
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

FC-ORB: A robust distributed real-time embedded middleware
with end-to-end utilization control q

Xiaorui Wang a,*, Yingming Chen b, Chenyang Lu b, Xenofon Koutsoukos c

a University of Tennessee, Knoxville, United States
b Washington University in St. Louis, United States

c Vanderbilt University, United States

Available online 1 November 2006

Abstract

A key challenge for distributed real-time and embedded (DRE) middleware is maintaining both system reliability and desired real-
time performance in unpredictable environments where system workload and resources may fluctuate significantly. This paper presents
FC-ORB, a real-time Object Request Broker (ORB) middleware that employs end-to-end utilization control to handle fluctuations in
application workload and system resources. The contributions of this paper are three-fold. First, we present a novel utilization control
service that enforces desired CPU utilization bounds on multiple processors by adapting the rates of end-to-end tasks within user-spec-
ified ranges. Second, we describe a set of middleware-level mechanisms designed to support end-to-end tasks and distributed multi-pro-
cessor utilization control in a real-time ORB. Finally, we present extensive experimental results on a Linux testbed. Our results
demonstrate that our middleware can maintain desired utilizations in face of uncertainties and variations in task execution times,
resource contentions from external workloads, and permanent processor failure. FC-ORB demonstrates that the integration of utiliza-
tion control, end-to-end scheduling, and fault-tolerance mechanisms in DRE middleware is a promising approach for enhancing the
robustness of DRE applications in unpredictable environments.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Real-time systems; Middleware; Embedded systems; Distributed systems; Feedback control

1. Introduction

Distributed real-time and embedded (DRE) applications
have stringent requirements for end-to-end timeliness and
reliability whose assurance is essential to their proper oper-
ation. In recent years, many DRE systems have become
open to unpredictable operating environments where both
system workload and platform may vary significantly at
run time. For example, the execution of data-driven appli-
cations such as autonomous surveillance is heavily influ-
enced by sensor readings. External events such as

detection of an intruder can trigger sudden increase in sys-
tem workloads. Furthermore, many mission-critical appli-
cations must continue to provide real-time services
despite hardware failures, software faults, and cyber
attacks.

While DRE middleware has shown promise in improv-
ing the real-time properties of many applications, existing
middleware systems often do not work well in unpredict-
able environments due to their dependence on traditional
real-time schedulability analysis. When accurate knowl-
edge about workloads and platforms is not available, a
DRE application configured based on schedulability anal-
ysis may suffer deadline misses or even system crash (Lu
et al., 2003). A critical challenge faced by application
developers is to achieve robust real-time performance in
unpredictable environments. Since in DRE systems, an
end-to-end application that violates its real-time properties
is equivalent to (or sometimes even worse than) an

0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.09.031

q Parts of this work were presented at a conference paper Wang et al.,
2005. This research was supported in part by NSF CAREER award
(Grant CNS-0448554) and DARPA Adaptive and Reflective Middleware
Systems (ARMS) program (Grant NBCHC030140).

* Corresponding author. Tel.: +1 865 974 0627; fax: +1 865 974 5483.
E-mail address: xwang@ece.utk.edu (X. Wang).

www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 938–950

Aut
ho

r's

pe
rs

on
al

co

py

application that does not perform its computation, utiliza-
tion guarantees affect directly the availability of the end-to-
end application.

This paper presents the design and empirical evaluation
of an adaptive middleware called FC-ORB (Feedback
Controlled ORB) that aims to enhance the robustness of
DRE applications. The novelty of FC-ORB is the integra-
tion of end-to-end scheduling, adaptive QoS control, and
fault-tolerance mechanisms that are optimized for unpre-
dictable environments. Specifically, this paper makes three
contributions.

• End-to-End Real-Time ORB: Our ORB service supports
end-to-end real-time tasks based on the end-to-end
scheduling framework (Liu, 2000). The FC-ORB archi-
tecture is designed to facilitate efficient end-to-end adap-
tation and fault-tolerance in memory-constrained DRE
systems.

• End-to-End Utilization Control: The utilization control
service enforces desired CPU utilizations in a DRE sys-
tem despite significant uncertainties in system work-
loads. The core of the utilization control service is a
distributed feedback control loop that coordinates adap-
tations on multiple interdependent processors.

• Adaptive Fault Tolerance: FC-ORB handles processor
failures with an adaptive strategy that combines recon-
figurable utilization control and task migration. A
unique feature of our fault tolerance approach is that
it can maintain real-time properties for DRE applica-
tions after a processor failure.

FC-ORB has been implemented and evaluated on a
Linux platform. Our experimental results demonstrate that
FC-ORB can significantly improve the end-to-end real-
time performance of DRE middleware in face of a broad
set of dynamic uncertainties and fluctuations in task execu-
tion times, resource contention from external workloads,
and processor failures. FC-ORB demonstrates that the
integration of utilization control, end-to-end scheduling,
and fault-tolerance mechanisms in DRE middleware is a
promising approach for enhancing the robustness of
DRE applications in unpredictable environments.

FC-ORB is particularly useful for DRE applications
that are amenable to rate adaptation such as digital feed-
back control systems (Marti et al., 2002; Seto et al.,
1996), monitoring systems (Zhao et al., 2001), and multi-
media (Brandt et al., 1998). In these systems, task rates
can be adjusted without causing system failure. Further-
more, tasks running at higher rates contribute higher val-
ues to the application (e.g., increasing the sampling rate
of a digital controller improves the control performance).
Our framework can benefit Supervisory Control and Data
Acquisition (SCADA) systems which provide monitoring
and control functions that are inherently periodic at geo-
graphically distributed sites.

The rest of the paper is organized as follows. Section 2
describes the design of the FC-ORB architecture. Section

3 presents the experimental results. Section 4 highlights
the contributions of FC-ORB by comparing it with related
works. Section 5 concludes the paper.

2. Design of the FC-ORB architecture

In this section, we first introduce the end-to-end task
model and scheduling framework supported by FC-ORB.
We then describe the main components of FC-ORB: the
end-to-end ORB service, the utilization control service,
and the adaptive fault-tolerance mechanisms.

2.1. Applications

FC-ORB supports an end-to-end task model (Liu, 2000)
employed by many DRE applications. An application is
comprised of m periodic tasks {Tij1 6 i 6 m} executing
on n processors {Pij1 6 i 6 n}. Task Ti is composed of a
chain of subtasks {Tijj1 6 j 6 ni} which are implemented
as a sequence of object operations on different processors.1

A subtask may be executed by one or more operation
requests on a same processor. The invocation of a subtask
Tij(1 < j 6 ni) is triggered by its predecessor Tij�1 through a
remote operation request. A non-greedy synchronization
protocol called release guard (Sun and Liu, 1996) is used
to ensure that the interval between two consecutive releases
of the same subtask is not less than its period. Hence, all
the subtasks of a periodic task share the same rate as the
first subtask. In FC-ORB, the rate of a task (and all its sub-
tasks) can be adjusted by changing the rate of its first sub-
task. An example DRE application with two end-to-end
tasks running on three processors is shown in Fig. 1.

