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Abstract—Modern data centers must provide performance
assurance for complex system software such as multi-tier
web applications. In addition, the power consumption of data
centers needs to be minimized to reduce operating costs and
avoid system overheating. Various power-efficient performance
management strategies have been proposed based on dynamic
voltage and frequency scaling (DVFS). Virtualization tech-
nologies have also made it possible to consolidate multiple
virtual machines (VMs) onto a smaller number of active
physical servers for even greater power savings, but at the
cost of a higher overhead. This paper proposes a performance-
controlled power optimization solution for virtualized data cen-
ters with multi-tier applications. While existing work relies on
either DVFS or server consolidation in a separate manner, our
solution utilizes both strategies for maximized power savings
by integrating feedback control with optimization strategies.
At the application level, a multi-input-multi-output controller
is designed to achieve the desired performance for applications
spanning multiple VMs, on a short time scale, by reallocating
the CPU resources and DVFS. At the data center level, a
power optimizer is proposed to incrementally consolidate VMs
onto the most power-efficient servers on a longer time scale.
Empirical results on a hardware testbed demonstrate that
our solution can effectively achieve performance-assured power
savings. Extensive simulation results, based on a trace file of
5,415 real servers, demonstrate the efficacy of our solution in
large-scale data centers.

I. INTRODUCTION

In recent years, power has become one of the most impor-

tant concerns for enterprise data centers hosting thousands

of high-density servers and providing outsourced business-

critical IT services. A well-known approach to reducing

power consumption is to transition the hardware components

from high-power states to low-power states whenever perfor-

mance allows. For example, a widely used power-efficient

server design is to have run-time measurement and control

of the desired application performance by adjusting the CPU

power states using Dynamic Voltage and Frequency Scaling

(DVFS). However, while this approach can effectively re-

duce the dynamic power of the system, it cannot minimize

the system leakage power for maximized power savings.

Recently, many data centers have begun to adopt server

virtualization strategies for resource sharing. Virtualization

technologies such as VMware and Xen can consolidate

applications previously running on multiple physical servers

onto a smaller number of physical servers, effectively reduc-

ing the power consumption of a data center by shutting down

unused servers. More importantly, live migration [3] allows

the movement of a virtual machine (VM) from one physical

host to another with a reasonably short downtime [7]. This

function makes it possible to use server consolidation as an

online management approach, i.e., having run-time estima-

tion of resource requirements of every VM and dynamically

re-mapping VMs to physical servers using live migration.

When a more power-efficient VM-server mapping is found,

unused servers can be put into the sleep mode for reduced

power consumption.

While power consumption must be minimized, an impor-

tant goal of data center operators is to meet the service-level

agreements (SLAs) required by customers, such as response

time and throughput. SLAs are important to operators of

data centers because they are the key performance metrics

for customer service and are part of customer commitments.

Therefore, it is important to guarantee the SLAs of the

applications while minimizing the power consumption of the

data center.

Guaranteeing the desired SLAs with minimized power

consumption introduces several major challenges. First,

complex system software, such as web applications, com-

monly has multi-tier installations. Thus, an application

may span multiple VMs. This characteristic calls for ad-

vanced Multi-Input-Multi-Output (MIMO) control solutions

to manipulate multiple VMs simultaneously. Second, web

applications often face significant, unpredictable workload

variations. To guarantee SLAs, a control solution must

respond to a workload variation quickly by adjusting system

resource allocation (e.g., CPU time on each server). This

cannot be achieved by migrating some VMs among the

servers because a VM migration typically requires seconds,

or even minutes, to finish. Finally, servers in a data center

may be manufactured by different hardware vendors and

have different power efficiencies, i.e., some servers are more

power-efficient than others. A power management solution

must be able to utilize this kind of heterogeneity to further

reduce the total power consumption.

It is important to integrate application-level performance

control and data center-level server consolidation for max-

imized power savings due to two reasons. First, most ex-

isting work of VM placement assumes that the resource

requirements of the VMs are known a priori or can be

estimated through measuring the resource utilization. How-

ever, resource utilization commonly differs from resource re-

quirements, especially when the server is overloaded. Thus,

it is preferable to have an application-level performance

controller that can dynamically allocate system resource in
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response to application requirement variations. Second, a

performance controller may fail to guarantee the application

performance when the server is overloaded due to possible

workload increase. Therefore, it is preferable to have a data

center-level consolidation algorithm to dynamically re-map

VMs to physical servers to resolve the overload problem.

