta > 0$ such that $B(0, \beta) \subseteq \Omega_c$ (due to continuity of V at 0).

 - Now let $a = -\max_{\beta \leq \|x\| \leq \epsilon} \dot{V}(x)$. Since V is ND, then $a > 0$

 - $V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(s))ds \leq V(x(0)) - a \cdot t < 0$ for sufficiently large t. \Rightarrow contradiction!
Definition 2 (Exponential Lyapunov Function).

$V : D \rightarrow \mathbb{R}$ is called an Exponential Lyapunov Function (ELF) on $D \subset \mathbb{R}^n$ if

$\exists k_1, k_2, k_3, \alpha > 0$ such that

\[
\begin{cases}
 k_1 \|x\|^\alpha \leq V(x) \leq k_2 \|x\|^\alpha \\
 \mathcal{L}_f V(x) \leq -k_3 V(x)
\end{cases}
\]

Theorem 2 (ELF Theorem).

If system (1) has an ELF, then it is exponentially stable.
Stability Analysis Examples I

Example 1.

\[
\begin{align*}
\dot{x}_1 &= -x_1 + x_2 + x_1x_2 \\
\dot{x}_2 &= x_1 - x_2 - x_1^2 - x_2^3
\end{align*}
\]

Try \(V(x) = \|x\|^2 \)
Stability Analysis Examples II

Example 2.

\[
\begin{align*}
\dot{x}_1 &= -x_1 + x_1 x_2 \\
\dot{x}_2 &= -x_2
\end{align*}
\]

- Can we find a simple quadratic Lyapunov function? First try: \(V(x) = x_1^2 + x_2^2 \)

- In fact, the system does not have any (global) polynomial Lyapunov function. But it is GAS with a Lyapunov function \(V(x) = \ln(1 + x_1^2) + x_2^2 \).
Lyapunov Stability of Linear Systems I

Consider autonomous linear system: \(\dot{x} = f(x) = Ax \).

- Recall: \(A \) asymptotically stable \iff \(\Re(\lambda_i) < 0 \) for all eigenvalues \(\lambda_i \) of \(A \).

When does a linear system have a Lyapunov function?

- Consider a quadratic Lyapunov function candidate: \(V(x) = x^T P x \), with \(P \in \mathbb{R}^{n \times n} \)
 - \(V \) is PD \(\Rightarrow \) \(P > 0 \)
 - \(\mathcal{L}_f V \) is ND \(\Rightarrow \)
Theorem 3 (Stability Conditions for Linear System).

For an autonomous Linear system \(\dot{x} = Ax \). The following statements are equivalent.

- System is (globally) asymptotically stable
- System is (globally) exponentially stable
- \(\text{Re}(\lambda_i) < 0 \) for all eigenvalues \(\lambda_i \) of \(A \)
- System has a quadratic Lyapunov function
- For any symmetric \(Q \succ 0 \), there exists a symmetric \(P \succ 0 \) that solves the following Lyapunov equation:
 \[PA + A^T P = -Q \]
 and \(V(x) = x^T Px \) is a Lyapunov function of the system.
When There is a Lyapunov Function

• Converse Lyapunov Theorem for Asymptotic Stability

\[\begin{align*}
\text{origin asymptotically stable; } & \Rightarrow \exists V \text{ s.t. } \\
 f \text{ is locally Lipschitz on } D & \Rightarrow \exists V \text{ s.t.} \\
\text{with region of attraction } R_A & \Rightarrow \exists V \text{ s.t.} \\
& V \text{ is continuous and PD on } R_A \\
& \mathcal{L}_f V \text{ is ND on } R_A \\
& V(x) \to \infty \text{ as } x \to \partial R_A
\end{align*} \]

• Converse Lyapunov Theorem for Exponential Stability

\[\begin{align*}
\text{origin exponentially stable on } D; & \Rightarrow \exists \text{ an ELF } V \text{ on } D \\
f \text{ is } C^1
\end{align*} \]

• Proofs are involved especially for the converse theorem for asymptotic stability

• \textbf{IMPORTANT}: proofs of converse theorems often assume the knowledge of system solution and hence are not constructive.
What about Discrete Time Systems?

- So far, all our definitions, results, examples are given using continuous time dynamical system models.
- All of them have discrete-time counterparts. The ideas and conclusions are the "same" (in spirit)
- For example, given autonomous discrete-time system: \(x(k + 1) = f(x(k)) \) with \(f(0) = 0 \) (origin is an equilibrium).
 - Rate of change of a function \(V(x) \) along system trajectory can be defined as:
 \[
 \Delta_f V(x) \triangleq V(f(x)) - V(x)
 \]
 - Asymptotically stable requires:
 \[V \text{ is PD and } \Delta_f V \text{ is ND} \]
 - Exponentially stable requires:
 \[k_1 \|x\|^\alpha \leq V(x) \leq k_2 \|x\|^\alpha \quad \text{and} \quad \Delta_f V(x) \leq -k_3 V(x) \]
Concluding Remarks

- We have learned different notions of internal stability, e.g. stability in Lyapunov sense, asymptotic stability, globally asymptotic stability (G.A.S), exponential stability, globally exponential stability (G.E.S)

- Sufficient condition to ensure stability is often the existence of a properly defined Lyapunov function

- Key requirements for a Lyapunov function:
 - positive definite and is zero at the system equilibrium
 - decrease along system trajectory

- For linear system: G.A.S ⇔ G.E.S ⇔ Existence of a quadratic Lyapunov function

- The definitions and results in this lecture have sometimes been stated in simplified forms to facilitate presentation. More general versions can be found in standard textbooks on nonlinear systems (e.g. [Kha96])

- **Next Lecture**: Semidefinite Programming and computational stability analysis
References