Our application model has two important properties.
First, while each subtask Tij has an estimated execution
time cij available at design time, its actual execution time
may be different from its estimation and may vary at
run-time. Such uncertainty is common for DRE systems
operating in unpredictable environments. Second, the rate
of a task Ti may be dynamically adjusted within a range
[Rmin,i,Rmax,i]. This assumption is based on the fact that
the task rates in many DRE applications (e.g., digital con-
trol (Marti et al., 2002; Seto et al., 1996), sensor update,
and multimedia (Brandt et al., 1998)) can be dynamically
adjusted without causing system failure. A task running

1 FC-ORB can be extended to support a more general task model in
which a task is composed of a graph of subtasks (Liu, 2000).

P3

Remote
operation
request

SubtaskT21
T22

P1 P2

T11

T12
T13

Remote
operation
request

SubtaskT21
T22

T11

T12
T13

Fig. 1. An example DRE application.

X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950 939

Aut
ho

r's

pe
rs

on
al

co

py

at a higher rate contributes a higher value to the applica-
tion at the cost of higher utilization. For instance, although
a digital control system usually has better control perfor-
mance when it executes at a higher rate, it can usually
remain stable when executing at a lower rate.

Each task Ti is subject to an end-to-end soft deadline
related to its period. FC-ORB implements the end-to-end
scheduling approach (Sun and Liu, 1996) to meet task dead-
lines. The deadline of a task is divided into subdeadlines of
its subtasks (Kao and Garcia-Molina, 1997; Natale M.D.
and Stankovic, 1994). The release guard protocol is used
to synchronize the execution of subtasks such that each sub-
task can be modeled as a periodic task. Hence, the problem
of meeting the deadline is transformed to the problem of
meeting the subdeadline of each subtask. A well known
approach for meeting the subdeadlines on a processor is
to ensure that its utilization remains below its schedulable
utilization bound (Lehoczky, 1990; Liu and Layland,
1973). Therefore the end-to-end scheduling approach
enables FC-ORB to meet end-to-end deadlines by control-
ling the utilizations of all processors in the system.

2.2. Middleware support for end-to-end tasks

2.2.1. Implementation of end-to-end tasks

Fig. 2 illustrates the FC-ORB implementation of the
example DRE application shown in Fig. 1. Each subtask
is executed by a separate thread whose priority is decided
by a priority manager. In Fig. 2, each dashed box spanning
from the application layer to the ORB core layer represents
a subtask in Fig. 1. Every subtask is associated with a sep-
arate Reactor (Schmidt, 1995) to create timeout events and
to manage communication connections.

As shown in Fig. 2, the first subtask of a task is imple-
mented with a periodic ACE timer, a reactor, and a connec-
tor (Schmidt, 1997). The ACE Connector framework is
used to decouple communication initialization from appli-
cation-specific tasks that communication services perform
once initialization is complete. Connector can be configured
with different IPC mechanisms to support communication
in different distributed applications. The ACE Reactor
framework is an extensible, object-oriented demultiplexer

that dispatches events to application-specific handlers. It
can support I/O-based, timer-based, signal-based, and syn-
chronization-based events. It simplifies the development of
event-driven programs for many distributed applications.
The timer periodically triggers a local operation (e.g., a
method of an object) which implements the functionality
of this subtask. Following the execution of this operation,
a one-way remote operation request is pushed through the
Connector to the succeeding subtask that is located on
another processor. The succeeding subtask employs an
Acceptor (Schmidt, 1997) to accept the request from its pre-
ceding subtask. Each pair of connector and acceptor main-
tains a separate TCP connection to avoid priority inversion
in the communication subsystem. The release guard proto-
col enforces to be the interval between two successive invo-
cations of a same subtask is bounded below by its period.
Earlier research has shown that the release guard protocol
can effectively reduce the end-to-end response time and jit-
ter of tasks in DRE systems (Sun and Liu, 1996). FC-ORB
implements the release guard protocol with a FIFO waiting
queue and one-shot ACE timers. Upon receiving a remote
operation request, a subtask compares the current time with
the last invocation time of this operation. Based on the
release guard rules (Sun and Liu, 1996), the subtask either
immediately invokes the requested operation or enqueues
this request to the waiting queue if the request arrives too
early. When the request is enqueued, a one-shot ACE timer
is registered with the reactor to trigger the requested opera-
tion at the time that equals the last invocation time plus the
task’s period. After the one-shot timer fires and the enque-
ued request is served, a remote operation request is sent to
the next subtask in the end-to-end task chain. An end-to-
end real-time task is completed when the execution of its
last subtask is completed.

2.2.2. Priority management

The integration of end-to-end scheduling and utilization
control introduces new challenges to the design of schedul-
ing mechanisms in ORB middleware. For instance, the rate
adaptation mechanism adopted by FC-ORB and several
other projects (Lu et al., 2003; Lu et al., 2005) may dynam-
ically change the rates of end-to-end tasks. This may cause

I/O SUBSYSTEM

ORB CORE

CONNECTOR

REACTOR

APPLICATION

REACTOR

CONNECTOR

I/O
SUBSYSTEM

ORB CORE

APPLICATION

REACTOR

ACCEPTOR

I/O SUBSYSTEM

ORB CORE

ACCEPTOR

REACTOR

APPLICATION

REACTOR

ACCE
PTOR

CONNE
CTOR

T11
T12T21

T22 T13

Periodic
Timer

One-Shot
Timers

FIFO Waiting
Queue

Thread

Fig. 2. FC-ORB’s end-to-end ORB architecture.

940 X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950

Aut
ho

r's

pe
rs

on
al

co

py

the middleware to change the priorities of all its subtasks,
e.g., when the rate monotonic scheduling (RMS) policy is
used. To satisfy the special requirements posed by rate
adaptation and end-to-end scheduling, our ORB service
is configured with the server-declared priority model
(Schmidt and Kuhns, 2000) and the thread-per-subtask con-
currency architecture.

To support the server-declared priority model, FC-ORB
implements a priority manager on each processor to assign
priorities to local subtasks. The incoming requests from
another processor are served by a thread with a real-time
priority dictated by the priority manager located on the
host processor. Currently the priority manager only sup-
ports the RMS policy, although the following discussions
are also applicable to other rate- or deadline-dependent
scheduling policies (note that task deadlines are usually
related to their periods). There are several advantages of
using server-declared priority model in the FC-ORB sys-
tem. First, each processor is able to change thread priori-
ties locally, based on the current rates of the subtasks
located on it, so a processor only needs to know the local
subtasks. This makes the system more scalable to large
applications. Moreover, the server-declared model has less
overhead because it does not have to adjust a thread’s pri-
ority every time the priority of its predecessor subtask is
changed, as it would do with the client-propagated model.

The thread-per-priority concurrency architecture has
been adopted in existing DRE middleware (e.g., (Schmidt,
2002)). In this model,the same thread is responsible for exe-
cuting all subtasks with a same priority. This is because the
workload is assumed to use only a limited number of fixed
task rates. However, this concurrency architecture is not
suitable for rate adaptation. Due to rate adaptation, the
rates and thus the priorities of subtasks vary dynamically
at run-time. In such situations, the thread-per-priority
architecture would require the ORB to dynamically move
a subtask from one thread to another thread which can
introduce significant overhead.