In this paper, we propose an integrated management

solution to minimize power consumption for virtualized

data centers while providing application-level performance

assurance. Each application-level performance controller

adopts a MIMO control strategy to maintain the desired

performance and reduce power consumption through DVFS

and dynamic CPU resource reallocation. The data center-

level power optimizer then consolidates the VMs onto the

most power-efficient servers and places unused servers into

the sleep mode for power savings on a much longer time

scale, to amortize the migration overhead. Specifically, the

contributions of this paper are four-fold:

• We design a performance controller for multi-tier ap-

plications running in one or more virtual machines

based on MIMO control theory, and analyze the control

performance.

• We design a power optimizer that consolidates VMs

onto a smaller number of physical servers in the data

center based on the resource requirements determined

by the application-level performance controllers to

achieve minimized power consumption.

• We introduce the system architecture of our integrated

power management solution, and the implementation

details of each component.

• We present both empirical results on a hardware testbed

and simulation results to demonstrate that our solution

can effectively reduce data center power consumption

while achieving the desired response time for multi-

tier applications hosted in the data center. In addition,

we show that our solution outperforms a state-of-the-art

baseline, pMapper [22].

The rest of the paper is organized as follows. Section

II highlights the distinction of our work by discussing

related work. Section III introduces the overall architecture

of our power management solution. Section IV presents

the modeling, design, and analysis of the response time

controller. Section V discusses our power optimizer. Section

VI describes the implementation details of our testbed and

simulator. Section VII presents the results with Section VIII

concluding the paper.

II. RELATED WORK

Power consumption is one of the most important design

constraints for high-density servers. The majority of the

prior work has attempted to reduce power consumption

by improving the energy-efficiency of individual server

components [12]. Several research projects have successfully

developed power management algorithms at the server level

[13], the cluster level [1, 16, 20, 23], and the data center

level [24]. More closely related to this paper, Heo et al.

[6] developed a power optimization algorithm using DVFS

and shutting down unused servers for large-scale applica-

tions spanning several non-virtualized servers with a load

balancer. In contrast to their work, our solution provides

even greater power savings by consolidating underutilized

servers onto a smaller number of active servers.

Virtualization technology has provided a promising way to

manage application performance by dynamically reallocat-

ing resources to VMs. Several management algorithms have

been proposed to control application performance for virtual-

ized servers [2, 11, 17, 18, 26, 27]. For example, Padala et al.

[17] proposed to control throughputs for virtualized servers.

In contrast, our algorithm controls response time, a user-

perceived performance metric. In addition to performance

assurance, we integrate DVFS with server consolidation for

maximal power savings. Furthermore, most existing work

assumes simple single-tier applications [2, 18, 26, 27] while

our solution relies on novel MIMO control theory to deal

with complex web applications that may span multiple VMs.

VM migration is an important tool for resource and power

management in virtualized computing environments. Some

prior work focuses on using migration to satisfy the resource

requests of VMs [8, 10, 25, 28]. In contrast, our work takes

the total power consumption of the cluster as the design goal

and designs a power-efficient algorithm while guaranteeing

the desired performance requirements. Several recent studies

propose to solve the VM-server mapping problem for power

savings [10, 19, 21, 22]. For example, Raghavendra et al.

[19] used a greedy bin-packing algorithm as part of their

coordinated control solution to minimize power consumption

in virtualized data centers. This paper has two differences

compared to their work. First, our solution provides response

time guarantees to multi-tier applications while their work

focuses on single-tier applications. Second, our solution

dynamically re-allocates CPU resource among the VMs

while their performance control relies only on DVFS. Thus,

our solution can allocate CPU resource to VMs based on

their needs, which saves additional power.

III. SYSTEM ARCHITECTURE

In this section, we provide a high-level description of

our system architecture, which includes an application-

level response time controller and a data center-level power

optimizer.

