
CAMRIT: Control-based Adaptive Middleware for Real-time Image
Transmission

Xiaorui Wang, Huang-Ming Huang, Venkita Subramonian, Chenyang Lu, Christopher Gill
Department of Computer Science and Engineering

Washington University, St.Louis,MO
fwang,hh1,venkita,lu,cdgillg@cse.wustl.edu

Abstract

Real-time image transmission is crucial to an emerging
class of distributed embedded systems operating in open
network environments. Examples include avionics mission
re-planning over Link-16, security systems based on wire-
less camera networks, and online collaboration using cam-
era phones. Meeting image transmission deadlines is a
key challenge in such systems due to unpredictable network
conditions. In this paper, we present CAMRIT, a Control-
based Adaptive Middleware framework for Real-time Image
Transmission in distributed real-time embedded systems.
CAMRIT features a distributed feedback control loop that
meets image transmission deadlines by dynamically adjust-
ing the quality of image tiles. We derive an analytic model
that captures the dynamics of a distributed middleware ar-
chitecture. A control theoretic methodology is applied to
systematically design a control algorithm with analytic as-
surance of system stability and performance, despite uncer-
tainties in network bandwidth. Experimental results demon-
strate that CAMRIT can provide robust real-time guarantees
for a representative application scenario.

1. Introduction

Recent years have seen rapid growth of a new gener-
ation of Distributed Real-time Embedded (DRE) systems
that integrate digital imaging and wireless networking tech-
nology. For example, security systems can perform au-
tomatic intruder detection through real-time fusion of im-
ages from multiple cameras connected through a wireless
network [19]. Similarly, to facilitate avionics mission re-
planning, personnel on multiple aircraft need to collaborate
by exchanging target imagery and display annotations over
Link-16 wireless networks [7]. Real-time image transmis-
sion is also important in new services on camera-equipped
mobile phones (e.g., online collaboration and security mon-
itoring) that rely on “live” image transmission over cellular

networks.
These embedded applications are different from tradi-

tional imaging applications (e.g., online photo albums) in
two ways. First, image transmission in these embedded sys-
tems is subject to stringent timing constraints. Second, al-
though higher image quality usually improves system util-
ity, these next-generation embedded applications can toler-
ate some degree of degradation in image quality. For ex-
ample, late image delivery can be disastrous in a security
system because it may result in a delayed security alarm.
On the other hand, distributed event detection algorithms
usually can maintain a desired probability of event detec-
tion even if input images are not perfect. Similarly, meeting
deadlines is much more important in avionics mission re-
planning than perfect image quality, as long as key target
features are still distinguishable.

These emerging embedded applications are also different
from traditional embedded systems, such as process con-
trol in factories. While traditional embedded systems usu-
ally operate over closed and predictable networks, these
new types of embedded systems need to perform image
transmission across open and unpredictable networks. For
example, Link-16 is widely used for tactical communica-
tion between military aircraft, but has very limited effective
bandwidth (e.g., roughly 30 to 340 Kbps divided among
all aircraft communicating with a common JTIDS termi-
nal [20]). Furthermore, network bandwidth may vary sig-
nificantly during a mission due to changes in weather, ter-
rain, and communication distance [7]. These bandwidth-
constrained and unpredictable networks make real-time im-
age transmission a challenging task.

We have developed CAMRIT, a Control-based Adaptive
Middleware for Real-time Image Transmission. The CAM-
RIT project has made three main contributions to the state
of the art in performance control for DRE systems.

1. Adaptive Architecture: We present a novel middleware
architecture for feedback-based adaptive management
of image transmission. Our architecture features a
distributed feedback control loop that supports fine-

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'04)

grained control over the progress of image transmis-
sion by dynamically adjusting the quality factor of im-
age tiles.

2. Control Modeling: We derive an analytic model that
captures the dynamics of a distributed middleware ar-
chitecture. Control analysis shows that CAMRIT can
assure system stability and transmission latencies un-
der a wide range of available network bandwidth.

3. Middleware Implementation: CAMRIT has been im-
plemented as a middleware service based on the
TAO [4] real-time CORBA object request broker so
it is portable across heterogeneous platforms. Exper-
imental results on a characteristic testbed demonstrate
that CAMRIT can provide robust real-time assurance
under representative application scenarios.

2. Middleware Architecture

The primary goal of CAMRIT is to complete transmit-
ting an image from a server node to a client node within a
user specified deadline. At the same time, CAMRIT aims
to maximize image quality because a higher quality image
usually has higher utility to the application. This require-
ment excludes trivial solutions such as always sending an
image at the lowest quality.

To achieve both goals despite an unpredictable network,
CAMRIT employs a feedback control loop that dynami-
cally adjusts image quality based on performance feedback.
CAMRIT exploits existing image compression standards
that support flexible image quality. For example, the widely
adopted JPEG [23] standard provides a user-specified pa-
rameter called the quality factor which can be any integer
from 1 to 100. Since a lower quality factor leads to a smaller
image size after compression, the quality factor parameter
provides a knob for controlling the time it takes to transmit
an image. However, JPEG only supports a single quality
factor for a whole image. This is insufficient for our feed-
back control loop, which needs to adjust the quality factor
of an image dynamically during its transmission. To support
such fine-grained adaptation, CAMRIT splits each image
into tiles, each of which may be compressed with a separate
quality factor.

