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Abstract—Recent studies have shown that a significant portion
of the total energy consumption of many data centers is caused
by the inefficient operation of their cooling systems. Without
effective thermal monitoring with accurate location information,
the cooling systems often use unnecessarily low temperature
set points to overcool the entire room, resulting in excessive
energy consumption. Sensor network technology has recently
been adopted for data-center thermal monitoring because of its
non-intrusive nature for the already complex data center facilities
and robustness to instantaneous CPU or disk activities. However,
existing solutions place sensors in a simplistic way without
considering the thermal dynamics in data centers, resulting in
unnecessarily degraded hot server detection probability. In this
paper, we first formulate the problem of sensor placement for hot
server detection in a data center as a constrained optimization
problem. We then propose a novel placement scheme based on
Computational Fluid Dynamics (CFD) to take various factors,
such as cooling systems and server layout, as inputs to analyze the
thermal conditions of the data center. Based on the CFD analysis
in various server overheating scenarios, we apply data fusion
and advanced optimization techniques to find a near-optimal
sensor placement solution, such that the probability of detecting
hot servers is significantly improved. Our empirical results in a
real server room demonstrate the detection performance of our
placement solution. Extensive simulation results also show that
the proposed solution outperforms a commonly used placement
solution in terms of detection probability.

I. INTRODUCTION

Power and thermal management has become a key challenge

in the design of large-scale data centers. In a 2007 report to the

US Congress [1], the Environmental Protection Agency (EPA)

estimated that the annual data center energy consumption

in the US will grow to over 100 billion kWh at a cost

of $7.4 billion by 2011. One of the key reasons for data

centers to have excessive energy consumption is the inefficient

operation of their cooling systems (e.g., a set of Computer

Room Air Conditionings (CRAC)), which can account for up

to half of their energy consumption [1]. Because of the lack

of visibility in the operating conditions of data centers, the

cooling systems often use unnecessarily low temperature set

points to reduce the danger of creating any hot spot. However,

without effective thermal monitoring with accurate location
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information, excessive energy consumption is often caused by

overcooling the entire space [2]. In addition to high electricity

bills and negative environmental implications, the high heat

dissipation, caused by server overheating, may also lead to

the malfunction of many hardware components and even the

shutdown of entire data centers. For example, the most used

online encyclopedia, Wikipedia, went down on July 5th, 2010,

because the failure of a cooling unit caused server overheating

and then the power outage of the data center [3].

To prevent thermal emergencies in a data center with

reduced cooling energy costs, a variety of thermal control

schemes have been recently proposed. For example, HP re-

searchers developed an Adaptive Vent Tile (AVT) technology

[4] to automatically adjust mechanical louvers mounted to

the floor vent tiles so that detected hot areas can get more

cool air. Bash et al. [5] proposed to adaptively adjust the

temperature set point and air flow rate (i.e., fan speed) of each

individual CRAC in a data center. Other control algorithms

(e.g., [6], [7]) have also been proposed to handle detected hot

servers by throttling their CPU frequencies, migrating away

their workloads, or shutting them down if necessary. However,

in order to be effective, all the existing control solutions must

work with certain thermal monitoring mechanisms to ensure

that the locations of hot areas and servers can be accurately

detected and the information can be sent to the controllers

promptly. For instance, in the Wikipedia example mentioned

above, if the hot areas created by the failed cooling unit had

been more accurately detected, the blackout could have been

avoided by effectively directing the air flows of remaining

CRAC units to cool down the overheating servers.

Efficient thermal monitoring is challenging, given the data

centers’ complex air flow and thermal dynamics. Traditionally,

simple thermostats or wired temperature probes are used

to provide coarse-grained thermal monitoring, which cannot

effectively support the monitoring granularity required by the

thermal control schemes to conduct energy-efficient cooling.

Wireless Sensor Network (WSN) technology has recently

been identified as an ideal candidate for data-center thermal

monitoring [8][5] due to several of its salient advantages. First,

it can provide good coverage with accurate localization for

global thermal management decisions in a data center. Second,

it is non-intrusive, as the sensors use wireless communications



and thus require no additional network and facility infras-

tructure in an already complicated data-center environment.

Third, compared to the thermal sensors on motherboards, the

wireless sensors are less sensitive to instantaneous CPU or

disk activities, leading to less noisy thermal readings [8]. It is

also important to note that the wireless sensors used for server

thermal monitoring do not rely on batteries, because plenty of

power resource is provided in data centers.