As shown in Figure 1, our power management solution

includes two levels. At the application level, for every

application running in the data center, there is a performance

controller that dynamically controls the performance of the

application by adjusting the CPU resource (i.e., fraction of

CPU time) allocated to the virtual machines running the

application. We choose to control the 90-percentile response

time of each multi-tier web application as an example SLA
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Figure 1: System architecture, including a response time controller for every multi-tier application and a data center-level

power optimizer.

metric, but our management solution can be extended to

control other SLAs such as average or maximum response

times. We assume that the response time of a web application

is independent from that of another web application. This is

usually a reasonable assumption because they may belong

to different customers. Hence, we choose to have a response

time controller for each multi-tier application. A server-

level CPU resource arbitrator then collects the CPU resource

demands of all VMs hosted on the server, allocates the CPU

resource to the VMs, and uses DVFS to save power, if the

server has more CPU resources than the VMs require.

At the data center level, a power optimizer collects the

CPU resource demands of all the VMs running in the data

center, then uses a power optimization algorithm to find the

most power-efficient VM-server mapping while satisfying

the CPU resource requirements of all the VMs. The power

optimizer then sends VM migration commands to the VM

migration interfaces on every server, if necessary. It also puts

selected servers into the sleep/active mode.

Server consolidation makes it possible to put unused

servers into the sleep mode, which can typically save more

power than DVFS. However, server consolidation may incur

a higher overhead. Due to the change in workload, the

power optimizer may require the migration of a VM from

one server to another, or require a server to awaken. These

operations are both time consuming, especially when the

processors of the related servers are busy, or when the

network bandwidth is limited. Thus, the optimizer should not

be invoked too frequently. On the other hand, the response

time controller at the application level uses CPU resource

allocation and DVFS as its actuators, both of which have

much smaller overheads than VM migration. As a result,

the response time controller is invoked on a small time

scale (several seconds) to deal with short-term variations in

workload, while the power optimizer is invoked on a longer

time scale (hours to days).

Between two consecutive invocations of the data center-

level optimizer, it is possible that an unexpected increase of

the workload can cause a severe overload on a server. To deal

with this problem, the solution in this paper can be integrated

with algorithms to move VMs from the overloaded servers

to idle servers in an on-demand manner. An example of such

algorithms can be found in our previous work [25].

IV. RESPONSE TIME CONTROLLER

In this section, we present the problem formulation,

modeling, and design of the response time controller.

A. Problem Formulation

Response time control can be formulated as a dynamic

optimization problem. We first introduce some notation. A

data center with N physical servers (S1, S2, ..., SN ) hosts

L applications (App1, App2, ... , AppL). Some applications

can be multi-tier applications running in multiple VMs.

A VM running the jth tier of Appi is named as VMij ,

j = 1, 2, ..., ri. CPU allocation of VMij is defined as cij .

Note that this number is expressed as the absolute number

of CPU cycles allocated to VMij in terms of GHz. For

example, If VM11 is allocated 20% of a 5GHz CPU, we

say c11 = 20%× 5GHz = 1GHz. ci = [ci1, ci2, ..., ciri ]
T

is a column vector of the CPU allocations of all the VMs

running application Appi. The 90-percentile response time

of Appi is ti seconds. The absolute CPU frequency of server

Si is fi.

The control period of the response time controller is T

seconds. Note that x(k) denotes the value of x in the kth

control period, e.g., ci(k) means the value of ci at time kT .

Specially,∆ci(k) is the difference between ci(k + 1) and

ci(k), i.e., ∆ci(k) = ci(k + 1)− ci(k).
At the end of every control period, the response time

controller decides ∆ci(k) to achieve the desired response

time for application Appi.

