ECE7850: Spring 2017
Hybrid Systems: Theory and Applications

Lecture 1: Course Info and Hybrid System Examples

Prof. Wei Zhang
Department Electrical and Computer Engineering
The Ohio State University
Course Info

- Instructor: Wei Zhang

- Contact: 404 Dreese Labs, zhang.491@osu.edu

- Time: Tu/Th 11:10am – 12:30pm

- Location: Macquigg Lab 155

- Office Hour: Thursday 1-2pm

- Website: http://www2.ece.ohio-state.edu/~zhang/HybridSystemCourse/HybridSystemsCourse_Sp17.html

- Prerequisite:
 - ECE 5750 – Linear System Theory
 - Solid math background is essential
- **Grading Policy**
 - **Homework (30%)**
 - Assigned biweekly (roughly)
 - May involve open-ended questions
 - Must be typeset using Latex
 - *Can be quite challenging!*
 - **Midterm (30%)**: Date & Time: TBD (may be an evening exam)
 - **Final Project (40%)**:
 - Project proposal due shortly after midterm
 - Project report due in the final exam week;
 - 15-minute presentation at the end of the semester
 - Some ideas of project topics
 - Nontrivial extension of the results introduced in class
 - Nontrivial application of HS in your research area
 - Comprehensive literature review on a topic in HS not covered in the class
Course Materials:

• No required textbook!

• Lecture notes are developed based on

 - Important papers in the field of hybrid systems

 - “Switching in systems and control”, D. Liberzon, 2003

 - “Predictive Control for linear and hybrid systems”, F. Borrelli, A. Bemporad and M. Morari, 2013
Tentative Topics

- Introduction to Hybrid Systems
 - Examples, Modeling frameworks, Solution and execution, Filippov solution, zeno phenomena

- Stability Analysis and Stabilization
 - Stability under arbitrary switching, stability under constrained switching, Multiple-Lyapunov function, LMI based synthesis using multiple-Lyapunov function; control-Lyapunov function approach

- Discrete Time Optimal Control of Hybrid Systems
 - Switched LQR problem, MPC of switched Piecewise Affine Systems, Infinite-horizon optimal control and its connection to stability/stabilization

- Reachability analysis and computation:
 - Forward/backward reachable sets, HJI based reachability, zonotope based method, applications and automated vehicles

- Continuous Time Optimal Control of Hybrid Systems
 - Theory of numerical optimization in infinite-dimensional space, applications to optimal control of switched nonlinear systems
Special Notes

- Advanced but not seminar type of course (many assignments)
- Goal: prepare and train the students to develop new theories
- Growing field with important emerging applications
 - Networked control systems, Cyber-Physical Systems, Robotics, Intelligent transportation
- Caveat:
 - No standard textbooks
 - Few existing HS courses have a good balance among different topics
 - We will try to cover a wide range of major topics in depth
 - Each topic requires good understanding of some background materials that will be introduced at very fast pace
 - Mathematical maturity is essential!
What is Hybrid Systems

- Roughly: dynamical systems with combined continuous and discrete dynamics
 - Continuous state $x(t)$ continuous input $u(t)$
 - Discrete state/mode $q(t)$ discrete input $\sigma(t)$

- Coupled continuous-discrete dynamics
 - Discrete mode evolution:
 - $q^+ = g(x, q, \sigma)$
 - Mode-dependent continuous dynamics:
 - $\dot{x} = f(x, q, u)$

- Interactions:
 - Continuous state evolution x triggers discrete mode transition
 - "Guard": subset of state space; mode transition occurs when state hitting guard
 - Reset map: continuous state may jump during mode transition
 - Mode transition modifies continuous dynamics characteristics
Hybrid System Example 1: Bouncing Ball

- **Bouncing ball:**
 - State of system: \[
 \begin{align*}
 \dot{x}_1 &= p \quad \text{(position)} \\
 \dot{x}_2 &= \dot{x}_1 \quad \text{(velocity)}
 \end{align*}
 \]

- **Mode 1: Free fall:**
 \[
 \begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
 \end{bmatrix} =
 \begin{bmatrix}
 x_2 \\
 -mg
 \end{bmatrix} \iff \text{true until hitting ground}
 \]

- **Mode 2: Collision:**
 \[
 t_1: \text{collision time}
 \]
 \[
 \begin{cases}
 x(t_1^+) = x_1(t_1) \\
 x_2(t_1^+) = -c x_2(t_1)
 \end{cases}
 \]
 \[
 x_1 = x_2 \\
 \dot{x}_2 = -mg
 \]
 \[
 x_2^+ := -c x_2 \quad \text{reset map}
 \]
 \[
 x_i = 0 \& x_2 < 0 \quad \text{(guard condition)}
 \]
 \[\text{HIS Model: have one mode}\]

Hybrid System Example 2: Water Tank

- **Goal:** keep water level above references

 \[q=1 \quad q=2 \]

- **Two modes:** left/right

- **Dynamics:**

 \[\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} w - v_1 \\ -v_2 \end{bmatrix} \equiv f_1(x) \]

 \[q=1 \text{ (left):} \]

 \[\dot{x} = \begin{bmatrix} -v_1 \\ w - v_2 \end{bmatrix} \equiv f_2(x) \]

 \[q=2 \text{ (right):} \]

- **Guard:**

 From \(q=1 \) to \(q=2 \):
 \[\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_2 \leq r_2 \} \]

 From \(q=2 \) to \(q=1 \):
 \[\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 \leq r_1 \} \]