Although WSN technology has shown promise in data-

center thermal monitoring, an important issue that has been

overlooked by existing solutions is how to optimally place

sensors in a data center such that all the possible overheating

locations are well covered and monitored with maximized

detection probabilities. Currently, many real data centers just

simply place the same number of sensors on each rack

uniformly at a constant distance from each other, without

considering the thermal dynamics in the data center. For

example, in a real data center located in HP Labs in Palo Alto,

five sensors are placed on the front side of each rack from the

top to the bottom to keep the inlet temperature at or below

24◦C for all running servers [6]. Five sensors are used for

each rack because it is usually preferable not to put too many

wireless sensors on a rack for the considerations of space and

cost, due to the very dense installation of high-density servers

(e.g., up to 128 blade servers per rack). In addition, a highly

dense deployment of sensors may cause the wireless network

to have significantly increased levels of channel contention

and thus, unacceptably long communication delays [9][10].

However, such a simplistic sensor deployment strategy may

result in an unnecessarily degraded detection probability. In

contrast, an optimized placement solution can intelligently

place sensors based on the systematic analysis of the thermal

dynamics in the data center, by considering the locations of the

CRAC systems and the server racks, as well as the rack layout

and various air flows in the room. As a result, better coverage

can be achieved for servers that have a greater potential to

become overheating. Consequently, given the same number of

sensors, such an optimized solution can lead to a significantly

improved detection probability and so a better chance for the

existing control schemes to prevent thermal emergencies.

In this paper, we propose a novel sensor placement scheme

for improved hot server detection performance, which can

enhance the thermal control operations in data centers. Our

placement scheme is developed based on the analytical results

from Computational Fluid Dynamics (CFD), a powerful me-

chanical fluid dynamic analysis approach. CFD is widely used

to analyze the fluid dynamics in various engineering fields,

such as aircraft engine design and environmental analysis

for buildings. CFD has already been used by data center

designers to make intelligent decisions on layout design and

rack deployments, but not yet for sensor deployments. In this

paper, we use CFD to model the thermal environment of a

given data center under different thermal emergency conditions

and apply interpolation techniques to improve the thermal

analysis results from CFD. Accordingly, for a given number

of sensors, we seek to place them in the data center so that

the potential overheating servers (due to workload increases,

CRAC failures, etc) at any location can be detected with the

maximum detection probability. We formulate this problem

as a constrained optimization problem based on data fusion

techniques to allow sensors to make collaborative detection

decisions of server overheating. Based on the formulation and

the CFD analysis, we design a heuristic algorithm to find a

near-optimal placement solution with a significantly reduced

computational complexity, despite a huge search space.
Specifically, the contributions of this paper are four-fold.

• While the current WSN-based thermal monitoring solu-

tions in many real data centers rely on simplistic sensor

deployment without considering the thermal dynamics in

the data center, we propose a novel sensor placement

scheme to intelligently place sensors for maximized hot

server detection probabilities.

• We propose to use CFD to model the thermal dynamics

of a data center in various overheating scenarios (e.g., dif-

ferent servers are overheating due to workload increases

or CRAC failures). CFD analysis provides a theoretical

foundation for our sensor placement solution. We apply

interpolation techniques to further refine the analytical

results from CFD.

• We formulate optimal sensor placement as a constrained

optimization problem and propose a heuristic algorithm to

find a near-optimal solution with a significantly reduced

computational complexity.

• We evaluate our sensor placement scheme in a real server

room with 13 racks and more than 100 servers. Both

our empirical and simulation results demonstrate that our

placement solution can significantly improve hot server

detection performance.

The remainder of this paper is organized as follows. Section

II highlights the distinction of our work by discussing related

work. Section III presents the data fusion model we used

and the formulation of the hot server detection problem in

data centers. Section IV introduces the fundamentals of the

Computational Fluid Dynamics approach and provides an

example of how to model a server room in CFD. Section V

elaborates on how to use the analytical results from CFD in our

sensor placement problem and proposes a heuristic algorithm

to solve the problem. In Section VI, we evaluate our sensor

placement scheme using simulations and in a real server room.

Section VII concludes the paper and discusses the possible

future work.

II. RELATED WORK

Thermal management in data centers has been widely

studied in the past. Moore et al. have proposed a temperature-

aware workload placement scheme for data center [7]. Opti-

mization schemes for data center thermal management using

model-based approaches have been proposed in [11][12]. An

automated, online, predictive thermal management scheme

for data centers is also proposed in [13]. However, none of

the above mentioned studies has explored the possibility of

using wireless sensor networks. Several projects have adopted



sensor networks in data center for temperature monitoring. For

example, a hybrid wired and wireless sensor network is used

in [8] for data center thermal monitoring. A sensor network

is also used in [5] to manipulate conventional CRAC units

within the data center. However, none of the past methods

addresses how to intelligently deploy sensors to improve the

hot server detection performance. Our work is different from

all the aforementioned research. We not only explore the

benefits of using wireless sensor networks for temperature

monitoring in data centers, but also maximize the detection

probability of the potential overheating servers. It is important

to note that our sensor placement solution is complementary to

existing thermal control scheme (such as [4][5][6][7]) because

more accurate thermal monitoring can significantly enhance

the performance of thermal control. For example, as shown in

[5], even a very simplistic deployment of temperature sensors

can lead to a 50% saving in cooling energy.