We assume that the constrained optimization problem is

feasible, i.e., there exists a set of CPU resource allocations

within their acceptable ranges that can make the response

time of the application achieve the desired value. If the

problem is infeasible, e.g., the application is highly I/O-

intensive, no controller can guarantee the set points through

CPU resource adaptation. In that case, the response time

controller needs to be integrated with other resource allo-

cation techniques, such as I/O scheduling, to achieve the

desired response time, which is our future work.
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B. Response Time Controller Design
In order to have an effective controller design, it is impor-

tant to model the dynamics of the controlled system. The re-

sponse time model of the application Appi is the relationship

between ti and ci. A well-established theoretical equation is

usually unavailable for computer systems, therefore, we use

a standard approach to this problem called system identifica-

tion [5]. Rather than building a physical equation between

the manipulated variables and the controlled variable, we

infer their relationship by collecting data in experiments

and then establish a statistical model based on the measured

data. For example, by conducting system identification to

an application in the prototype system introduced in Section

VI, we get the system model as:

t1(k) = α11t1(k − 1) + β11c1(k − 1) +

β12c1(k − 2) + γ1(k − 1) (1)

where α11, β11 and β12 are constant parameters whose

values can be determined in system identification.

We apply Model Predictive Control (MPC) theory [15] to

design the controller, based on system model (1). MPC is an

advanced control technique that deals with coupled MIMO

control problems. This characteristic makes MPC well suited

for response time control in multi-tier web applications.

A model predictive controller optimizes a cost function

defined over a time interval in the future. The controller

uses the system model to predict the control behavior over

P control periods, called the prediction horizon. The control

objective is to select an input trajectory that minimizes the

cost function. An input trajectory includes the control inputs

in the following M control periods, ∆c(k), ∆c(k+1|k), .

. .∆c(k+M −1|k), where M is called the control horizon.

The notation x(k + i|k) means that the value of variable

x at time (k + i)T depends on the conditions at time kT .

Once the input trajectory is computed, only the first element

∆c(k) is applied as the control input to the system. At

the end of the next control period, the prediction horizon

slides one control period and the input is computed again

based on feedback t(k) from the response time monitor.

Note that it is important to re-compute the control input

because the original prediction may be incorrect due to

uncertainties and inaccuracies in the system model used by

the controller. MPC enables us to combine performance pre-

diction, optimization, constraint satisfaction, and feedback

control into a single algorithm. The controller includes a

least squares solver, a cost function, a reference trajectory,

and a system model. At the end of every control period, the

controller computes the control input ∆c(k) that minimizes

the following cost function:

J(k) =

P∑

i=1

‖t(k + i|k)− ref (k + i|k)‖2Q +

M−1∑

i=0

‖∆c(k + i|k)‖2R(i) (2)

where P is the prediction horizon, and M is the control

horizon. Q is the tracking error weight, and R(i) is the

control penalty weight vector. The first term in the cost

function represents the tracking error, i.e., the difference

between the response time t(k + i|k) and a reference

trajectory ref(k + i|k). The reference trajectory defines an

ideal trajectory along which the response time t(k + i|k)
should change from the current value t(k) to the set point

Ts (i.e., desired response time). Our controller is designed

to track the following exponential reference trajectory so the

closed-loop system behaves like a linear system.

ref(k + i|k) = Ts − e
−

T
Tref

i
(Ts − t(k)) (3)

where Tref is the time constant that specifies the system re-

sponse speed. A smaller Tref causes the system to converge

faster to the set point but may lead to a larger overshoot.

By minimizing the tracking error, the closed-loop system

will converge to the response time set point Ts if the system

is stable. The second term in the cost function (2) represents

the control penalty, which causes the controller to decrease

the change of the control input, i.e., the CPU allocation.

The control weight vector, R(i), can be tuned to represent

a preference among the VMs. For example, a higher weight

may be assigned to a VM if the process running it has a

larger CPU demand so that the controller can give preference

to increasing its CPU allocation.

In optimal control theory [14, 15], the stability of an MPC

controller can be ensured by adding a terminal constraint.

The constraint forces the state to take a particular value at

the end of the prediction horizon. Therefore, we add the

terminal constraint to our optimization problem requiring

the response time of the application to converge to the set

point at the end of the prediction horizon:

t(k +M |k) = Ts (4)

The response time controller determines the CPU resource

demand of every VM. A server-level CPU resource arbitrator

then allocates the CPU resource to the VMs hosted on the

server based on their demands. Specifically, the arbitrator

on each server collects the CPU resource demand of every

VM hosted on the server, in terms of CPU cycles per second

(GHz), decides what CPU frequency the server should have

in order to satisfy the aggregated demands, and then throttles

the processor of the server to the desired CPU frequency

using DVFS.