CAMRIT is designed as a middleware service for real-
time CORBA. All the tasks in CAMRIT are managed and
scheduled according to the Rate Monotonic Scheduling
(RMS) algorithm [14] using the Kokyu [10] dispatcher
within the TAO Real Time Event Channel [11]. We note
in passing that the CAMRIT architecture may also be in-
stantiated as individual software or be integrated with other
middleware.

Image
Proxy

Client component Server component

Image
Assembler

Get Image

Tile
Compressor

Compression
Controller

Buffer
Level

Monitor

Tile Receiver

Tile Buffer

Quality
Factor

Tile Buffer
Level on

Client

CORBA call

 TCP socket

Image
Service

Image
Splitter

Tiled
Image

Image
Source

Tile Sender

Tile Bytes Buffer

Figure 1. Overview of the CAMRIT Architecture

2.1. Service Interface

An application interacts with CAMRIT’s ImageTrans-
missionService interface, specified in CORBA IDL. The
following parameters are passed to the service:

� image id: An identifier (e.g., an image file name) for
the requested image.

� deadline: The relative deadline for delivery of the im-
age.

� num tile: The number of tiles into which the image is
divided. This parameter allows the application to spec-
ify the granularity of control of the image quality, with
a trade-off of increased overhead for finer granularity.

� quality range: The defined range of acceptable im-
age quality. This parameter allows configuration of
application-specific image quality constraints.

The CAMRIT service implementation serves to hide
properties of the underlying network from the the applica-
tion, particularly the variations in available bandwidth over
a network, and delivers the image within the specified dead-
line. Figure 1 shows the major components of the CAMRIT
architecture. We first describe the mechanisms responsible
for requesting and transmitting an image, and then discuss
the feedback loop for controlling transmission latency.

2.2. Image Transmission

The CAMRIT middleware architecture is made up of
client and server components, each on a separate endsystem.
The Image Proxy object in the CAMRIT client component

provides the service interface to the application. When it re-
ceives a request for an image, this object makes a CORBA
call to the Image Service object on the server. This CORBA
call has the same parameters as the service interface. A
one-way CORBA call is used to avoid blocking the client
thread that executes the call, because transmitting a large
image over a bandwidth-constrained network may take a
long time.

The Image Service object is implemented as a CORBA
servant in the server component, and is advertised to the
outside world. When it receives the CORBA call from the
client, the Image Service object retrieves the requested im-
age (e.g., from an image repository or a camera), and calls
the Image Splitter object to split the retrieved image into
a specified number of tiles. Each tile is compressed by
the Tile Compressor object according to the current qual-
ity factor, which is periodically updated by the Controller
object described in Section 2.4. The Tile Sender object then
sends each compressed tile, as a byte stream through a TCP
socket, to the client component.

The Tile Sender and Tile Compressor are executed by
a periodic task. In each invocation, the Tile Sender fills
the TCP buffer by sending image tiles to a TCP socket.
The sending socket is set to NON BLOCKING mode so
that the kernel will inform the application layer through an
EWOULDBLOCK error from the send system call if the
TCP buffer is full. Note the sender may push a fraction of a
tile to fill the TCP buffer. The pseudo-code for this periodic
task is shown below. Tile Bytes Buffer is a buffer on the
server that is used to hold the bytes of a tile (or fraction of a
tile) to be sent.

Tile Sender :: handle timeout () f
while (1) f

ret code = send bytes in Tile Bytes Buffer to socket ;
if (ret code == EWOULDBLOCK)

exit the current invocation ;
Compress next tile with current quality factor ;
Create a header for the tile ;
Append the new compressed tile to Tile Bytes Buffer ;

g
g

The Tile Receiver object on the client reads the byte
stream from the socket. The boundaries between tiles are
indicated in the tile header that precedes each tile. After
it receives a whole tile, the Tile Receiver object enqueues
the tile into a buffer that holds received but still compressed
tiles.

The Image Assembler is executed as a periodic task. The
first instance of this task is released when the first tile of the
image is inserted into the tile buffer. In every invocation,
it dequeues and decompresses a tile from the tile buffer if
it is not empty. When all the tiles of an image have been
decompressed, it assembles them back into a whole image

and notifies the Image Proxy, which then returns a handle
(e.g., the memory address) for the decompressed image to
the application.

2.3. Selection of Task Periods

The period of the Tile Sender task is chosen such that
the TCP buffer never goes empty while an image is being
transmitted to the client. Specifically, if B is the TCP buffer
size and bmax is the maximum bandwidth of the network,
the period of the Tile Sender is set to no higher than B

bmax
.

This guarantees that the TCP layer in the kernel has enough
bytes of data in the TCP buffer to send before the next invo-
cation of the sending task, and hence the network bandwidth
is fully utilized during the transmission of an image.