Computational Fluid Dynamics (CFD) has been used to

model the data center operating environment and server rack

operating conditions. Patel et al. have used CFD in [14] to

model and analyze the air temperature specification in the

data center. Impact of CRAC failures on static provisioning

has also been studied using CFD models in [15]. Jeohwang

et al. have modeled the thermal profile for an operating rack

in detail in [16] to provide a bridge between the individual

component thermal status and data center thermal profile.

Different from all the previously mentioned studies, our paper

uses CFD to model different thermal emergency situations in

data centers when servers (or racks) are overheating at any

possible locations. We then use the CFD modeling results

to guide the sensor deployment for the various overheating

conditions, such that any thermal emergency associated with

server workload dynamics or CRAC failures can be effectively

monitored and reported by the sensor network.

Target detection and monitoring is one of the most im-

portant tasks of wireless sensor networks. Several existing

projects have explored how to deploy sensors effectively to

improve the detection and monitoring performance. A sensor

placement scheme based on the Multivariate Gaussian Process

model is proposed in [17], which provides most informative

results after the data training period. A fast sensor placement

approach for fusion-based target detection is proposed in [18]

to minimize the number of deployed sensors while achieving

assured detection performance. Different from these previous

schemes of sensor deployment, the sensor deployment ap-

proach we propose leverages on the computational results from

CFD which analyzes the thermal condition of a monitored

field based on theoretical thermal dynamics. Furthermore, the

model training approach proposed in [17] is not applicable

for data center thermal emergency monitoring, because the

thermal emergency scenario should not be created simply for

the collection of training data.

III. HOT SERVER DETECTION PROBLEM

In this section, we first introduce the hot server (hot spot)

detection model in sensor networks. We then formally formu-

late the data center hot server detection problem.

A. Hot Server Detection Model

It is always desirable to cover as many locations as possible

in the thermal monitoring of a data center. For example, we

may want to monitor the temperature at the inlet or outlet

of each rack or even each server. Therefore, the number of

monitored locations in a large data center is usually large. It is

therefore unrealistic to deploy an individual sensor for every

monitored location, especially in a wireless sensor network

environment. It is not only because of the space limitation and

cost, but also because of the resulting high network density. A

very dense wireless sensor deployment often leads to undesired

network communication quality because of severe interfer-

ences and channel contentions among wireless transmissions

[9][8]. To conduct data center temperature monitoring and hot

server detection with a reasonable number of sensors, sensor

nodes should collaborate with each other when making de-

tection decisions. Data fusion [19][20][21], a widely adopted

technique for improving the detection performance of sensor

systems by collaboration, is well-suited in this scenario.

It is clear that temperatures at the locations far from a heat

source are less likely to be correlated with this source. There-

fore, we define a fusion region of each monitored location

as a sphere with a fusion radius R, where the monitored

location is the center of that sphere. The sensors within the

fusion region of a monitored location should collaborate to

make the detection decision for that location. We adopt a data

fusion scheme which calculates the average temperature from

all the sensors within the fusion region of the monitored spot

and compare the average value with a detection threshold η.

If the average temperature is larger than the threshold, the

decision of a hot server detection is positive.

The measurements of a sensor are usually corrupted by

noise. Denote the measurement noise strength measured by

sensor i as Ni, which follows the zero-mean normal dis-

tribution with a variance of σ2, i.e., Ni ∼ N (0, σ2). The

final measured temperature, Tm, from a sensor at location

(xi, yi, zi) can be presented as

Tm(xi, yi, zi) = Tr(xi, yi, zi) +N2
i (1)

where Tr is the real temperature at that location without noise.