V. VM CONSOLIDATION FOR POWER OPTIMIZATION

As discussed in Section III, a data center-level power

optimizer is used to find the most power-efficient VM-server

mapping, and reconfigure the data center by VM migration.

The optimizer then dynamically places selected servers into

the sleep mode or wakes up selected servers for maximum

power savings and guaranteed application performance.

The optimization problem falls in the category of vector-

packing problems which are known to be NP-hard [10].
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Therefore, we propose a heuristics-based optimization al-

gorithm to find a polynomial time approximate solution.

Minimum slack problem for a single server: We begin

with a sub-problem named the minimum slack problem. The

problem can be presented as: given a server (not necessarily

empty) and a list of unallocated VMs, select several VMs

from the list, and allocate them to the server, such that the

server has the least amount of unallocated CPU resource.

This problem is a special case of the minimum bin slack

(MBS) problem. Although it is an NP-hard problem, the

MBS problem can be solved in pseudo-polynomial time

[4]. The algorithm to solve the minimum slack problem

is summarized in Algorithm 1. This algorithm is extended

from the MBS algorithm in [4] by evaluating a more general

constraint in each step, instead of checking if the total size

of the items exceeds the size of the bin.

Power Aware Consolidation (PAC) for a list of servers:

Another sub-problem, the power aware consolidation prob-

lem, can be presented as: given a list of servers (some servers

are possibly not empty) and a list of VMs, consolidate the

VMs to the servers, such that the total power consumption of

the servers is minimized. Our proposed heuristics algorithm

to solve this problem is described here. In the first step,

the servers are sorted by power efficiency, i.e., the ratio

between the maximum CPU frequency and maximum power

consumption of the server. Beginning from the most power-

efficient server, we use Algorithm 1 to select several VMs

from the remaining unallocated VMs, and then pack these

VMs to this server such that the unused CPU resource in

this server is minimized. We repeat this process with the

next most power-efficient server until every VM in the list

is allocated to a server.

Incremental Power Aware Consolidation (IPAC) al-

gorithm: The PAC algorithm described above is invoked

incrementally such that only a small number of VMs in a

migration list are considered for consolidation each time. In

each invocation period, some servers may be unable to host

their VMs due to the possible workload increase. The algo-

rithm first selects some VMs from these overloaded servers

and adds them to the migration list to resolve the overload

problem. Then, the VMs on the least power efficient server

are added to the migration list. PAC algorithm is invoked

to consolidate the VMs in the migration list to the servers.

After the consolidation, if the number of active servers is

reduced, PAC algorithm is invoked again to consolidate the

VMs on the next least power efficient server until the number

of active servers no longer decreases.

Cost-aware VM migration: The cost of the VM mi-

gration can be considerable. For example, if the network

bandwidth is a bottleneck in a data center, a VM migration

with high bandwidth consumption is the least preferred

method. As a result, when the IPAC algorithm requests

a migration, benefits and costs should be compared to

decide if the migration should be allowed or rejected. The

Algorithm 1 Minimum Slack

q: list of unallocated VMs

S: the server in consideration

ε: allowed slack

s∗: minimum slack

A∗: the collection of VMs best fits S

Minimum-Slack ( q )

begin

1: for all VM VMi in q do

2: Pack VMi into S.

3: if S and the VMs allocated to it meets the constraint

then

4: if Remaining CPU resource in S < ε then

5: Exit;

6: end if

7: Minimum-Slack(q - VMi);

8: else

9: Remove VMi from S;

10: end if

11: if Slack(S) < s∗ then

12: s∗ = Slack(S)
13: A∗ =All VMs ∈ S

14: end if

15: if The algorithm does not finish in certain steps then

16: Increase ε by one step.

17: end if

18: end for

end

benefits of the migration include power savings. The cost of

migration depends highly on the condition of the data center

such as the network architecture, the bandwidth usage, the

application itself and the memory usage of the VMs. Thus,

the cost function can be highly different for different data

centers. As a result, we provide an interface for data center

administrators to define their own cost functions based on

their various policies.