CAMRIT guarantees image deadlines by achieving the
following properties. First, the tile buffer on the client al-
ways contains at least one tile during the transmission of
an image. This is achieved by a feedback control loop de-
scribed in the next subsection. Second, every invocation of
the Image Assembler task is completed before the end of
its period. This property is guaranteed by ensuring that the
CPU utilization of the client end-system remains below the
schedulable utilization bound of the scheduling algorithm
used by RT-CORBA. Finally, the period p of the Image As-
sembler is selected to meet the end-to-end image deadline,
as follows. When the first two properties are satisfied, each
invocation of the Image Assembler task decompresses one
tile by the the end of its period. Suppose the first tile of an
image is inserted into the tile buffer t� sec after the image
request is sent to the server. The first tile is decompressed
by t��p, and the ith tile is decompressed by t��ip. There-
fore, the period must satisfy the following condition in order
to guarantee the whole image is received and decompressed
by the deadline:

t� � p � num tile � deadline

Hence, the upper bound for the Tile Assembler period is:

p �
deadline� t�
num tile

(1)

2.4. Feedback Control Loop

As described in the last subsection, CAMRIT must main-
tain a tile buffer level of at least one tile during the trans-
mission of an image. However, while the Image Assem-
bler dequeues tiles from the tile buffer at a constant rate, the
rate at which tiles are inserted into the tile buffer (called the
tile enqueue rate) depends on the network bandwidth and
the size of compressed tiles. To deal with the unpredictable
network, we designed a feedback control loop to maintain a
specified buffer level (the set point) by periodically adjust-
ing the quality factor of the remaining tiles that are yet to

be transmitted. The feedback control loop is composed of a
Buffer Level Monitor, a Controller, and the Tile Compressor
described earlier, which serves as an actuator in the control
loop.

Each time the Tile Receiver on the client reads a chunk
of data from the socket (i.e., completes a read() call), it
sends the current tile buffer level to the Buffer Level Moni-
tor on the server. Note that the reported buffer level includes
the fraction of the tile that is currently being received by
the client. For example, if the tile buffer currently con-
tains 3 tiles, and the Tile Receiver has received the first
2KB of another tile of size 5KB, the current buffer level
is � � ��� � ���. The Buffer Level Monitor makes this in-
formation available to the Controller. The use of fractional
buffer levels as feedback improves control performance be-
cause it gives a more precise representation of the buffer
level than would integer values.

The Controller periodically re-computes the quality fac-
tor of the remaining tiles based on the current tile buffer
level. The new quality factor is then used by the Tile Com-
pressor to compress the remaining tiles that are sent in the
following sampling period. Clearly, the Controller is critical
to the performance of CAMRIT.

3. Dynamic Model

Modeling the dynamics of the controlled system is crucial
for control design. It is also a key challenge in complex dis-
tributed middleware systems, whose dynamics are not un-
derstood as well as those of many physical control systems.
In this section we establish a dynamic model for a charac-
teristic real-time image transmission system controlled by
our feedback control loop.

3.1. Controlled System Model

As described in the Section 2, the controlled variable in
our feedback control system is the tile buffer level on the
client, and the manipulated variable is the quality factor
used by the server to compress tiles. We first introduce some
essential notation:

� T : the sampling period of the feedback control loop.

� l�k�: the tile buffer level at the kth sampling point (kT
sec after the system starts). As described in Section 2,
l�k� may include a fraction of a tile.

� ls: the set point, i.e., the desired tile buffer level.

� r: the constant rate (i.e., the frequency) at which tiles
are dequeued from the tile buffer by the Image Assem-
bler. It is equal to the inverse of the period of the Image
Assembler task, r � ��p.

� b�k�: the network bandwidth in the kth sampling pe-
riod, [kT , �k � ��T). The value of b�k� is unknown
a priori in an unpredictable network environment, but
its range [bmin, bmax] is usually known.

� s: the size of an uncompressed tile. This is known and
fixed for a given image and number of tiles.

� s�q�: the average size of a tile compressed with a qual-
ity factor q.

� q�k�: the quality factor computed by the controller at
the kth sampling point.

In each sampling period, rT tiles are dequeued from the
tile buffer. Supposing n�k� tiles are transmitted and inserted
to the tile buffer in the kth sampling period, we then have
this equation:

l�k � �� � l�k� � n�k�� rT (2)

n�k� depends on the size of compressed tiles and the net-
work bandwidth. The size of a compressed tile is a non-
linear function of the quality factor used to compress it.
For the purpose of control design, we linearize this function
such that

s�q� �
sq

g
(3)

where g is a gain that can be estimated through lineariza-
tion in the steady-state operation region of the system. The
details of the linearization are presented in Section 3.2.

In our control design, we assume b�k� � b where b is
the nominal bandwidth. Although we design the controller
based on b, the controller is tuned such that it remains sta-
ble as long as the bandwidth stays within the range [bmin,
bmax].