Assuming there are n sensors within the data fusion region

of a monitored spot, the detection probability of the hot server

existence at the monitored point can be calculated as

PD = P

(

1

n

n
∑

i=1

(Tr(xi, yi, zi) +Ni
2) > η

)

= 1− P

(

n
∑

i=1

(

Ni

σ

)2

≤
nη − Σn

i=1Tr(xi, yi, zi)

σ2

)

(2)

where η is the detection threshold of overheating. Because of

the measurement noise from the sensor device, η is different

from the real temperature threshold for a hot-spot, denoted as

C. With a high noise level from the measurement, a detection



system is likely to give a false alarm when there is no real

event. In our case, we define the false alarm rate when there

is actually no hot server as follows

PF = P

(

1

n

n
∑

i=1

(

Ni
2 + C

)

> η

)

= 1− P

(

n
∑

i=1

(

Ni

σ

)2

≤
n (η − C)

σ2

) (3)

We assume Gaussian Noise, i.e., Ni/σ ∼ N (0, 1). There-

fore,
∑n

i=1(Ni/σ)
2 follows the Chi-square distribution [22]

with n degrees of freedom, denoted as χn(·). Hence, Equations

(2) and (3) can be modified as follows

PD = 1− χn

(

nη − Σn
i=1Tr(xi, yi, zi)

σ2

)

(4)

PF = 1− χn

(

n (η − C)

σ2

)

(5)

B. Problem Formulation

We assume that there are M locations (e.g., blade servers)

in the data center room for which we need to monitor

temperature. Given a limited number of sensors, N < M , we

need to find the placement of these N sensors such that we can

detect the overheating emergency at any of the M locations

with the highest possible confidence. Before presenting our

formal formulation, we first introduce the following notation:

• li, monitored location i with location coordinates (xli,

yli, zli).
• PFi

, the false alarm rate of reporting an overheating

emergency at li.
• PDi

, the detection probability of an overheating emer-

gency at li.
• ni, the sensor number within the fusion region of li.

Our goal is to maximize the average detection probability

of all the monitored locations

max
1

M

∑

1≤i≤M

PDi
(6)

subject to the following constraint

PFi
≤ α ∀1 ≤ i ≤ M (7)

where α is the detection false alarm rate requirement. We note

that the false alarm rate needs to be bounded in many practical

scenarios due to the waste of system resources. Note that net-

work connectivity can be another constraint to be considered

in our formulation to ensure that every sensor is connected

to the network for effective data fusion. However, due to the

high-density installation of servers (e.g., blade servers) in the

data center, our experience shows that connectivity is not a

major concern, because the communication range of a wireless

sensor is 30m indoors [23].

For a certain sensor placement, PFi
≤ α is a necessary

condition in our problem. By Equation (5), we convert the

constraint in Equation (7) to ηi ≥
σ2χ−1

n
(1−α)

ni
+C, a constraint

for the detection threshold η at monitored location i, where

χ−1
n (·) is the inverse function of χ(·). Using this equation,

we can obtain the desired detection threshold based on the

required false alarm rate and use it to calculate the detection

probability. From Equation (4) we know that PDi
decreases

when ηi increases. Therefore, to maximize the detection

probability, we remove the inequality in the constraint and

only use the lower bound α. Hence, ηi can be calculated as

ηi =
σ2χ−1

n (1− α)

ni

+ C (8)

IV. CFD MODELING FOR DATA CENTER

In this section, we first introduce Computational Fluid

Dynamics (CFD), the tool we use to analyze the thermal

conditions in a data center. We then provide an example of

how to model a server room in practice using Fluent [24], a

widely used CFD modeling software package.

A. CFD Modeling

CFD is a fluid mechanics approach that analyzes problems

of fluid flows based on numerical methods and algorithms.

The key for CFD modeling is to solve the governing transport

equations represented in the following conservation law form:

∂ρφ

∂t
+

∂ρUjφ

∂xj

=
∂

∂xj

(Γφ,eff

∂φ

∂xj

) + Sφ (9)

where φ represents different parameters such as mass, velocity,

temperature or turbulence properties; ρ is the fluid (air) den-

sity; t is the time for transient simulations; xj is the coordinate

variable for x, y or z with j being 1, 2 or 3; Uj is the velocity

in different directions; Γ is the diffusion coefficient; and S is

the source for the particular variable. For example, when φ
is the air temperature, S stands for the volumetric heat rate

from a source component. The four equation terms represent

transient, convection, diffusion, and source parts of transport

phenomenon taking place in the spatial domain [25].

The partial differential equations listed in Equation (9)

represent a system, where all the transport equations are

coupled together and require to be solved simultaneously.

For a complicated environment, such as a data center, no

closed-form solutions can be found for the airflow and heat

transfer of the entire system. Therefore, the most fundamental

consideration in CFD is how to treat a continuous fluid in

a discretized fashion, such that numerical methods can be

applied to find the solutions. Most CFD software packages

apply the control volume method to find numerical solutions.