VI. SYSTEM IMPLEMENTATION

In this section, we first introduce our testbed and the

implementation details of each component. We then present

the simulation environment used to test our PAC algorithm

in various data center configurations.

A. Testbed

Our testbed includes a data center of four physical com-

puters named S1 to S4. A fifth computer named Storage

is used as the storage server for the Network File System

(NFS) and is not part of the data center.

Xen 3.3 is used as the virtual machine monitor on all four

servers in the data center. We use a PHP implementation of

the RUBBoS benchmark [9], a bulletin board benchmark,

as our server side workload. Each instance of RUBBoS is

configured to be a two-tier application running in two VMs.

The first tier has an Apache server installed and works as a
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webserver running application scripts. The second tier has a

MySQL database installed and acts as a database server.

The client-side workload generator is the Apache HTTP

server benchmarking tool (ab). This tool allows users to

manually define the concurrency level, which is the number

of requests to perform in a short time, to emulate multiple

clients. A concurrency level of 40 is used in our experiments

to do system identification and most experiments, if not

otherwise indicated. The workload generator runs on the

Storage computer.

B. Simulator

To evaluate our power optimizer in large-scale data cen-

ters, we have developed a C++ simulator that uses a trace

file from real-world data centers [24] to simulate the CPU

utilization variations. The trace file includes the utilization

data of 5415 servers from ten large companies covering

the manufacturing, telecommunications, financial, and retail

sectors. The trace file records the average CPU utilization

of each server every 15 minutes from 00:00 on July 14th

(Monday) to 23:45 on July 20th (Sunday) in 2008. We treat

the utilization data of each server as the CPU demand of a

VM. We generate 3000 simulated servers to host these VMs.

Each server is randomly assigned one of 3 types of CPUs:

3GHz quad-core CPU, 2GHz dual-core CPU and 1.5GHz

dual-core CPU.

VII. EXPERIMENTATION

In this section, we present our empirical and simulation

results. We first evaluate the response time controller and

examine the power optimizer on the hardware testbed. We

then present the simulation results of our power optimization

algorithm in a data center with 5415 VMs.

We use pMapper, a heuristic-based algorithm proposed

in a recent paper [22], as our baseline. PMapper is an

incremental algorithm with two phases. In the first phase, it

sorts the servers based on their power efficiency, then con-

solidates the VMs to the servers using a first-fit algorithm,

beginning with the most power efficient server. Note that in

this phase, the VMs are not actually migrated. In the second

phase, pMapper computes the list of servers that require a

higher utilization in the new allocation, and labels them as

receivers. For each donor (servers with a target utilization

lower than the current utilization), it selects the smallest-

sized applications and adds them to a VM migration list. It

then runs first-fit decreasing (FFD) to migrate the VMs in

the migration list to the receivers.

Several differences exist between pMapper and our IPAC

algorithm. First, pMapper is adapted from FFD while IPAC

is adapted from Minimum Slack. Typically, Minimum Slack

provides a better solution in terms of power consumption,

especially when facing constraints such as memory con-

straint, bandwidth constraint, etc. Second, although Min-

imum Slack generally has a greater overhead compared

with FFD, the IPAC algorithm considers only a very small
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Figure 2: Response time of all 8 applications in the data

center.

number of VMs each time, while pMapper considers all

the VMs in the first phase. Therefore, IPAC requires less

computational overhead. Third, IPAC is combined with our

response time controller to save more power using DVFS.

Thus IPAC provides further power savings. Finally, the

response time controller combined with IPAC can provide

desired performance assurance in response to short-term

workload variations.

A. Response Time Control

In this experiment, we disable the power optimizer to

evaluate the response time controllers of the 8 applications

running in the data center. We first set the response time

target for all applications to be 1000ms. Figure 2 plots the

the means and the standard deviations of the response times

of the applications in the data center. This figure demon-

strates that the response time controller works effectively to

achieve the desired response time for all the applications.