If we ignore control delay, we get a simple first-order
model for the controlled system:

l�k � �� � l�k� �
bTg

sq�k�
� rT (4)

Unfortunately, this model is inaccurate because control
delay plays a major role in the dynamics of our distributed
middleware. This control delay can be modeled as the end-
to-end latency from the moment when the Tile Receiver
sends out the sampled buffer level from the client, to the
moment when this new quality factor starts to have an ef-
fect on the client tile buffer. We can divide this control delay
into the sampling delay from the client to the server and the
actuation delay from the server back to the client. Consider-
ing the fact that the communication load from the client to
the server is signifcantly lower than the opposite direction
during the image transmission, we approximate the control

delay td�k� in our system with the actuation delay, the time
interval starting from the moment when the controller on
the server outputs the new quality factor q�k�.

The control delay is due to residual data in the TCP buffer
and the Tile Byte Buffer on the server. When the controller
outputs a new quality factor, these buffers still contain tiles
compressed with the old quality factor, q�k-��. Hence the
system will continue to transmit and enqueue those old tiles
to the tile buffer on the client until all the data in the TCP
buffer and the Tile Byte Buffer have been transmitted to the
server.

Let st�k� and sb�k� denote the amount of data in the TCP
buffer and the Tile Byte Buffer, respectively. The control
delay is then

td�k� �
st�k� � sb�k�

b
(5)

To calculate the control delay, we need to estimate st�k�
and sa�k�. First, we consider st�k�. Suppose the TCP
buffer size is B, and the period of the Tile Sender task is
ps. The TCP buffer is full (i.e., contains B bits of data) at
the end of each invocation of the Tile Sender task. During
each period of the Tile Sender, bps bits of data are trans-
mitted from the TCP buffer. Therefore, the lower bound for
the amount of data that the TCP buffer may hold is B� bps
bits. Since st�k� depends on the specific time when the con-
troller outputs q�k�, we approximate st�k� with the average
of its upper bound and lower bound for our control design:

st � B �
bps
�

(6)

As Section 3.2 describes, the Tile Byte Buffer holds the
fraction of a compressed tile that cannot fit into the TCP
buffer. On average, this buffer contains half of a tile com-
pressed with quality factor q�k-�� at the beginning of the
kth sampling period. We approximate sb�k� with its aver-
age value, based on (3):

sb�k� �
sq�k � ��

�g
(7)

As Figure 2 illustrates, if we choose a sampling period
T � td�k�, the tiles placed into the tile buffer in the first
td�k� secconds of the kth sampling period are compressed
with quality factor q�k-��, and the tiles placed there in the
remaining part of the sampling period are compressed with
quality factor q�k�. Therefore, a more accurate model that
considers the control delay is

l�k � �� � l�k� �
btd�k�g

sq�k � ��
�
b�T � td�k��g

sq�k�
� rT (8)

Note that the second to last term in (8) is non-linear be-
cause it includes both q�k� and td�k�, which is a function

Time

q(k-1) q(k)

kT kT+Td (k+1)T

Time

q(k-1) q(k)

kT kT+Td (k+1)T

Figure 2. Quality Factors of Tiles Received in the
kth Sampling Period

of q�k-�� (see (5) and (7)). Since the quality factor does not
change significantly in a steady state, we can linearize this
model by replacing the q�k-�� in this term with q�k�. Fi-
nally, let u�k� � ��q�k� be the control input. We then have
an approximate linear model of the controlled system:

l�k � �� � l�k� �Au�k� � Cu�k � �� �D (9)

where A � �bT�st�g
s

, C � stg

s
and D � �rT .

When control delay is zero, this model is the same as
the first-order model in (4). However, when control de-
lay is comparable to the sampling period, the coefficient of
the second order term q�k-�� becomes significant, and the
second-order model is needed to capture the system dynam-
ics.

3.2. Tile Size and Quality Factor

We now describe how to estimate the gain g. We first
compare the size of the compressed sample image s�q� with
each quality factor q, and plot the inverse of the compres-
sion ratio a�q� � s�s�q� as a function of the inverse of the
quality factor u � ��q, which is the control input. For an
example aerial image (called Image 01 in this paper) its re-
sulting profile of the relationship between those parameters
is a non-linear curve. We linearize a�u� in the operational
region of the system in steady state, in the following three
steps.

1. Given the deadline d for transmission of an image, the
rate r of the Image Assembler is calculated using (1).
In steady state, tiles are transmitted from the server to
the client at the same rate as r, to maintain a constant
tile buffer level.

2. We then use the following equation to calculate the
range of a�u�, [amin, amax], that can satisfy the tile
transmission rate r in steady state based on the range
of possible network bandwidth [bmin, bmax].

ba�u�

s
� r (10)

1All images used in this paper are available at
http � ��deuce�doc�wustl�edu�FCS nORB�CAMRIT .

3. Finally, we perform linear regression on the segment
of function a�u� where amin � a�u� � amax. The
slope of the linear regression is the estimated g.

When an image request is submitted, CAMRIT uses the
estimation process above to derive g, based on the specified
deadline and the function a�u� from the profiling results for
a representative image. While function a�u� may differ for
different images, the difference is small for images in a sim-
ilar application domain (e.g., landscape images taken from
airplanes). Furthermore, the feedback control loop can be
designed to tolerate a range of variations in g.