B. Example of Server Room CFD Modeling

Using CFD to perform a continuous fluid model requires the

discretization of the spatial domain. One method to achieve

this goal is to discretize the spatial domain into small cells

by generating volumetric grid. After the discretization, neces-

sary boundary conditions and suitable algorithms need to be

applied to solve the above-mentioned transport equations. Sev-

eral popular software packages, such as Fluent, FloTHERM,
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FloVENT, and PHOENICS, can be used for CFD modeling

purpose. In our project, we use Fluent, a widely used CFD

software package from ANSYS Inc., to perform the spatial

domain meshing and solution finding, respectively.

The CFD model we establish in this example is for the

server room in the EECS department at the University of Ten-

nessee, Knoxville, whose top view layout is shown in Figure

1. As introduced before, CFD has already been used by data

center designers to make intelligent decisions on layout design

and rack deployments, but not yet for sensor deployments. In

this paper, our goal is to use CFD to model various server over-

heating scenarios, such that sensor placement can be guided

for improved thermal emergency detection performance. In the

first step, we use Gambit, which is a grid generator, to perform

the geometry establishment for this room. Basically, we choose

different geometric shapes and perform unification or split to

establish the geometric model for the entire server room based

on the real measured scales. Then we add different geometric

shapes into the entire room geometry to model server racks and

Computer Room Air Conditioning (CRAC) units according to

their geographic location and corresponding scale. To simplify

the complexity of the server room modeling, we group the

servers in each rack into 4 blocks from top to bottom by

equal physical size, as shown in Figure 2. This approach was

also adopted by other projects, such as in [14], to simplify

the geometric establishments in CFD modeling. We plan to

handle more complex CFD modeling in our future work.

After all components are added into the geometric model,

we need to specify different boundary types, such as walls,

the inlets/outlets of air conditioning units, and interior faces

within the entire room domain. The last step is to divide the

entire geometric model into smaller scale cells by applying

geometry meshing in Gambit. The grid size is a user-specific

parameter. With a fine grid, more accurate CFD modeling can

be reached. However, a fine grid increases the computational

burden in later on stages, when solving the transport equations

by numerical methods. Figure 2 shows an example of using

Gambit to perform the geometric mesh for a server rack.

After meshing the entire server room geometrically in

Gambit, we export the grid to the second software package,

Fluent, to solve the transport equations in Equation (9). Fluent

requires all the boundary conditions of our geometric model to

be specified. For example, we need to specify the temperature

of the incoming cold air from all the CRAC units. We also

need to specify the power dissipation of each server rack

(block), as well as the fluid velocity of each server block.

The standard k-epsilon two-equation turbulence model is used

to simulate the turbulent flow. The governing equations were

solved with numerical schemes of secondary accuracy. Figure

3 shows a colored temperature map after solving the transport

equations in Fluent. This is a scenario in which all the server

racks are running with maximum power. We can see that the

back sides of server racks are significantly hotter than the front

sides.



V. CFD-GUIDED SENSOR PLACEMENT

In this section, we introduce how to use the results from

the CFD analysis to guide sensor placement, targeting the

maximum hot server detection probability. We also design

a heuristic algorithm for solving this detection probability

maximization problem.

A. Overview of Our Approach

Using CFD tools for our sensor placement primarily in-

volves two steps. In the first step, we establish a geometric

model for the data center room in Gambit, mesh the geometry

and export the grid to Fluent. We then take measurements

for the incoming cold air temperature and air flow rate from

the inlet of every CRAC unit. These measurements, along with

the power consumption of each block, are the input parameters

to Fluent. In order to detect a potential overheating scenario,

we set the power dissipation of each rack to the overheating

scenario, one rack at a time, and solve the temperature distri-

bution for each overheating scenario by an iterative solution

procedure in Fluent.

In the second step, we feed the results from the CFD

analysis of all the overheating scenarios to our optimization

algorithm to find the best locations for sensor placement.

For detection locations, we assume that our sensor placement

needs to monitor the temperature of the center point at the back

face of each block. To solve the placement problem efficiently,

we develop a heuristic algorithm based on the Constrained

Simulated Annealing approach [26]. Since the results from

the CFD analysis are temperatures at discretized locations, our

algorithm features a temperature interpolation approach [27]

to interpolate the missing values from the CFD results. Both of

these two approaches are explained in detail in the following

sections.

B. Spatial Temperature Interpolation

As explained in the previous section, the results from

the CFD tools are temperatures at discretized locations. The

granularity of the data set depends on the density of the grid

in the previous geometric model establishment in Gambit.

There is a trade-off between granularity and performance.

A higher density grid means a finer grained granularity of

the data and more accurate results. However, it also requires

more significant computational resources, i.e., computational

time and memory size. Therefore, in our design, we choose a

granularity of approximately 10cm for our model. This choice

results in a one-time running expense of Fluent for less then

two hours. For temperature-unknown locations, we choose to

interpolate the data.