Figures 3(a) and (b) show a typical run of the response

time controller for a randomly selected application, App5. At

the beginning of the run, the controller achieves the desired

response time set point, i.e., 1000ms, after a short settling

time. The workload of App5 increases significantly at a time

of 600s. This is common in many web applications, e.g.,

breaking news on a major newspaper website may incur a

large number of accesses in a short time frame. To stress

test the performance of our controller in such a scenario,

we increase the concurrency level of App5 from 40 to 80

between time 600s and time 1200s to emulate the workload

increase. The suddenly increased workload causes App5 to

violate its response time limit at time 600s. The response

time controller responds to the violation by allocating more

CPU resource to the two VMs in both tiers. As a result, the

response time of App5 converges to 1000ms again and the

power consumption of the data center increases slightly due

to the increased CPU resource usage, as shown in Figure

3(b).

To test the robustness of the response time controller when

it is applied to a system that is different from the one used

to do system identification, we conduct a set of experiments

with wide ranges of concurrency levels. Figure 4 shows the

average response times (with standard deviations) achieved

by the controller when the concurrency level varies from

30 to 80. Figure 5 shows the average response times (with

standard deviations) achieved by the controller when the
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Figure 3: Typical runs of the response time controller and the baseline pMapper under a workload increase from time 600s

to 1200s on App5.
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Figure 5: Response time of App5 under different set points.

response time set point increases from 600ms to 1300ms.

The controller achieves the desired response time for all the

currency levels and set points. The experiments demonstrate

that the response time controller works effectively to achieve

the desired response time when the actual system is under

a workload different from the one used to design the

controller.

B. Simulation Results in Large Data Centers

In this experiment, we test our power optimizer in large-

scale data centers using the simulation environment intro-

duced in Section VI-B.

We simulate 54 data centers with different number of

VMs, ranging from 30 to 5,415. Every data center is as-

sumed to have enough inactive servers which will be waken

up and used if necessary. The parameters of the servers are

introduced in Section VI-B. As an example of administrator-

defined real world constraints, we add a restriction to the

optimization algorithm such that the memory size of every

server should be greater than the total memory allocations

of the hosted VMs.

Figure 6 plots the average energy consumption per VM

of IPAC and pMapper in 7 days under different number

of VMs. In comparison to pMapper, IPAC shows lower

energy consumption in all these simulations. On average,

IPAC has a 40.7% more energy saving than pMapper. It

is important to note that the energy savings of IPAC are

due to two reasons. First, as discussed earlier, pMapper is

adapted from FFD while IPAC is adapted from Minimum

Slack. Typically, Minimum Slack provides a better solution

in terms of power consumption . Second, IPAC is integrated

with DVFS for power savings on a short time scale between

two consecutive invocations of the optimization algorithm.

Thus, IPAC saves more power when a lower CPU frequency

is allowed due to short-term variations on the CPU require-

ments. Note that the testbed experiments in Section VII-A

show a smaller power saving because only DVFS is tested

and the CPU requirements of the workloads are relatively

stable. With more VMs, the average energy consumption per

VM becomes higher for both schemes. This is due to the fact

that both algorithms try to use power-efficient servers first.

With more VMs, more power-inefficient servers need to be

used such that the per-VM power efficiency decreases.
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Figure 6: Energy consumption per VM in 7 days under

different numbers of VMs.

VIII. CONCLUSIONS

In this paper, we have presented a performance-controlled

power optimization solution for virtualized data center to

achieve power efficiency and application-level performance

assurance. While existing solutions rely on DVFS or server

consolidation in a separate manner, our solution integrates

feedback control with optimization to utilize both DVFS

and server consolidation for maximized power savings with

performance guarantees. At the application level, a MIMO

controller is designed to achieve the desired 90-percentile

response time for applications spanning multiple VMs, on a

short time scale, by reallocating CPU resource and DVFS.

7



At the cluster level, a power optimizer is proposed to

dynamically consolidate VMs onto the most power-efficient

servers on a much longer time scale. Empirical results

on a hardware testbed demonstrate that our solution can

effectively achieve performance-assured power savings. Ex-

tensive simulation results, based on a trace file of 5,415 real

servers, demonstrate the efficacy of our solution in large-

scale data centers.
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