ECE7850: Spring 2017
Hybrid Systems: Theory and Applications

Lecture 1: Course Info and Hybrid System Examples

Prof. Wei Zhang
Department Electrical and Computer Engineering
The Ohio State University
Course Info

- Instructor: Wei Zhang
- Contact:: 404 Dreese Labs, zhang.491@osu.edu
- Time: Tu/Th 11:10am – 12:30pm
- Location: Macquigg Lab 155
- Office Hour: Thursday 1-2pm
- Website: http://www2.ece.ohio-state.edu/~zhang/HybridSystemCourse/HybridSystemsCourse_Sp17.html
- Prerequisite:
 - ECE 5750 – Linear System Theory
 - Solid math background is essential
- **Grading Policy**
 - **Homework (30%)**
 - Assigned biweekly (roughly)
 - May involve open-ended questions
 - Must be typeset using Latex
 - Can be quite challenging!
 - **Midterm (30%)**: Date & Time: TBD (may be an evening exam)
 - **Final Project (40%)**:
 - Project proposal due shortly after midterm
 - Project report due in the final exam week;
 - 15-minute presentation at the end of the semester
 - Some ideas of project topics
 - Nontrivial extension of the results introduced in class
 - Nontrivial application of HS in your research area
 - Comprehensive literature review on a topic in HS not covered in the class
Course Materials:

• No required textbook!

• Lecture notes are developed based on
 - Important papers in the field of hybrid systems
 - “Switching in systems and control”, D. Liberzon, 2003
 - “Predictive Control for linear and hybrid systems”, F. Borrelli, A. Bemporad and M. Morari, 2013
Tentative Topics

- Introduction to Hybrid Systems
 - Examples, Modeling frameworks, Solution and execution, Filippov solution, zeno phenomena

- Stability Analysis and Stabilization
 - Stability under arbitrary switching, stability under constrained switching, Multiple-Lyapunov function, LMI based synthesis using multiple-Lyapunov function; control-Lyapunov function approach

- Discrete Time Optimal Control of Hybrid Systems
 - Switched LQR problem, MPC of switched Piecewise Affine Systems, Infinite-horizon optimal control and its connection to stability/stabilization

- Reachability analysis and computation:
 - Forward/backward reachable sets, HJI based reachability, zonotope based method, applications and automated vehicles

- Continuous Time Optimal Control of Hybrid Systems
 - Theory of numerical optimization in infinite-dimensional space, applications to optimal control of switched nonlinear systems
Special Notes

- Advanced but not seminar type of course (many assignments)

- Goal: prepare and train the students to develop new theories

- Growing field with important emerging applications
 - Networked control systems, Cyber-Physical Systems, Robotics, Intelligent transportation

- Caveat:
 - No standard textbooks
 - Few existing HS courses have a good balance among different topics
 - We will try to cover a wide range of major topics in depth
 - Each topic requires good understanding of some background materials that will be introduced at very fast pace
 - Mathematical maturity is essential!
What is Hybrid Systems

- Roughly: dynamical systems with combined continuous and discrete dynamics
 - Continuous state $x(t)$ continuous input $u(t)$
 - Discrete state/mode $q(t)$ discrete input $\sigma(t)$

- Coupled continuous-discrete dynamics
 - Discrete mode evolution:
 - $q^+ = g(x, q, \sigma)$
 - Mode-dependent continuous dynamics:
 - $\dot{x} = f(x, q, u)$

- Interactions:
 - Continuous state evolution x triggers discrete mode transition
 - “Guard”: subset of state space; mode transition occurs when state hitting guard
 - Reset map: continuous state may jump during mode transition

- Mode transition modifies continuous dynamics characteristics
Hybrid System Example 1: Bouncing Ball

- Bouncing ball:
 - State of system: \[
 \begin{cases}
 \dot{x}_1 = p \\
 \dot{x}_2 = \dot{x}_1
 \end{cases}
 \]

 - Mode 1: Free fall:

 - Mode 2: Collision:
Hybrid System Example 2: Water Tank

- **Goal:** keep water level above references
- **Two modes:** left/right
- **Dynamics:**
 - **Guard:**
Hybrid System Example 3: Converter

- Two modes:

- Objectives: minimize output voltage error under uncertain v_s, r_o
Hybrid System Example 4: Air Traffic Control

- Unicycle aircraft model:
 \[
 \begin{bmatrix}
 \dot{x}_1^a \\
 \dot{x}_2^a \\
 \end{bmatrix} = \begin{bmatrix} v \cos \theta_a \\
 v \sin \theta_a \end{bmatrix}, \quad
 \begin{bmatrix}
 \dot{x}_1^b \\
 \dot{x}_2^b \\
 \end{bmatrix} = \begin{bmatrix} v \cos \theta_b \\
 v \sin \theta_b \end{bmatrix}
 \]

- Simple collision avoidance protocol:
 - Left if \(\|x^a - x^b\| < \alpha\) (\(\dot{\tau} = 1\), measure time)
 - Straight until \(\|x^a - x^b\| > \alpha\)
 - Right (\(\dot{\tau} = -1\))
 - Cruise

- This HS has 4 modes

- Continuous state:
 \[
 \begin{bmatrix}
 x^a \\
 x^b \\
 \theta \\
 \end{bmatrix}, \quad \theta = \begin{bmatrix} \theta^a \\
 \theta^b \end{bmatrix}, \quad \tau
 \]
Hybrid System Example 4: Air Traffic Control

- Continue:
Hybrid System Example 5: Variable Structure Control

- Standard nonlinear dynamics: $\dot{x} = f(x, u)$
- Piecewise continuous control laws:
Hybrid System Example 5: Variable Structure Control

- Application in UAV control:
Hybrid System Example 6-1: Networked Control Systems

Simple NCS:

- t_k
- $\dot{x}(t) = f(x(t), u(t))$
- $u(t) = Kx(t_{k-\tau})$
- $e(t) = x(t) - x(t_{k-\tau}), z(t) = \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$
Hybrid System Example 6-2: Event-Triggered Control

Event triggered control:

- Transmit: $z(t) \in E$
- $\dot{x}(t) = \tilde{f}(x(t), e(t))$
- $\dot{e}(t) = \tilde{f}(x(t), e(t))$
- $e(t_k^+) = 0$

- How to determine E to ensure closed-loop stability?
Hybrid Systems Example 7: Embedded Systems

- Dynamic buffer management
 - Continuous state \(x\)
 - Discrete mode:

DBM Problem: Find best \(Q\) and switching strategy to minimize the total energy subject to constraints
• **Summary:**
 - Most general and natural modeling framework
 - Numerous applications
 - Further reading: reference papers in the “Application” category of the course website
 - Active area of research with many open challenges
 - This class is only an introduction to some important topics

• **Next time:**
 - Formal discussion on hybrid system models and solution concepts