To avoid this problem FC-ORB implements the thread-
per-subtask architecture that executes each subtask with a

separate thread. FC-ORB adjusts the priorities of the
threads only when the order of the task rates is changed.
While the task rates may vary at every control period,
the order of task rates often changes at a much lower fre-
quency. Therefore, the thread-per-subtask architecture
enables FC-ORB to adapt task rates in a more flexible
way, with less overhead.

A potential advantage of the thread-per-priority
architecture is that it may need fewer threads to execute
applications. However, as FC-ORB is targeted at memory-
constrained networked embedded systems that commonly
have limited number of subtasks on a processor, each sub-
task can be easily mapped to a thread with a unique native
thread priority even in a thread-per-subtask architecture.

2.3. End-to-end utilization control service

FC-ORB allows users to specify a set of application
parameters in a configuration file that is used to initialize
the middleware when the system is started. Configuration
parameters include the desired CPU utilization on each
processor and the allowed range of rate for each real-time
task. The utilization control service dynamically enforces
the desired CPU utilizations on all processors by adapting
the rates of real-time tasks within the specified ranges,
despite significant uncertainties and fluctuation in system
workload and platform. Therefore, to meet end-to-end
deadlines, the application users only need to specify the uti-
lization reference of each processor to a value below its
schedulable utilization bound.

In the rest of this subsection, we first give an overview of
the feedback control loop of the utilization control service,
and then describe each component of the loop in detail.

2.3.1. Feedback control loop

The utilization control service implements the EUCON
algorithm (Lu et al., 2005) as a distributed feedback control
loop in the middleware. As shown in Fig. 3, the feedback
control loop is composed of a utilization monitor, a rate

Feedback lane

Remote request lanes

Priority
Manager

Rate
Modulator

Model
Predictive
Controller

Remote request lanes

Utilization
Monitor

)(

)(

)(

3

2

1

ku

ku

ku
Controlled
Variables

)(

)(

2

1

kr

krControl
Input

Priority
Manager

Rate
Modulator

Utilization
Monitor

Priority
Manager

Rate
Modulator

Utilization
Monitor

Feedback lane

Priority
Manager

Rate
Modulator

Model
Predictive
Controller

Utilization
Monitor

)(

)(

)(

3

2

1

ku

ku

ku
Controlled
Variables

)(

)(

2

1

kr

krControl
Input

Priority
Manager

Rate
Modulator

Utilization
Monitor

Priority
Manager

Rate
Modulator

Utilization
Monitor

One - shot
timers

Periodical
timers

Control
thread

Application
thread

One - shot
timers

Periodical
timers

Control
thread

Application
thread

1

2

3

4 4 4

Fig. 3. The distributed feedback control loop of the utilization control service.

X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950 941

Aut
ho

r's

pe
rs

on
al

co

py

modulator and a priority manager on each processor, and a
centralized controller.

The feedback control loop is invoked at the end of every
sampling period. It works as follows: (1) the utilization
monitor on each processor sends its utilization in the last
sampling period to the controller; (2) the controller collects
the utilizations from all processors, computes the new task
rates, and sends the new task rates to the rate modulators
on all processors where the tasks are running; (3) the rate
modulators on processors that host the first subtasks of
tasks change the rates of the first subtasks according to
the input from the controller; and (4) the priority manager
on each processor check and adjust the thread priorities
based on the new task rates if necessary.

The controller computes the new task rates using a
model predictive control (MPC) algorithm. The control
algorithm solves at every time step an optimization prob-
lem that minimizes the difference between the desired and
the actual utilizations subject to the task rate constraints.
The optimization problem is a constraint least-square
problem that can be solved efficiently using quadratic pro-
gramming. Assuming that the optimization problem is fea-
sible, i.e., there exist task rates that satisfy the utilization
bounds, the stability of the controller can be formally ana-
lyzed and provide statistical guarantees for the schedulabil-
ity of the system. Details can be found in Lu et al. (2005).2

As shown in Fig. 3, the three components of the feed-
back control loop on an application processor (i.e., a pro-
cessor executing applications and the ORB) are executed
by a separate thread called the control thread. This control
thread has the highest priority in the middleware system so
that the feedback control loop can be executed in overload
conditions, when it is needed most. The controller is imple-
mented as an independent process that can be deployed on
a separate processor or on an application processor. The
controller also serves as a coordinator of the FC-ORB sys-
tem. Every application processor in the system tries to con-
nect with the controller through a TCP connection (called
feedback lane) when the node is started. Once all applica-
tion processors are connected to the controller, the whole
system starts to run the configured application.

2.3.2. Control components

We now present the details of each utilization control
component.

2.3.2.1. Controller. The controller is implemented as a sin-
gle-thread process. It employs a reactor to interact with all
processors in the system. Each time its periodic timer fires,
it sends utilization requests to all application processors
through the feedback lanes. The incoming replies are regis-
tered with the Reactor as events to be handled asynchro-

nously. This enables the controller to avoid being
blocked by an overloaded application processor. After it
collects the replies from all processors, it executes a MPC
algorithm proposed in Lu et al. (2005) to calculate the
new task rates. Then, for each task whose rate needs to
be changed, the controller sends the task’s new rate to all
processors that host one or more subtasks of the tasks
whose rates have been changed. If a processor does not
reply in an entire control period, its utilization is treated
as 100%, as the controller assumes this processor is satu-
rated by its workload.

2.3.2.2. Utilization monitor. The utilization monitor uses
the /proc/stat file in Linux to estimate the CPU utilization
in each sampling period. The /proc/stat file records the
number of jiffies (usually 10 ms in Linux) when the CPU
is in user mode, user mode with low priority (nice), system
mode, and when used by the idle task, since the system
starts. At the end of each sampling period, the utilization
monitor reads the counters, and estimates the CPU utiliza-
tion as 1 minus the number of jiffies used by the idle task in
the last sampling period divided by the total number of jif-
fies in the same period.

2.3.2.3. Rate modulator. A Rate Modulator is located on
each processor. It receives the new rates for its remote invo-
cation requests from the controller through the feedback
lane, and resets the timer interval of the first subtask of
each task whose invocation rate has been changed.

2.3.2.4. Priority manager. All processors in FC-ORB assign
priorities to their subtasks based on a real-time scheduling
algorithm (e.g., RMS). It is important to strictly enforce
the scheduling algorithm to achieve desired real-time per-
formance. However, as a result of rate adaptation, a task
with a rate higher than another task could be assigned a
lower rate in the next sampling period. Consequently, the
priority of this task has to be adjusted at run-time. The pri-
ority manager on each processor checks the rate order of
all subtasks on this processor. If the rate order of two or
more subtasks is reversed, the priority manager reassigns
the correct priorities for the threads of those subtasks.

2.4. Fault tolerance

A robust DRE middleware must maintain both reliabil-
ity and real-time properties required by the applications
despite partial system failure. Traditional fault-tolerance
mechanisms usually focus on reliability aspects of the sys-
tem based on entity redundancy. No single point of failure,
transparent failover and transparent redirection, and rein-
vocation are among the requirements of a fault-tolerant
ORB (Gokhale et al., 2004). However, less attention has
been paid to maintaining desired real-time properties in
the presence of faults.