There are various kinds of spatial interpolation methods

[28]. The measuring target in our project is temperature, which

is spatially continuous and short range correlated. Therefore,

we choose to use the Inverse Distance Weighting (IDW)

[27] technique to interpolate the temperature. IDW method

estimates the value of an attribute at unsampled points by

linear combination of values at sampled points weighted by

an inverse function of distance from the sampled point to

the interpolating target point. Denote the interpolation target

point as l0 and the known sampled points as li, the detailed

interpolation is calculated as

T (l0) =

n
∑

i=1

λiT (li) (10)

where λi is the weight of each elements, which can be

expressed as

λi =
1/dpi

∑n

i=1 1/d
p
i

(11)

where di is the distance between l0 and li, p is a power

parameter, and n is the number of sampled points used for

the estimation. In our approach, we adopt the same range

as the fusion radius R in Section III and include all the

known temperature points from CFD within that range from

the interpolating target point.

The assumption behind IDW is that sampled points closer

to the unsampled interpolating target are more similar to the

target than those further away points in their values. The main

factor affecting the accuracy of IDW is the value of the power

parameter. The choice of power parameter p is arbitrary. The

most popular choice of p is 2 and the resulting method is often

called the Inverse Square Distance (IDS). Hence, we adopt 2

as the power parameter.

C. Lightweight Sensor Placement (LSP) Algorithm

Our goal is to find the optimal sensor placement locations

to maximize the average detection probability of all the

monitored locations. Since every sensor has three location

coordinates, with N sensors to be placed in the domain, we

need to solve a problem with 3N variables. A straightforward

approach to this problem is to solve this entire problem at

once. This can be achieved by a nonlinear programming

solver based on the Constrained Simulated Annealing (CSA)

algorithm [26]. CSA is an extension of the conventional Sim-

ulated Annealing algorithm for solving the global constrained

optimization problem with discrete variables. Theoretically,

CSA can reach a global optimal solution by converging asymp-

totically to a constrained global optimum with a probability

of 1. However, a limitation of CSA is that its computational

complexity grows exponentially with respect to the number of

variables and the solution search space [26][18]. The execution

time of the algorithm can reach up to thousands of days with

hundreds of sensors to place [18]. Therefore, it is not realistic

to solve the entire placement problem as a whole. In this paper,

we design a lightweight optimization algorithm based on CSA

to reduce the complexity of the algorithm and find a near-

optimal solution to our sensor placement problem.

First, we reduce the search space of the entire problem

by dividing the entire search domain, i.e., the server room,

into several clusters. For example, from Figure 1 we see that

servers can be grouped based on their geographical locations

such that the distance between two groups is greater than the

desired fusion range. It is not feasible to calculate a solution

in CSA while some sensors are placed outside the fusion

region of any monitored locations. Therefore, we group the



monitored locations into clusters according to the rule that for

a monitored location li to be in a cluster, at least one other

location in the same cluster should be within a 2R distance of

li. R is the fusion radius defined in Section III. The reason for

choosing 2R as the clustering parameter is that if a monitored

location li is not within the 2R range of any other monitored

location in one cluster, C, no sensor can cover li and any

location in C at the same time. Therefore, li should not be

put in cluster C. After the clusters are formed, we calculate a

new search space Sk for cluster Ck by the following equations

Skumin
= min

∀li∈Ck

liu −R

Skumax
= max

∀li∈Ck

liu +R
(12)

where u is one of the coordinate subscripts, x, y, or z. Figure

1 shows an illustration of the clusters (doted boxes) in which

the search space is significantly reduced.

Algorithm 1 LIGHTWEIGHT SENSOR PLACEMENT(D)

Input: Sensor number N, Cluster Information : Ck, Sk,
K, CFDdata

Output: Placement solution D
1: dj = 0 for all 1 ≤ j ≤ K
2: P̄j [N ] = 0 for all 1 ≤ j ≤ K
3: for i = 1 to N do

4: ∆P = 0
5: for j = 1 to K do

6: n = dj + 1
7: if n > nj then

8: [P̄j [n], Dj[n]]
9: = CSA(n, Sj , Cj , CFDdata)

10: nj = n
11: end if

12: ∆P ′ = nP̄j [n]− djP̄j [dj ]
13: if ∆P ′ > ∆P then

14: k = j
15: ∆P = ∆P ′

16: end if

17: end for

18: dk = dk + 1
19: D = ∪K

j=1Dj [dj ]
20: end for

21: return D

We now introduce the heuristic algorithm for solving the

placement problem, based on the clusters and the CSA solver.