 There is state jump (no reset)
Hybrid System Example 3: Converter

- Two modes:

 \[d(k) \]

 \[S_1 = 1 \]
 \[S_2 = 0 \]

 \[kT_s < t < (k+1)T_s \]

- Objectives: minimize output voltage error under uncertain \(v_s, r_o \)

 Two modes:
 \[q=1 \]
 \[\dot{x} = f(x) = A_1 x + g_1 v_s \] \[kT_s < t < (k + d(k))T_s \]

 States (e.g., \(v_c, i_c \))

 \[q=2 \]
 \[\dot{x} = A_2 x \] \[t \in (kT_s, (k+1)T_s) \]

 If \(d(k) \) is constant:

 mode transition triggered by time only

 \[t > (k+d(k))T \]

 using feedback

 \[d(k) = M(x(k)) \] \[q=1 \] \[q=2 \]
Hybrid System Example 4: Air Traffic Control

- Unicycle aircraft model:
 \[
 \begin{bmatrix}
 \dot{x}_1^a \\
 \dot{x}_2^a \\
 \dot{x}_1^b \\
 \dot{x}_2^b \\
 \end{bmatrix} =
 \begin{bmatrix}
 v \cos \theta_a \\
 v \sin \theta_a \\
 v \cos \theta_b \\
 v \sin \theta_b \\
 \end{bmatrix}
 \]

- Simple collision avoidance protocol:
 - Left if \(|x^a - x^b| < \alpha\) (\(\dot{\tau} = 1\), measure time)
 - Straight until \(|x^a - x^b| > \alpha\)
 - Right (\(\dot{\tau} = -1\))
 - Cruise

- This HS has 4 modes

- Continuous state:
 \[
 \begin{bmatrix}
 x_a^a \\
 x_b^a \\
 \theta^a \\
 \theta_b \\
 \end{bmatrix}, \quad \tau
 \]
 time counter

 heading angle
Hybrid System Example 4: Air Traffic Control

- Continue:

\[
\begin{align*}
\dot{\mathbf{x}} &= f(\mathbf{x}, \theta) \\
\dot{\theta} &= 0 \\
\dot{t} &= 0
\end{align*}
\]

Cruise

\[
\begin{align*}
\mathbf{x}^c &= \mathbf{x}^a \\
\theta^c &= 0 \\
t^c &= 0
\end{align*}
\]

\[\|\mathbf{x}^a - \mathbf{x}^b\| \leq \alpha\]

\[\theta_{ab}^+ = \theta_{ab} + \frac{\alpha}{4}\]

Right

\[
\begin{align*}
\mathbf{x}^r &= f(\mathbf{x}, \theta) \\
\theta^r &= 0 \\
t^r &= -1
\end{align*}
\]

\[\theta_{ab}^+ = \theta_{ab} + \frac{\alpha}{4}\]

Straight

\[
\begin{align*}
\dot{\mathbf{x}} &= f(\mathbf{x}, \theta) \\
\dot{\theta} &= 0 \\
\dot{t} &= 0
\end{align*}
\]

\[\theta_{ab}^- = \theta_{ab} - \frac{\alpha}{4}\]

Stop

\[
\begin{align*}
\mathbf{x}^s &= f(\mathbf{x}, \theta) \\
\theta^s &= 0 \\
t^s &= 1
\end{align*}
\]

\[\theta_{ab}^- = \theta_{ab} - \frac{\alpha}{4}\]

\[t \geq 10 \text{ (min)}\]

Question: whether the protocol is safe?
Hybrid System Example 5: Variable Structure Control

- Standard nonlinear dynamics: \(\dot{x} = f(x, u) \)

- Piecewise continuous control laws:

 \[
 \begin{align*}
 \text{partition state space into regions} \\
 \text{define control laws: } u(x) = \begin{cases}
 u_1(x) & \text{if } x \in \Omega_1 \\
 u_2(x) & \text{if } x \in \Omega_2
 \end{cases}
 \end{align*}
 \]

 In this case, two modes

 Guard \(1 \rightarrow 2 \) : \(\Omega_2 \)

 \(2 \rightarrow 1 \) : \(\Omega_1 \)

 no reset
Hybrid System Example 5: Variable Structure Control

- Application in UAV control:
Hybrid System Example 6-1: Networked Control Systems

Simple NCS:

- t_k: k^{th} transmission time
- $\dot{x}(t) = f(x(t), u(t))$
- $u(t) = Kx(t_{k-1})$
- $e(t) = x(t) - x(t_{k-\tau}), z(t) = \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$

$$\begin{align*}
\dot{e}(t) &= f\left(x(t), \tau, x(t_{k-\tau}) \right) \\
&= f\left(z(t), \tau \right) \\
\Rightarrow \\
\hat{z} &= f
\end{align*}$$
Hybrid System Example 6-2: Event-Triggered Control

Event triggered control:

- Transmit: $z(t) \in E$
- $\dot{x}(t) = \tilde{f}(x(t), e(t))$
- $\dot{e}(t) = \tilde{f}(x(t), e(t))$
- $e(t_{k+}^+) = 0$

How to determine E to ensure closed-loop stability?
Hybrid Systems Example 7: Embedded Systems

- Dynamic buffer management
 - Continuous state x
 - Discrete mode:

DBM Problem: Find best Q and switching strategy to minimize the total energy subject to constraints
• Summary:
 • Most general and natural modeling framework
 • Numerous applications
 • Further reading: reference papers in the “Application” category of the course website
 • Active area of research with many open challenges
 • This class is only an introduction to some important topics

• Next time:
 • Formal discussion on hybrid system models and solution concepts