Before describing the fault tolerance techniques in FC-
ORB, we first introduce the fault model. FC-ORB is

2 We note that, as the feedback control loop is designed to control the
average utilization within each sampling period, transient deadline misses
may occur during a sampling period. Therefore FC-ORB can only provide
a statistical guarantee on utilization and deadlines.

942 X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950

Aut
ho

r's

pe
rs

on
al

co

py

designed to handle one or more persistent processor fail-
ures. The fault model, known as fail-stop processors, is very
important and has been considered extensively in the
design of fault-tolerant computing systems (Schlichting
and Schneider, 1983; Gärtner., 1999). We assume that the
communication between the remaining processors does
not fail and the network is not overloaded. This is a reason-
able assumption for a common class of DRE systems with
processor connected with a switched/fast Ethernet LAN
with sufficient bandwidth. It should be noted that our uti-
lization control service can be integrated with more sophis-
ticated fault detection and recovery techniques to handle
more complex fault models.

FC-ORB improves system robustness in terms of both
reliability and real-time properties by integrating three
complementary mechanisms. First, FC-ORB provides rep-
lication for subtasks and supports transparent failover to
backup subtasks located at different processors in face of
processor failure. Second, after a processor fails, the
remaining processors may experience dramatic workload
increase due to the activation of the backup subtasks,
which may cause them to miss deadlines or fail. A unique
feature of FC-ORB is that it can effectively handle the
workload increase via utilization control so that applica-
tions can maintain desired real-time properties despite pro-
cessor failure. Finally, the FC-ORB controller can
automatically reconfigure itself at runtime to rebuild its
control model, in order to effectively control the DRE sys-
tem whose deployment is changed due to processor failure.

In our replication mechanism, a subtask may have a
backup subtask located on a different processor. For exam-
ple, the subtask T13 shown in Fig. 1 can have a backup sub-
task T 013 located on processor P1. As a result, when
processor P3 fails because of hardware failure, the execu-
tion of subtask T13 is migrated to processor P1 to continue
automatically. Similar to the COLD_PASSIVE replication
style used in Fault-Tolerant CORBA (FT-CORBA) (Gok-
hale et al., 2004), all subtasks are assumed to be stateless
(except the connections between subsequent subtasks
which are maintained by the middleware) so that the over-
head of active state synchronization is avoided.

The failover mechanism works as follows. In the normal
mode, each subtask pushes remote operation requests only
to the primary instance of its successor. As a result, the
backup instance does not receive any requests and its
thread remains idle. After a processor fails, the predecessor
of a subtask located on the failed processor detects the
communication failure based on the underlying socket
read/write errors. The predecessor immediately switches
the connection to the backup instance of its successor
and sends the remote operation requests to it. In the case
when the failed processor hosts the first subtask of a task,
the controller activates the backup instance of the subtask.
Consequently, the execution of the end-to-end tasks is
resumed after a transient interruption.

As a part of the fault-tolerant support, the controller in
the utilization control service has been designed to be self-

configurable. This is important because the control algo-
rithm relies on knowledge about the subtask allocation in
order to compute correct task rates (Lu et al., 2005). When
the controller detects communication failure with a proces-
sor in the system, it first cancels the periodic timer to pause
the feedback control loop. In its internal control model, it
then removes the failed processor and moves the subtasks
located on the failed processor to the corresponding
backup processors. After rebuilding the control model,
the controller re-initializes itself and restarts the timer to
resume the feedback control loop.

A disadvantage of the centralized control scheme is that
the controller becomes a single point of failure. To mitigate
this problem, FC-ORB can be easily extended to replicate
the controller as well. In the extension, FC-ORB can
actively maintain the state consistency between the primary
controller and the backup controller, in a way similar to
the ACTIVE replication style used in FT-CORBA (Gok-
hale et al., 2004). When the controller executes in replicated
mode, all processors send their CPU utilizations to both
the primary and the backup controllers at every sampling
instant. The backup controller performs control computa-
tion just like the primary controller. The difference is that
the backup controller does not send the resultant new task
rates to any processor. Instead, it uses this method to keep
the state variables in the backup controller consistent with
the primary controller. The primary and backup control-
lers can exchange heartbeat messages in every sampling
period. Once the backup controller stops receiving heart-
beats from the primary controller, the backup controller
takes over the utilization control service. This feature will
allow FC-ORB to maintain control of the entire system
even after controller failures.

2.5. Implementation

FC-ORB 1.0 has been implemented in C++ using ACE
5.4 on Linux. FC-ORB is based on the FCS/nORB middle-
ware (Lu et al., 2003) which integrates a single-processor

feedback control scheduling service and a light-weight
real-time ORB middleware called nORB (Subramonian
et al., 2004). FC-ORB is specialized for memory-con-
strained DRE systems by supporting a smaller set of fea-
tures than general-purpose DRE middleware such as
TAO. The entire FC-ORB middleware (excluding the code
in ACE library and IDL library) is implemented in 7017
lines of C++ code. The controller is implemented in 2089
lines of C++ code and a dynamically linked library that
implements the constrained least square solver. We use
MATLAB Compiler to create the dynamically linked
library from lsqlin.m in the MATLAB. At the end of each
sampling period, the controller collects the utilizations
from application processors and calls the lsqlin function
in the dynamically linked library with the utilizations as
parameters. The lsqlin function computes the control input
and returns it to the controller. All the code is open-source

X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950 943

Aut
ho

r's

pe
rs

on
al

co

py

and can be downloaded from http://deuce.doc.wustl.edu/
FCS_nORB/FC-ORB/.

3. Empirical evaluation

In this section, we present the results of five sets of exper-
iments run on a distributed testbed with five machines.
Experiments I and II evaluate FC-ORB’s performance when
task execution times deviate from their estimations and
change dynamically at run-time, respectively. Experiment
III examines FC-ORB’s capability to handle disturbances
from external workloads. Experiment IV tests FC-ORB’s
robustness in face of processor failure. Finally, Experiment
V measures the overhead introduced by utilization control.

3.1. Experimental setup

All experiments are conducted on a testbed of five
machines. All applications and the ORB service run on a
Linux cluster composed of four Pentium-IV machines:
Ron, Harry, Norbert, and Hermione. Ron and Hermione
are 2.80 GHz, and Harry and Norbert are 2.53 GHz. All
four machines are equipped with 512 KB cache and
512 MB RAM, and run KURT Linux 2.4.22. The control-
ler is located on another Pentium-IV 2.53 GHz machine
with 512 KB cache and 512 MB RAM. The controller
machine runs Windows XP Professional. The four
machines in the cluster are connected via an internal switch
and communicate with the controller machine through the
departmental 100 Mbps LAN.

All the experiments run a medium-sized workload that
comprises 12 tasks (with a total of 25 subtasks). The tasks
include eight end-to-end tasks (tasks T1 to T8) and four
local tasks. Fig. 4 shows how the 12 tasks are distributed
on the four application processors. A processor failure inci-
dent on Norbert is emulated in Experiment IV to test FC-
ORB’s fault-tolerance capability. Hence in Fig. 4, we also
show the configured backup subtasks for all subtasks on
Norbert that belong to an end-to-end task. There is no

backup subtask for local task T11,1 as we assume that the
local task is specific to Norbert.