As an example, we now show how to estimate g based
on hypothetical but plausible system settings, and using the
measured profile for Image 0. The key parameters for this
example are as follows:

� Image: 640�640 pixels; divided into 64 tiles; each un-
compressed tile size s = 18.75 KB.

� Deadline: d = 200 sec.

� Bandwidth: [4 Kbps, 8 Kbps]. The top of this band-
width range approximates the maximum data rate of a
single link at the lowest Link-16 network capacity of
28.8 Kbps [24], with time slots divided among links to
3 aircraft collaborating with a common JTIDS termi-
nal on the Command-and-Control aircraft (C2); we as-
sume a minimum network bandwidth of half the max-
imum; we use the midpoint of the resulting range, b =
6 Kbps, for our control design.

The rate of the Image Assembler (also the steady-state
tile transmission rate) is computed using (1). CAMRIT uses
95% of the actual deadline to give some leeway to the trans-
mission, and t� is estimated based on the nominal band-
width and the tile size with the initial quality factor (68 in
this example). The resultant r � 	��� tile/sec. According to
(10), in order to allow the bandwidth variation from 4 Kbps
to 8 Kbps, the range for the inverse of compression ratio
needs to be [6.38, 12.75]. Linearization is then performed
in this range for a�q� as shown in Figure 3. The slope of the
linear regression is g � ������. The linear regression fits
well (with an R� �
����) with the original function in
this operation region.

4. Control Design and Analysis

We now apply linear control theory to design the con-
troller based on the controlled system model described in
Section 3. The z-transform of the controlled system model
(9) is:

L�z� � z��L�z� �Az��U�z� � Cz��U�z� �
Dz

z � �
(11)

y = 341.34x + 3.4504
R2 = 0.9487

6

7

8

9

10

11

12

13

14

0.01 0.015 0.02 0.025 0.03 0.035

1 / Quality factor

1
/ C

o
m

p
re

ss
io

n
 r

at
io

Figure 3. Linearization of a�u�

F(z) (Az+C)/z2 z/(z-1)
+

-
U(z) +

L(z)
lsz/(z-1)

Dz/(z-1)

Figure 4. Block Diagram of Closed-Loop System

A block diagram of the closed-loop system is shown in
Figure 4. The system has two inputs: the set point of the tile
buffer level and a disturbance input Dz

z�� that represents the
dequeuing of tiles from the tile buffer by the Image Assem-
bler.

Letting F �z� be the transfer function of the controller, we
can derive the closed-loop transfer function in response to
the reference input and disturbance, respectively:

Hs�z� �
�Az � C�F �z�

�z � ��z � �Az � C�F �z�

Hd�z� �
z�

�z � ��z � �Az � C�F �z�
(12)

Therefore, the close-loop response to both inputs is

L�z� � Hs�z�
z

z � �
ls �Hd�z�

z

z � �
D (13)

To achieve stability and zero steady state error, we design
a Proportional-Integral (PI) controller for our system:

F �z� �
K��z �K��

z � �
(14)

The time-domain form of (14) is:

u�k� � u�k � �� �K�e�k��K�K�e�k � �� (15)

where K� and K� are control parameters that can be ana-
lytically tuned to guarantee system stability and zero steady
state error using standard control design methods.

We first apply the control design to our example appli-
cation integrated with the CAMRIT framework. The sam-
pling period is T=10 sec. The TCP buffer size is B = 4 KB.
The period of the Tile Sender task is set to 2.67 sec to fully
utilize network bandwidth. The other parameters (includ-
ing g) are the same as for the example given in Section 3.2.
From (5), the control delay in the kth sampling period is
Td � � � q�k � �������� sec. For example, the control
delay is 5.8 sec when q�k-1)=50. Compared to a sampling
period of 10 sec, the control delay clearly plays a signifi-
cant role in the system dynamics. From (9), the parameters
of the controlled system model are A=81.922; C=54.614;
D=-3.420.

Using the Root-Locus method, we select our control pa-
rameters as K�=0.0068 and K�=0.9. The corresponding
closed-loop poles are 	���� � 	����i and 0.887. Since all
the poles are in the unit circle, the system is stable. From
the final value theorem [8], we have proved that the closed-
loop system achieves zero steady state error. That is, the
tile buffer level will achieve the set point in steady state:
limk�� l�k� � ls. If the set point is set to ls � �, the
tile buffer will remain non-empty in steady state, and hence
the image transmission deadline will be met. Furthermore,
by substituting different bandwidths into the system model,
we can prove that the system can maintain stability and zero
steady-state error with the same control parameters as long
as the network bandwidth remains within the range [4Kbps,
8Kbps]. A detailed analysis is not given here due to space
limitations: interested readers are referred to a standard con-
trol textbook [8].