In our algorithm, we add sensors to the entire monitoring

domain one by one. The question is which cluster should

take in the new sensor. We calculate the increments of the

global average detection probability by adding the new sensor

to each particular cluster. The increments of average detection

probability, when adding the new sensor to a specific cluster,

is calculated by the CSA solver within the search space of

that cluster. After calculating all the clusters with the new

sensor added in, we choose the cluster that adds the most

incremented global average probability and add the new sensor

to it. Note that in this step we do not need to calculate the

result for every cluster, because the clusters that are not picked

by the last sensor have already been calculated in the last

round for the new sensor number. Therefore, the computational

time is significantly reduced. Another reason that the LSP

algorithm can decrease the computational complexity is that

the benefit of adding a sensor to a specific cluster is greater

when fewer sensors were previously in that cluster. Therefore,

the algorithm favors adding sensors to clusters which have

fewer sensors. This reduces the number of variables when

using the CSA solver. The pseudo code of this algorithm is

listed in Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we first explain the setup of our experi-

ments. We then evaluate our sensor placement approach with

simulations and on a hardware testbed in a real server room.

We conduct our analysis and hardware experiment based

on the CFD model of the server room shown in Figure 1.

There are 13 racks in the server room. Each rack is divided

into 4 blocks, with one monitored location at the center of the

back face of each block, leading to 52 monitored locations

in total. We use CFD to model the rack overheating scenario

for all 13 racks one by one. The CFD output data for all 13

scenarios is collected as the input to the sensor placement

algorithm. For each rack overheating scenario, we set the

power dissipation of the overheating rack to 3600 Watts per

block, thus 14,400 Watts for a whole rack, which is the

same parameter used in [14]. We collect the temperatures

and rates of the CARCs’ cold air flows using the Tri-Sense

digital temperature indicator from Cole-Power [29]. Due to the

estimation errors in the CFD software, the computational result

from CFD can slightly deviate from the real temperatures in

the room. We need to calibrate the data from CFD before

using it as input to the sensor placement algorithm. We run the

CFD computation for the normal operating server room with

a normal workload (server power dissipation) and compare

the result from CFD with the real temperature data collected

from all the racks, shown in Figure 4. We then derive an offset

temperature change δT by the least square error method based

on these sample data. The offset value is then compensated

back to CFD results for all locations. The calibrated CFD

data in Figure 4 is the compensated data at the corresponding

locations.

In our analysis, we compare our sensor placement

scheme, CFD+LSP , with two baseline approaches:

CFD+Proportional and Uniformly Random. The two

baselines differ from CFD+LSP in that they use different

strategies to add sensors to clusters. In Uniformly Random,

sensors are deployed evenly into clusters. Within a cluster,

the placement of sensors is random. In CFD+Proportional,
sensors are placed in the cluster based on cluster size. A

cluster with a larger size gets more sensors. The placement

in each cluster is derived from the CSA algorithm with the

CFD results as input.
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A. Simulation Results

In this section, we evaluate the different placement schemes

with the numerical results. In the first experiment, we explore

the average detection probability performance under different

sensor numbers. We first show a comparison between different

placement performances with the global optimal results. The

global optimal results are derived by running CSA solver

to solve the placement problem for the entire room without

dividing servers into clusters. Because of the tremendously

high computational complexity, we are only able to run the

optimal solution with, up to three sensors. The results are

shown in Figure 5. We can see that CFD+LSP shows the

closest performance to the global optimal solution with only an

approximately 7% difference, while the other two placement

schemes are further away from the global optimal solutions.

This demonstrates that CFD+LSP can better approximate

the global optimal solutions.

Figure 6 shows the detection probability performance

with more sensors. Compared with Uniformly Random,

CFD+LSP shows a performance improvement of more

than 100%. This is because the CFD+LSP scheme utilizes

the theoretical anlaysis results from CFD as the basis of

the placement algorithm, while Uniformly Random does

not have any theoretical gurantee when placing the sensor.

CFD+LSP also shows a 10% incremental increase in the
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detection probability over CFD+Proportional. The reason

for this improvement is that when choosing a cluster to place

each sensor in, we consider the global maximum improve-

ment, while CFD+Proportional only considers the optimal

placement in each individual cluster.

Figure 7 shows the results of the second experiment, in

which we vary the temperature threshold when solving the

placement problem. With a higher temperature threshold, it

is harder to detect a presence of overheating. Ten sensors

are placed by each placement algorithm. From the results

we see that CFD+LSP shows the best detection probabil-

ity. It can reach a 60% detection probability even with the

highest temperature threshold, while Uniformly Random
simply does not work when the temperature threshold is

high. CFD+Proportional shows worse performance than

CFD+LSP . CFD+LSP is the best method since it consid-

ers the global maximum when solving the placement solutions.