The subtasks on each processor are scheduled by the
RMS algorithm (Liu and Layland, 1973). Each task’s
end-to-end deadline is di = ni/ri(k), where ni is the number
of subtasks in task Ti and ri(k) is the current rate of Ti.
Each end-to-end deadline is evenly divided into subdead-
lines for its subtasks. The resultant subdeadline of each
subtask Tij equals its period, 1/ri(k). Hence the schedulable
utilization bound of RMS (Liu and Layland, 1973),
B = m(21/m � 1) is used as the utilization set point on a
processor, where m is the number of subtasks (including
backup subtasks) on this processor. Specifically, the utiliza-
tion set points for the four experiment processors are: Ron
(72.4%), Harry (72.4%), Norbert (74.3%), and Hermione
(72.4%). All (sub)tasks meet their (sub)deadlines if the
desired utilization on every processor is enforced. The sam-
pling period of the utilization control service is Ts = 4 s.

To evaluate the robustness of FC-ORB when execution
times deviate from the estimations, the execution time of
each subtask Tij can be changed by tuning a parameter
called the execution-time factor, etfij(k) = aij(k)/cij, where
aij is the actual execution time of Tij. The execution time
factor (etf) represents how much the actual execution time
of a subtask deviates from the estimation. The etf (and
hence the actual execution times) may be kept constant
or changed dynamically in a run. In the following we use
inversed etf (ietf,specifically, ietfij(k) = 1/etfij(k)) because
DRE systems commonly have undesired oscillation when
execution times are underestimated (i.e., etf > 1).

We compare FC-ORB against a baseline called OPEN.
In OPEN, the utilization control service of FC-ORB is
turned off and the middleware becomes a representative
real-time ORB without control. OPEN uses a typical
open-loop approach to assign task rates based on estimated

execution time to achieve the desired utilizations. OPEN
results in desired utilization when estimated execution
times are accurate (i.e., ietf = 1). However, it causes under-
utilization when execution times are overestimated (i.e.,
ietf > 1), and over-utilization when execution times are

 Harry

 Ron

 Norbert

Hermione

1_1

2_1

1_4

1_3

1_2

2_2

3_1 3_2

4_1
4_2

4_3

5_1

5_2

5_3

6_1

6_2

6_3

7_1

7_2

8_1

8_2

12_1

10_1

9_1 11_11_3

3_2

5_3

7_2

 Normal subtask Tij

 Backup subtask T'ij

i_j

i_j

Fig. 4. A medium size workload.

944 X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950

Aut
ho

r's

pe
rs

on
al

co

py

underestimated (i.e., ietf < 1). This is a common problem
faced by application developers because it is often difficult
to estimate a tight bound on execution times, especially in
unpredictable environments where execution times are
heavily influenced by the value of sensor data or user input.

3.2. Experiment I: Uncertain execution times

In this subsection, we evaluate FC-ORB’s performance
when task execution times deviate from the estimations.
In each run of this experiment, all subtasks share a fixed
execution-time factor (ietf).

First, we run experiments for OPEN which chooses task
rates based on estimated execution times so that the esti-
mated utilizations of all processors equal their set points.
While the system achieves the desired utilizations in the
ideal case when ietf = 1, all processors freeze when we set
the ietf to 0.5. This is not surprising, because the actual exe-
cution time of every subtask in the system is twice its esti-
mated execution time when ietf = 0.5. Consequently, the
requested utilization on each processor is about 145% (twice
of the desired utilization). Since all FC-ORB threads run at
real-time priorities that are higher than the kernel priority
on Linux, no kernel activities are able to execute causing
the system to crash. This result shows that uncertainties in
workloads can significantly degrade the robustness of appli-
cations on DRE middleware. On the other hand, the utiliza-
tions of all processors drop to only around 18% under
OPEN when the actual execution times are only a quarter
of their estimations (ietf = 4). This results in a extremely
underutilized system and unnecessarily low task rates.

In contrast, FC-ORB achieves the desired utilizations on
all processors even when execution times deviate signifi-
cantly from the estimations. Fig. 5(a) shows the utilizations
when the average execution time of every subtask is twice
its estimation. In the beginning, all processors are overuti-
lized because of the initial task rates. The utilization con-
trol service quickly decreases the task rates until the
utilizations of all processors converge to the desired levels
in around 400 s. Fig. 5(b) shows the utilizations of all pro-
cessors when the execution time of every subtask is severely
overestimated (ietf = 4). In this case, all processors are ini-
tialized underutilized due to the low execution times. FC-
ORB then increases the task rates until the utilizations of
all processors converge to the set points roughly at 500 s.
In this experiment, the utilization control service success-

fully prevents the system from crashing and underutiliza-
tion via rate adaptation.

To examine FC-ORB ’s performance under different
execution time factors, we plot the mean and standard
deviation of utilizations of all processors during each run
in Fig. 6. Every data point is based on the measured utili-
zation u(k) from time 1200 s to 1600 s to exclude the tran-
sient response at the beginning of each run. FC-ORB
consistently achieves the desired utilizations for all tested
execution-time factors within the ietf range [0.5,4] which
corresponds to eight times variation in execution times.
The results show that FC-ORB can enhance system reli-
ability and achieve robust real-time performance under a
wide range of operating conditions. Interestingly, when
the ietf is lower or equal to 0.33, the system freezes due
to the extremely high utilization in the beginning of the
run. Even though the control thread runs at highest real-
time priority, the communication subsystem of Linux runs
only at kernel priority. Therefore, the control thread of
FC-ORB is blocked on communication because the Linux
kernel is preempted by the middleware threads. As a result,
the system fails to recover promptly from overload when
the ietf is equal to or lower than 0.33, even with the help
of FC-ORB. In addition, as observed in (Lu et al., 2005),
the EUCON algorithm can cause performance oscillation
when execution times are underestimated (ietf < 1). There-
fore, application developers should use pessimistic estima-
tions of task execution times in FC-ORB. A fundamental
advantage of FC-ORB is that it does not cause system
underutilization even when task execution times are
severely overestimated.

However, we note that some processors fail to reach the
utilization set points when ietf is equal to or larger than 5.
This is because the achievable utilizations are limited by the
task rate constraints. For example, when ietf is 6, even
though the rates of all subtasks on Norbert are adjusted
to the maximum values, the utilization of the processor
remains below the utilization set point. Note that this is
the desired behavior, i.e., task rates are maximized when
the system is underloaded.

3.3. Experiment II: Varying execution times

The second set of experiments tests FC-ORB’s ability to
maintain robust real-time performance when task execu-
tion times vary dynamically at run-time. To investigate

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry

norbert hermione

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry

norbert hermione

a b

Fig. 5. CPU utilizations under FC-ORB when task execution times deviate from estimations. (a) ietf = 0.5 (b) ietf = 4.

X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950 945

Aut
ho

r's

pe
rs

on
al

co

py
the robustness of FC-ORB we create two scenarios of
workload fluctuation. In the first set of runs, the average
execution times on all processors change simultaneously.
In the second set of runs, only the execution times on
Ron change dynamically, while those on the other proces-
sors remain unchanged. The first scenario represents global

load fluctuation, while the second scenario represents local
fluctuation on a part of the system.