In summary, pseudo code for the control algorithm im-
plemented in CAMRIT is as follows:

Controller (ls, K�, K�) f
� = current tile buffer level ;
e = �s��;
u = u + K��e �K��K��eprev;
eprev = e;
q = ��u;
/� enforce constraints on acceptable quality factor �/
/� default range is [1,100] �/
if (q � qmin) q = qmin;
if (q � qmax) q = qmax;
UpdateQF(q);
/� updated q will be used by the Tile Compressor �/

g

5. Experimental Evaluation

5.1. WSOA Scenario

The Weapons System Open Architecture (WSOA) [7]
program had a primary objective to provide internet-like

connectivity, over Link-16, between legacy embedded mis-
sion systems in fighter aircraft and off-board Command and
Control (C2) systems. This capability was designed to sup-
port time-sensitive mission re-planning and redirection of
attack nodes, as necessary based on situational events, even
if a different mission was already underway.

The following high-level sequence of interactions be-
tween the C2 and fighter aircraft constitutes a representa-
tive WSOA scenario: 1) The C2 node receives information
about a higher priority time critical target and requests a
planning session with attack nodes by sending an alert; 2)
Upon receiving an alert, a fighter aircraft begins download-
ing a Virtual Target Folder (VTF). The VTF contains several
thumbnail-sized images, each representing a virtual target;
3) Once the fighter receives a folder, the pilot can select a
thumbnail image in the folder via a graphical display; 4) A
request is then made to the C2 for a larger version of the
selected image. The experiments presented in this paper
emulate step 4, which is the most time critical part of the
application.

5.2. Experimental Platform

Our experimental configuration consists of two machines
each running RedHat Linux 9.0 with the 2.4.20 kernel. The
C2 aircraft and the fighter were simulated using a 2.53GHz
Pentium IV and a 400MHz Pentium II, respectively. The
following software was used to perform the experiments:

� ACE 5.3.5 + TAO 1.3.5 : TAO is a widely used open-
source real-time CORBA standard object request bro-
ker [4]. TAO also provides a Real Time Event Chan-
nel [18] that is integrated with the Kokyu dispatching
and scheduling framework [10]. This integrated mid-
dleware framework allow us to (re)schedule rates of
invocation of application components, while maintain-
ing deadline-feasible scheduling of critical operations.

� ImageMagick++ 5.5.7 : We used this library to com-
press and decompress images.

� Shaper 1.3 for Linux : Shaper is a linux script for traf-
fic shaping. It allows us to specify the maximum band-
width for network connection between two hosts.

We used Shaper to control the bandwidth between the two
machines, i.e., to simulate the performance of a Link-16
or other bandwidth-constrainted network over an underly-
ing Ethernet connection. We set the range of bandwidth
allowed by the traffic shapers to approximate the effective
bandwidth of a plausible Link-16 configuration, e.g., with a
maximum network capacity of 28.8 Kbps [24], divided be-
tween the client and server. Taking into account the slotted
nature of Link-16 communication channels and other Link-
16 parameters, and the characteristics of the traffic shaper

0

5

10

15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Time (sec)

B
u

ff
er

 le
ve

l

Figure 5. Tile Buffer Levels During Typical Trans-
mission of Image 1

0

20

40

60

80

100

0 8 16 24 32 40 48 56 64

Tile number

Q
u

al
it

y
fa

ct
o

r

Figure 6. Quality Factors During Typical Transmis-
sion of Image 1

we used, we chose a maximum bandwidth of 8 Kbps for
our experiments.

5.3. Experimental Parameters

Our experiments used the same parameters as the exam-
ples in sections 3.2 and 4. To test CAMRIT’s ability to han-
dle different images, our experiments used two other aerial
images than Image 0, whose profile was used to tune the
control parameters. These two images are called Image 1
and Image 2 respectively. The number of tiles for each im-
age is set to 64 for our experiments, to achieve a reasonable
balance between control granularity and overhead.

The set point for the tile buffer level was ls � � in our
experiments. Note that there is a tradeoff in the choice of
the set point. If the set point is too high, the quality factor
for tiles transmitted in the first several sampling periods will
be unnecessarily low because system has to fill an initially
empty buffer with more tiles (with lower quality factors)
before it reaches a steady state. On the other hand, if the set
point is too low, a fluctuation in the network bandwidth may
cause the buffer level drop to zero.

5.4. Experimental Results

CAMRIT uses (10) to calculate q�	� based on its dead-
line, the nominal bandwidth (6 Kbps), and the profiled im-
age quality function for Image 0. The resulting initial qual-

ity factor is q�	� � �� in all of the following experiments.
While q�	� provides a reasonable initial value for the con-
trol input, that initial value is usually not correct for meeting
the deadline because the actual bandwidth may differ from
the nominal one.

The tile buffer level and quality factors during a typical
transmission of Image 1 over a 6 Kbps network are shown
in Figures 5 and 6, respectively. The buffer level is recorded
by the Image Assembler before everytime it attempts to de-
queue a tile. Time 0 in Figure 5 represents the time instant
when the image request is sent to the server. The tile buffer
is initially empty until the first tile is inserted at around 11
sec. This 11 sec delay includes the time it takes CAMRIT to
send the image request to the server, divide the image into
tiles on the server, and transmitting the first tile. Since the
buffer level is low initially, CAMRIT reduces the quality
factor from 68 to about 20 so that the buffer level rises to 5
tiles (the set point) in about 20 sec. The buffer level remains
close to 5 tiles until the last image is transmitted to the client
near the end of the run. The transmission of the whole im-
age is completed at time 190 sec. This is consistent with our
expectation because 190 sec (95% of the deadline) is used
to compute the rate of the Image Assembler. Both tile buffer
level and quality factor have some oscillation due to system
noise. For example, the sizes of different tiles may be dif-
ferent (corresponding to different g values in our model)
even if they are compressed using a same quality factor.
However, despite the noise the tile buffer is always above
2.5 throughout the transmission. This is important because
CAMRIT can guarantee an image transmission deadline is
met as long as the tile buffer always contains at least one
tile.