In the next experiment, we explore the performances of the

different placement approaches with different fusion radius

settings. The results are shown in Figure 8. With the fusion

radius increasing, the average detection probability increases

at first, for all three approaches. This is because with a larger

fusion radius, more sensors can be involved in the decision

making of an overheating location. However, when the fusion

radius is larger than 1m, the average detection probability
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begins to decrease. This is because several distant sensors are

included in the fusion region of monitored locations when

the fusion radius is high, leading to a distortion of the fusion

result. Among all three placement schemes, the CFD+LSP
performs best with an approximately 90% average detec-

tion probability when the fusion radius is 1m. Uniformly
Random performs the worst with only, at most, a 30% average

detection probability.

In the the last simulation experiment, we vary the false

alarm rate requirements to different values. The results are

shown in Figure 9. We see that when the false alarm rate

increases from 0.02 to 0.1, the average detection probability

increases slightly. For CFD+LSP , the increase of the average

detection probability is approximately 6%. Among all three

sensor placements, CFD+LSP performs best, outperforming

the Uniformly Random placement by about 200% on the

average detection probability. It also shows an improvement

of more than 10% over the CFD+Proportional placement.

B. Hardware Testbed Results

In this section, we show the experimental results from our

testbed in the server room. Due to limited allowed access

to the server racks, we establish our testbed in the cluster

with 2 racks at the right bottom corner of the server room,

as shown in Figure 1. With two racks, the cluster has 8

blocks, i.e., 8 monitored locations in total. Since we are not

allowed to change the workloads of the servers to make them

Fig. 10. Front and back sides of the server racks used in hardware
experiments (the heater used to emulate overheating server is highlighted).
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overheating, in order to emulate server overheating at each

monitored location, we place a small fan heater at the back

of the rack to heat up the air around the monitored location,

one at a time, as shown in Figure 10. The labeled peak power

usage of the heater is 1,500W. Because the heater and a real

overheating server still have different thermal behaviors, the

CFD results for the entire server room cannot be directly

applied. Therefore, we calibrate the CFD model by using

Telosb motes to collect the temperature data in the overheating

scenarios. The calibrated model is then used to guide our

placement algorithm to find the near-optimal sensor placement

solutions. We compare our LSP scheme with a baseline

called Uniform, which is similar to the uniform-distance

deployment strategy adopted in many real data centers [6][5].

Four sensors are used for the two racks in both methods. In

Uniform, two sensors are placed on each rack, with one at

the 1/4 height and the other at the 3/4 height of the rack.

Figure 11 shows the average detection probability under

different overheating temperature thresholds. Each point is

the average of 20 repeated experiments. The results show

that LSP significantly improves detection performance under

all thresholds due to its better sensor placement. When the

threshold is 31◦C, LSP ’s detection probability is twice that

of Uniform. Figure 12 shows the temperatures reported by

the sensors when the heater is placed at the 8 monitored

locations in the case when the temperature threshold is 31◦C.

We can see that all the overheating scenarios are correctly
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detected (temperature exceeding the threshold) by LSP due

to its optimized sensor placement for maximized detection

probability in the entire 8 monitored blocks. In contrast,

Uniform can only detect some of the overheating scenarios

with a commonly used uniform sensor deployment strategy.

VII. CONCLUSIONS AND FUTURE WORK

Efficient thermal monitoring is critical for today’s data

centers to significantly reduce cooling energy consumption and

operating costs. WSN technology has recently been identified

as an ideal candidate for data-center thermal monitoring.

However, existing solutions adopted by real data centers

place sensors in a simplistic way without considering the

thermal dynamics in data centers, resulting in an unneces-

sarily degraded detection probability. In this paper, we have

presented a novel sensor placement scheme for hot server

detection in data centers based on CFD analysis of thermal

dynamics. Our solution features a heuristic algorithm that

significantly reduces the computational complexity of finding

a near-optimal sensor placement scheme for maximized hot

server detection probabilities. Our initial empirical results on a

hardware testbed and simulation results both demonstrate that

our placement solution outperforms a commonly used uniform

placement solution in terms of detection probability.

While our work presents an initial but promising study of

intelligent sensor placement in data centers, we plan to make

several further improvements in our future work. First, we plan

to conduct finer-grained CFD modeling for improved analysis

of thermal dynamics. Second, we plan to obtain access to more

server racks so that we can conduct larger-scale hardware

experiments to demonstrate the efficacy of our solution in

detecting hot servers in the entire server room. Finally, we

will integrate our sensor placement scheme with well-known

thermal control approaches for a complete thermal control

loop with both monitoring and actuation in data center cyber-

physical systems.
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