Fig. 7(a) shows a typical run of OPEN under global
workload fluctuation. The ietf is initially 2. At 600 s, it is
decreased to 1.33, which corresponds to a 50% increase
in the execution times of all subtasks. At time 1000 s, the
ietf is increased to 3 to emulate a 56% decrease in execution
times. OPEN fails to achieve the desired utilizations due to
the lack of dynamic adaptation. In sharp contrast to
OPEN, FC-ORB effectively maintains the desired utiliza-
tions on all processors under the same workload. As shown
in Fig. 7(b), the ietf changes to 1.33 at 600 s such that all
processors are suddenly overloaded. FC-ORB responds
to the overload condition by decreasing task rates which
causes the utilizations on all processors to re-converge to
their set points within 100 s (25 control periods). At
1000 s, the utilizations on all processors drop sharply due
to the 56% decrease in execution times, causing FC-ORB
to dramatically increase task rates until the utilizations
re-converge to their set points.

In each run with local workload fluctuation, as shown in
Fig. 7(c), the ietf on Ron follows the same variation as the
global fluctuation, while all the other processors have a

fixed ietf of 2. As shown in Fig. 7(d), under FC-ORB the
utilization of Ron converges to its set point after the signif-
icant variation of execution times at 600 s and 1000 s,
respectively. We also observe that the other processors
experience only slight utilization fluctuation after the exe-
cution times change on Ron. This result demonstrates that
FC-ORB effectively handles the interdependencies among
processors during rate adaptation.

3.4. Experiment III: External disturbances

We now evaluate FC-ORB under resource contention
from external workloads that are not controlled by FC-
ORB. Such external disturbances may be caused by a vari-
ety of sources including (i) processing of critical events that
must be executed at the cost of other tasks, (ii) varying
workload from a different subsystem (e.g., legacy software
from a different vendor), and (iii) software faults or adver-
sarial cyber attacks. To stress-test FC-ORB, we emulate
the external disturbances using a high priority real-time
process to compete with FC-ORB for CPU resource. To
investigate the robustness of FC-ORB we create both peri-
odic and aperiodic disturbances. In the first set of runs, the
external process periodically invokes a function with a fixed

execution time of 100 ms every 500 ms. In the second set of
runs, the external process aperiodically invokes another
function with a random execution time. Both the request
interarrival time and the execution time follow exponential

0

 0.2

 0.4

 0.6

 0.8

1

0 1 2 3 4 5 6 7 8

C
PU

 u
ili

za
tio

n

Inversed execution time factor (ietf)

Deviation
Average
Set point

0

 0.2

 0.4

 0.6

 0.8

1

0 1 2 3 4 5 6 7 8

C
PU

 u
ili

za
tio

n

Inversed execution time factor (ietf)

Deviation
Average
Set point

0

 0.2

 0.4

 0.6

 0.8

1

0 1 2 3 4 5 6 7 8

C
PU

 u
ili

za
tio

n

Inversed execution time factor (ietf)

Deviation
Average
Set point

0

 0.2

 0.4

 0.6

 0.8

1

0 1 2 3 4 5 6 7 8

C
PU

 u
ili

za
tio

n

Inversed execution time factor (ietf)

Deviation
Average
Set point

a b

dc

Fig. 6. CPU utilizations of all processors under different execution-time factors. (a) Ron, (b) Harry, (c) Norbert and (d) Hermione.

946 X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950

Aut
ho

r's

pe
rs

on
al

co

py

distributions with mean values of 50 ms and 10 ms,
respectively.

The workload controlled by FC-ORB has an ietf = 2.
Here we manually configure the task rates in OPEN such
that the workloads achieve the desired utilizations without
the external disturbances. As shown in Fig. 8(a), the system
does achieve the required performance initially. However,
at time 240 s, 360 s, 480 s and 600 s, the external task is
activated sequentially on Ron, Harry, Norbert and Hermi-
one. Consequently, the utilizations of all processors are
raised to 100%. In contrast to OPEN, Fig. 8(b) shows that
FC-ORB successfully maintains the desired utilizations and
thus tolerates the external resource contention. Similar sit-
uations occur for aperiodic disturbance, except that in this
case, both OPEN and FC-ORB have higher fluctuation.
Despite noise introduced by the aperiodic requests, FC-
ORB still successfully maintains the CPU utilization under

80% most of the time and achieves the desired CPU utiliza-
tions on average.

3.5. Experiment IV: Processor failure

In this experiment, we evaluate FC-ORB’s ability to
recover from processor failure. At 800 s, we emulate the
failure of Norbert by using the Linux kill command to
eliminate the process which carries FC-ORB and the appli-
cation. The CPU utilization of Norbert immediately drops
to almost zero because no other application is running on
Norbert. All subtasks on Norbert have backup subtasks
located on other processors as shown in Fig. 4, except
the local task T11,1. Their preceding subtasks on other pro-
cessors detect the communication failure with Norbert and
then redirect the remote operation requests to the backup

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry

norbert hermione

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry

norbert hermione

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

dc

Fig. 7. CPU utilizations of all processors when execution times fluctuate at run-time (ietf = 2). (a) OPEN with global fluctuation; (b) FC-ORB with global
fluctuation; (c) OPEN with local fluctuation and (d) FC-ORB with local fluctuation.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry

norbert hermione

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry

norbert hermione

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

a b

dc

Fig. 8. CPU utilizations of all processors under external disturbances (ietf = 2). (a) OPEN with periodic disturbance; (b) FC-ORB with periodic
disturbance; (c) OPEN with aperiodic disturbance and (d) FC-ORB with aperiodic disturbance.

X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950 947

Aut
ho

r's

pe
rs

on
al

co

py

subtasks. Hence, the load of Norbert is distributed to the
other three processors in the system.

As demonstrated in Fig. 9, the CPU utilizations of the
other three processors increase simultaneously after the
failure of Norbert. At the same time, the controller on
the control processor re-configures itself to rebuild its con-
trol model after it detects the communication failure with
Norbert. Thanks to the utilization control service, the high
utilizations on the other three processors quickly converge
to the desired utilization bounds within 100 s which ensures
desired end-to-end real-time performance. Our results dem-
onstrate that the system successfully recovers from a pro-
cessor failure of a processor and the utilization of the
remaining processors converges to a desirable state that
ensures the real-time properties of the end-to-end
application.

The fault injection using the kill command allows us to
focus on the robustness of the utilization control service
rather than the error detection method. Error detection is
a complementary problem to the FC-ORB adaptation for
error recovery. Our experimental evaluation of the FC-
ORB robustness can be extended to more realistic proces-
sor crash failures assuming an appropriate error detection
method. The time required for error recovery will include
both the time needed for error detection and the conver-
gence of the utilization control service. Formally evaluating
the availability of the distributed application requires the
definition of an appropriate benchmark (Meyer, 1980),
and is a subject of future work.