0

100

200

300

400

500

4 5 6 7 8

Bandwidth (Kbps)

T
im

e
(s

ec
)

PI Q=10 Q=50 Q=90

Figure 7. Transmission Delay under Different Net-
work Bandwidth

The primary goal of CAMRIT is to meet image trans-
mission deadlines. Figure 7 shows the transmission delay

of Image 1 under different bandwidths. The transmission
delay of CAMRIT (with the feedback loop) is measured
through experiments. Each data point of CAMRIT in Fig-
ure 7 is the mean of 10 repeated runs. The standard devi-
ation of each data point is within 2.62 sec. The transmis-
sion delay results of Image2 are not shown because they
are almost identical to those of Image 1. For comparison
purposes, we also plot the estimated transmission delays for
Image 1 when a fixed quality factor (10, 50, or 90) is used in
each run. The transmission delay for an image with a fixed
quality factor is estimated by dividing its total (compressed)
tile size by the actual network bandwidth2.

We can see that the transmission delays for images with
fixed quality factors vary significantly as the network band-
width changes. This result confirms the difficulty in select-
ing a proper quality factor a priori when the network band-
width is unpredictable. A chosen quality factor may be un-
necessarily low when transmission completes much earlier
than the deadline, or too high causing a deadline miss.

In contrast, the transmission delay under CAMRIT re-
mains close to 190 sec (95% of the original deadline) as
the network bandwidth varies from 4 Kbps to 8 Kbps, and
every run meets the deadline of 200 sec. The robust real-
time performance is attributed to the feedback control loop
that effectively maintains the desired buffer level despite the
variation in network bandwidth.

The secondary goal of CAMRIT is to improve the image
quality. CAMRIT accomplishes this goal by 1) fully uti-
lizing the network bandwidth and 2) completing the trans-
mission of an image close to the deadline (as shown in
Figure 7). The combination of both properties means that
CAMRIT sends close-to-maximum amounts of data for a
requested image, which generally corresponds to a higher
image quality.

Figure 8 shows the average quality factors of both im-
ages when they are transmitted by CAMRIT under differ-
ent network bandwidths. Each data point is the mean of
10 repeated runs. The standard deviations are also shown.
With CAMRIT the average quality factor improves as more
network bandwidth becomes available. This result deter-
mines that CAMRIT can automatically adapt to network
bandwidth variations by adjusting the quality factor.

6. Related Work

CAMRIT was originally motivated by the WSOA pro-
gram [7]. The WSOA resource management approach used
heuristics for adaptation that do not provide a priori perfor-
mance analysis, but are evaluated empirically [9]. In sharp
contrast, CAMRIT was modeled and designed from the start
based on a rigorous control theoretic approach. Therefore,

2This estimation is slightly lower than the actual delay because it ig-
nores the overhead of protocol headers.

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9

Q
u
a
l
i
t
y

f
a
c
t
o
r

Bandwidth (Kbps)

Quality factor average and deviation

Image1
Image2

Figure 8. Average Quality Factor under Different
Network Bandwidth

CAMRIT can provide the kind of robust and analytic per-
formance guarantees that are crucial in mission-critical real-
time systems.

Control theoretic approaches have been applied to a num-
ber of computing and networking systems. A survey of
feedback performance control for software is presented
in [1]. A number of feedback-based real-time processor
scheduling algorithms (e.g., [2] [15] [22] [5]) have also been
presented in the literature. These algorithms only controlled
the allocation of the computing resource on a single node,
and do not address transmission delays in distributed sys-
tems. Although feedback control real-time scheduling has
been extended to handle distributed systems [17] [21], com-
munication delays are not the focus of existing algorithms.
Control theory has also been applied to design and analyze
network routers (e.g., [12] [6]). CAMRIT is different from
these network solutions in that it aims to support real-time
image transmission over existing networks through adapta-
tion at the endsystems.

Li and Nahrstedt developed Agilos, a distributed visual
tracking system based on control-theoretic adaptation [13].
Agilos embodied a feedback loop that achieved desired im-
age transmission rates through several adaptation mecha-
nisms including image compression. However, Agilos did
not control the transmission delays of images. Moreover,
the effect of control delay on the dynamics of distributed
systems was not modeled in that project.

7. Conclusions

In this paper, we have presented the design, modeling,
and analysis of CAMRIT based on a control theoretic ap-
proach. A key contribution of this work is an analytic model
that captures the dynamics of a moderately complex dis-
tributed middleware architecture. CAMRIT has been suc-
cessfully implemented as a CORBA-based middleware ser-

vice atop the TAO real-time ORB. Our experiments on a
representative testbed demonstrate that CAMRIT can pro-
vide robust feedback control of image transmission delays
across a range of available network bandwidth, by automat-
ically adjusting image tile quality factors.