3.6. Experiment V: Overhead

The utilization control service necessarily introduces
overhead. This overhead is caused by several factors
including the timers associated with FC-ORB, the utiliza-
tion monitoring, the control computation, the rate enforce-
ment and the thread priority adjustment. Utilization
control is a viable middleware service only if the overhead
it introduces is sufficiently low. To measure the overhead
accurately, we adopt a time stamping approach. Firstly,
we differentiate all control service related code from other
FC-ORB code. Then, time stamps are taken at the starting
point and at the finishing point of each segment of the con-
trol service code to get the execution time of the control
service. Since the utilization control service runs at the

highest Linux real-time priority, the code segment between
two timestamps will not be preempted during its execution.
Hence, the time-stamped result accurately reflects the real
execution overhead.

To achieve fine grained measurements, we adopt a nano-
second scale time measuring function called gethrtime. This
function uses an OS-specific high-resolution timer that
returns the number of clock cycles since the CPU was pow-
ered up or reset. The gethrtime function has a low overhead
and is based on a 64 bit clock cycle counter on Pentium
processors. With the clock counter number divided by
the CPU speed, we can get reasonably precise and accurate
time measurements.

Table 1 lists the average and standard deviation of
the overhead of the utilization monitor, the actuator
(including the rate modulator and the priority adjuster)
and the controller of the utilization control service. All
results in the table are obtained from over 600 continuous
sampling periods. The overhead of the utilization monitor
is very low because it just executes around 20 lines of
code to read the utilization data from the Linux system file
/proc/stat.

The actuator has the dominant overhead because it
involves relatively more complicated operations. The rate
modulator and the priority manager are the two main con-
tributors to the actuating overhead. Our implementation
uses the ACE function reset_timer_interval to reset the tim-
ers and the ACE function thr_setprio to adjust the thread
priorities in FC-ORB. In most cases, only the rate modula-
tor is invoked to adapt the task rates by adjusting the inter-
val of the timers. In some periods when the order of the
task rates has been reversed, the priority manager is
invoked to adjust the priorities of the real-time threads.
The overhead of adjusting thread priorities is much larger
than resetting timer intervals and so the standard deviation
of the actuating overhead is large.

To estimate the average computation overhead of the
controller, we measure the execution time of the lsqlin func-
tion in the shared library which dominates the computation
cost on the control processor. We call the lsqlin function
for 1000 times as a subroutine. The result is then divided
by 1000 to get the execution time of a single execution of
the least square computation. As shown in Table 1, the
overhead of the controller is stable with small deviation
and its amount is between that of the monitor and the actu-
ator. Overall, the execution time overhead of all control

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600
Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry norbert hermione

Fig. 9. CPU utilizations of all processors while Norbert has a system
failure (ietf = 2).

Table 1
Overhead of utilization control

Processor Monitor (ms) Actuator (ms) Controller (ms)

Avg. Dev. Avg. Dev. Avg. Dev.

Ron 0.090 0.013 19.078 18.160
Harry 0.096 0.013 34.389 33.305
Norbert 0.094 0.012 39.460 37.223
Hermione 0.088 0.013 27.924 25.951
Controller 5.765 0.219

948 X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950

Aut
ho

r's

pe
rs

on
al

co

py

components in our experiments is around 46 ms per sam-
pling period, corresponding to 1.15% utilization given a
sampling period of 4 s.

4. Related work

Adaptive middleware is emerging as a core building
block for DRE systems. For example, TAO (Schmidt,
2002), dynamicTAO (Kon et al., 2002), ZEN (Klefstad
et al., 2002), and nORB (Subramonian et al., 2004) are
adaptive middleware frameworks that can (re)configure
various properties of ORB middleware at design- and
run-time. Higher-level adaptive resource management
frameworks, such as QuO (Zinky et al., 1997), Kokyu (Gill
et al., 2001) and RT-ARM, leverage lower-level mecha-
nisms provided by ORB middleware to (re)configure
scheduling, dispatching, and other QoS mechanisms in
higher-level middleware. ORB services such as the TAO
Real-Time Event Service (Harrison et al., 1997) and TAO
Scheduling Service (Gill et al., 2001) offer high-level ser-
vices for managing reliability and real-time properties of
interactions between application components. FC-ORB
has several important features that distinguishes itself from
earlier work on adaptive middleware. First, FC-ORB inte-
grates the end-to-end scheduling service with a utilization
control service. This integrated approach enables the mid-
dleware to meet end-to-end deadlines by dynamically con-
trolling the utilizations on individual processors. Second, in
contrast to earlier works that rely on heuristics-based adap-
tive techniques, FC-ORB implements control algorithms
that has been rigorously designed and analyzed based on
a control-theoretic approach. Finally, FC-ORB enhances
traditional fault-tolerance mechanisms with utilization
control techniques to handle processor failures.

Several other projects also applied control theoretic
approaches to real-time systems. For example, Steere
et al. (1999), developed a feedback based CPU scheduler
that coordinated allocation of CPU cycles to consumer
and supplier threads in a modified Linux kernel. Abeni
et al. (2002) presented analysis of a reservation-based feed-
back scheduler. In Lu et al. (2002), a set of feedback con-
trol real-time scheduling algorithms were proposed to
provide deadline miss ratio and utilization guarantees for
single-processor systems. Feedback control real-time
scheduling has also been extended to handle distributed
systems with independent tasks (Stankovic et al., 2001).
For systems requiring discrete control adaptation strate-
gies, hybrid control theory has been adopted to control
state transitions among different system configurations
(Abdelwahed et al., 2003; Koutsoukos et al., 2005). A
key difference between the work presented in this paper
and the related work is that we describe the design and
evaluation of a utilization control service in an ORB mid-
dleware, while the related work is based either on simula-
tions or kernel implementations. ORB middleware is a
particularly suitable layer for managing end-to-end adapta-

tion in distributed systems since it operates at a broader
(distributed) scope than stand-alone operating systems.

In our earlier work we studied EUCON (Lu et al., 2005)
only through control-theoretic analysis and simulation
results. FC-ORB implements and empirically evaluates
the end-to-end utilization service on an ORB middleware
and a physical testbed. Furthermore, we also extend the
EUCON algorithm with controller reconfiguration and
replication techniques for handling processor failures.

Agilos (Li and Nahrstedt, 1999) and ControlWare
(Zhang et al., 2002) were two earlier control-based middle-
ware framework for QoS adaptation. They are targeted at
multimedia and Internet servers instead of DRE applica-
tions. FCS/nORB (Lu et al., 2003) is another real-time
ORB middleware that features a feedback control real-time
scheduling service. However, FCS/nORB only controls the
real-time performance of a single server in a client/server
environment. In contrast, FC-ORB provides an end-to-end

utilization control service in a peer-to-peer architecture for
DRE systems. A key feature of FC-ORB is that it can effec-
tively coordinate the adaptation on multiple interdependent
processors through a distributed feedback control loop.