A potential extension to this work is to apply a wider
range of adaptive control techniques [3] to further improve
the robustness of the system under different degrees and
kinds of uncertainty. Another important direction of fu-
ture work is to integrate CAMRIT with feedback control
real-time task scheduling [15] [16] [17] in an end-to-end
performance control middleware framework for distributed
embedded systems.

Acknowledgements

This research was supported, in part, by DARPA Adap-
tive and Reflective Middleware Systems (ARMS) program
under grant NBCHC030140 and NSF under an ITR grant
CCR-0325529. We would also like to thank the reviewers
for their detailed feedback.

References

[1] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu.
Feedback performance control in sofware services. IEEE
Control Systems, 23(3), June 2003.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of
a reservation-based feedback scheduler. In IEEE Real-Time
Systems Symposium, Dec. 2002.

[3] K. Astrom and B. Wittenmark. Adaptive Control. Addison-
Wesley, 1995.

[4] Center for Distributed Object Computing. The ACE ORB
(TAO). www.cs.wustl.edu/�schmidt/TAO.html, Washing-
ton University.

[5] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen.
Feedback-feedforward scheduling of control tasks. Real-
Time Systems, 23(1):25–53, July 2002.

[6] N. Christin, J. Liebeherr, and T. Abdelzaher. A quantitative
assured forwarding service. In Proceedings of IEEE INFO-
COM 2002, New York, NY, June 2002.

[7] D. Corman. WSOA-Weapon Systems Open Architecture
Demonstration-Using Emerging Open System Architecture
Standards to Enable Innovative Techniques for Time Criti-
cal Target (TCT) Prosecution. In Proceedings of the 20th
IEEE/AIAA Digital Avionics Systems Conference (DASC),
Oct. 2001.

[8] G. F. Franklin, J. D. Powell, and M. Workman. Digital
Control of Dynamic Systems, 3rd edition. Addition-Wesley,
1997.

[9] C. Gill and et al. Integrated Adaptive QoS Management in
Middleware: A Case Study. In Real-time Technology and
Application Symposium (RTAS ’04), Embedded Applications
Track, Toronto, Canada, May 2004.

[10] C. Gill, D. Schmidt, and R. Cytron. Multi-Paradigm
Scheduling for Distributed Real-Time Embedded Comput-
ing. IEEE Proceedings, Special Issue on Modeling and De-
sign of Embedded Software, 91(1), Jan. 2003.

[11] T. Harrison, D. Levine, and D. Schmidt. The Design and
Performance of a Real-time CORBA Event Service. In Pro-
ceedings of OOPSLA ’97, Atlanta, GA, Oct. 1997.

[12] C. Hollot, V. Misra, D. Towsley, , and W. Gong. A control
theoretic analysis of RED. In Proceedings of INFOCOM
2001, Apr. 2001.

[13] B. Li and K. Nahrstedt. A Control-based Middleware
Framework for QoS Adaptations. IEEE Journal on Selected
Areas in Communications, 17(9):1632–1650, Sept. 1999.

[14] C. Liu and J. Layland. Scheduling Algorithms for Mul-
tiprogramming in a Hard-Real-Time Environment. JACM,
20(1):46–61, 1973.

[15] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algo-
rithms. Real-Time Systems Journal, 23(1/2):85–126, July
2002.

[16] C. Lu, X. Wang, and C. Gill. Feedback Control Real-Time
Scheduling in ORB Middleware. In Proceedings of the 9th
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), Washington, DC, May 2003.

[17] C. Lu, X. Wang, and X. Koutsoukos. End-to-end uti-
lization control in distributed real-time systems. In In-
ternational Conference on Distributed Computing Systems
ICDCS 2004, Tokyo, Japan, Mar. 2004.

[18] C. O’Ryan, D. Schmidt, and J. Noseworthy. Patterns and
Performance of a CORBA Event Service for Large-scale
Distributed Interactive Simulations. International Journal
of Computer Systems Science and Engineering, 17(2), Mar.
2002.

[19] G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors. Commun. ACM, 43(5):51–58, 2000.

[20] R. Collins. JTIDS: Joint Tactical Information Distribution
System. www.rockwellcollins.com/ecat/gs/JTIDS.html.

[21] J. A. Stankovic and et al. Feedback Control Scheduling in
Distributed Systems. In The 22nd IEEE Real-Time Systems
Symposium (RTSS ’01), London UK, Dec. 2001.

[22] D. Steere and et al. A feedback-driven proportion allocator
for real-rate scheduling. In Operating Systems Design and
Implementation, pages 145–158, 1999.

[23] G. K. Wallace. The jpeg still image compression standard.
Communications of the ACM, 34(4):30–44, Apr. 1991.

[24] W. J. Wilson. Applying layering principles to legacy sys-
tems: Link 16 as a case study. In IEEE International Mili-
tary Communications Conference (MILCOM), 2001.