5. Conclusions

In summary, we have designed and implemented FC-
ORB, a real-time ORB middleware with a novel end-
to-end utilization control service. Our experiments on a
physical testbed has shown that (1) FC-ORB can enforce
desired utilizations on all processors in a DRE system, even
when task execution times deviate significantly from their
estimated values or vary significantly at run-time; (2) FC-
ORB can survive considerable resource contention
imposed by external disturbances; (3) FC-ORB enhances
the robustness of real-time properties to processor failures;
(4) the middleware layer instantiation of the end-to-end uti-
lization control service only introduces a small amount of
processing and memory overhead. These results demon-
strate that the integration of end-to-end utilization control,
fault-tolerance mechanisms, and end-to-end scheduling in
ORB middleware is a promising approach to achieve
robust real-time performance guarantees for DRE applica-
tions. In the future, we plan to enhance FC-ORB to incor-
porate other adaptation mechanisms such as admission
control and task reallocation so that FC-ORB can be
applied to a broader class of applications. An important
research direction is to integrate FC-ORB with advanced
fault detection and recovery in order to handle more com-
plex fault models.

References

Abdelwahed, S., Neema, S., Loyall, J.P., Shapiro. R., 2003. A hybrid
control design for QoS management. In: Proc. of RTSS.

Abeni, L., Palopoli, L., Lipari, G., Walpole, J., 2002. Analysis of a
reservation-based feedback scheduler. In: Proc. of IEEE RTSS,
December.

X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950 949

Aut
ho

r's

pe
rs

on
al

co

py

Brandt, S., Nutt,G., Berk, T., Mankovich., J., 1998. A dynamic quality of
service middleware agent for mediating application resource usage. In:
Proc. of IEEE RTSS, December.

Gärtner, F.C., 1999. Fundamentals of fault-tolerant distributed comput-
ing in asynchronous environments. ACM Comput. Surv. 31 (1), 1–26.

Gill, C.D., Levine, D.L., Schmidt, D.C., 2001. The design and perfor-
mance of a real-time CORBA scheduling service. Real-Time Syst., The
Int. J. Time-Critical Comput. Syst. 20 (2), Special issue on Real-Time
Middleware.

Gokhale, A.S., Natarajan, B., Schmidt, D.C., Cross, J.K., 2004. Towards
real-time fault-tolerant CORBA middleware. Cluster Comput. 7 (4),
331–346.

Harrison, T., Levine, D., Schmidt, D., 1997. The Design and Performance
of a Real-time CORBA Event Service. In: Proc. of OOPSLA.

Kao, B., Garcia-Molina, H., 1997. Deadline assignment in a distri-
buted soft real-time system. IEEE Trans. Parallel Distrib. Syst. 8 (12),
1268–1274.

Klefstad, R., Schmidt, D.C., O’Ryan, C., 2002. Towards highly config-
urable real-time object request brokers. In: Proc. of Symp. on Object-
Oriented Real-Time Distributed Computing. pp. 437–447.

Kon, F., Costa, F., Blair, G., Campbell, R.H., 2002. The case for reflective
middleware. Commun. ACM 45 (6), 33–38.

Koutsoukos, X., Tekumalla, R., Natarajan, B., Lu, C., 2005. Hybrid
supervisory utilization control of real-time systems. In: Proc. of IEEE
RTAS.

Lehoczky, J.P., 1990. Fixed priority scheduling of periodic task sets with
arbitrary deadline. In: Proc. of IEEE RTSS.

Li, B., Nahrstedt, K., 1999. A control-based middleware framework for
QoS adaptations. IEEE J. Selected Areas Commun. 17 (9), 1632–1650.

Liu, J.W.S., 2000. Real-Time Systems. Prentice Hall.
Liu, C., Layland, J., 1973. Scheduling algorithms for multiprogramming

in a hard-real-time environment. J. ACM 20 (1), 46–61.
Lu, C., Stankovic, J., Tao, G., Son, S., 2002. Feedback control real-time

scheduling: Framework, modeling, and algorithms. Real-Time Syst. 23
(1/2), 85–126.

Lu, C., Wang, X., Gill, C, 2003. Feedback control real-time scheduling in
ORB middleware. In: Proc. of IEEE RTAS, May.

Lu, C., Wang, X., Koutsoukos, X., 2005. Feedback utilization control in
distributed real-time systems with end-to-end tasks. IEEE Trans.
Parallel Distrib. Syst. 16 (6), 550–561.

Marti, P., Fohler, G., Fuertes, P., Ramamritham, K., 2002. Improving
quality-of-control using flexible timing constraints: metric and sched-
uling. In: Proc. of IEEE RTSS.

Meyer, J.-F., 1980. On evaluating the performability of degradable
computing systems. IEEE Trans. Comput. 29 (8), 720–731.

Natale M.D., Stankovic, J., 1994. Dynamic end-to-end guarantees in
distributed real-time systems. In: Proc. of IEEE RTSS.

Schlichting, R.D., Schneider, F.B., 1983. Fail-stop processors: An
approach to designing fault-tolerant computing systems. ACM Trans.
Comput. Syst. 1 (3), 222–238.

Schmidt, D., 1995. Reactor: An object behavioral pattern for concurrent
event demultiplexing and event handler dispatching. In: Coplien, J.O.,
Schmidt, D.C. (Eds.), Pattern Languages of Program Design. Addi-
son-Wesley, Reading, MA, pp. 529–545.

Schmidt, D., 1997. Acceptor and connector: Design patterns for initial-
izing communication services. In: Martin, R., Buschmann, F., Riehle,
D. (Eds.), Pattern Languages of Program Design. Addison-Wesley,
Reading, MA.

Schmidt, D.C. et al., 2002. TAO: A Pattern-Oriented Object Request
Broker for Distributed Real-time and Embedded Systems. IEEE
Distributed Syst. Online 3 (2).

Schmidt, D.C., Kuhns, F., 2000. An overview of the real-time CORBA
specification. IEEE Comput. 33 (6), 56–63.

Seto, D., Lehoczky, J.P., Sha, L., Shin, K.G., 1996. On task schedulability
in real-time control system. In: Proc. of IEEE RTSS.

Stankovic, J.A., et al., 2001. Feedback control scheduling in distributed
systems. In: Proc. of IEEE RTSS.

Steere, D.C., Goel, A., Gruenberg, J., McNamee, D., Pu, C., Walpole, J.,
1999. A feedback-driven proportion allocator for real-rate scheduling.
Operating Syst. Des. Implementation, 145–158.

Subramonian, V., Xing, G., Gill, C.D., Lu, C., Cytron, R., 2004.
Middleware specialization for memory-constrained networked embed-
ded systems. In: Proc. of RTAS.

Sun, J., Liu, J.W.-S., 1996. Synchronization protocols in distributed real-
time systems. In: Proc. of ICDCS.

Wang, X., Lu, C., Koutsoukos, X., 2005. Enhancing the robustness of
distributed real-time middleware via end-to-end utilization control. In:
proc. of IEEE RTSS.

Zhang, R., Lu, C., Abdelzaher, T.F., Stankovic, J.A., 2002. ControlWare:
A Middleware Architecture for Feedback Control of Software
Performance. In: Proc. of ICDCS.

Zhao, F., Koutsoukos, X.D., Haussecker, H.W., Reich, J., Cheung, P.,
Picardi, C., 2001. Distributed monitoring of hybrid systems: A model-
directed approach. In: proc. of IJCAI. pp. 557–564.

Zinky, J.A., Bakken, D.E., Schantz, R.E., 1997. Architectural support for
quality of service for CORBA objects. Theor. Practice Object Syst. 3 (1).

950 X. Wang et al. / The Journal of Systems and Software 80 (2007) 938–950

