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Error Concealment in MPEG Video Streams Over
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Abstract—When transmitting compressed video over adatanet- pairements. Furthermore, these algorithms will have to be in-
work, one has to deal with how channel errors affect the decoding tegrated into the decoder hardware, and hence must be simple
process. This is particularly a problem with data loss or erasures. enough to be implemented in real time.

In this paper we describe techniques to address this problem in Inthi deri | ttechni based
the context of Asynchronous Transfer Mode (ATM) networks. Our nthis paper we aerive error conceaiment techniques basedon

techniques can be extended to other types of data networks such as@ Markov random field (MRF) model [2]-[4]. The algorithms

wireless networks. In ATM networks channel errors or congestion are categorized as being either spatial (utilizing pixel data) or
cause data to be dropped, which results in the loss of entire mac- temporal (utilizing motion vectors) in nature. The spatial tech-
roblocks when MPEG video is transmitted. In order to reconstruct niques rely on pixel data within a current damaged frame and

the missing data, the location of these macroblocks must be known. MRE del of the f t ¢ d d f th
We describe a technique for packing ATM cells with compressed an model of the frame 1o restore damaged areas ot the

data, whereby the location of missing macroblocks in the encoded frame. Similarly, estimates for missing motion vectors are ob-
video stream can be found. This technique also permits the proper tained by modeling the motion field as an MRF and finding the
decoding of correctly received macroblocks, and thus prevents the maximuma posteriori(MAP) estimate of each missing motion

loss of ATM cells from affecting the decoding process. The packing yactor given its neighboring motion vectors. We also show that

strategy can also be used for wireless or other types of data net- . S . .
works. We also describe spatial and temporal techniques for the the widely used huerisitic technique based on averaging the mo-

recovery of lost macroblocks. In particular, we develop several op- tion vectors of neighboring macroblocks [5] is a special case of
timal estimation techniques for the reconstruction of missing mac- our MAP estimate. We also describe a temporal-spatial method
roblocks that contain both spatial and temporal information using  for restoring damaged macroblocks based on the use of aternary
a Markov random field model. We further describe a sub-optimal - /e for classifying the available motion vectors and the MRF
estimation technique that can be implemented in real time.

model for the corrupted frame.

The paper is organized as follows. The concealment of lost
macroblocks resulting from ATM cell loss is addressed in Sec-
tion Ill. The performance and comparison of our error conceal-
ment algorithms are provided in Section IV; and the conclusion

Index Terms—ATM, cell loss, cell packing, error concealment,
motion vectors, Markov random field, spatial reconstruction, tem-
poral reconstruction.

. INTRODUCTION of our work is given in Section V.
HEN transmitting compressed video over a data net-
work, one has to deal with how channel errors affect the Il. PREVIOUS WORK

decoding process. This is particularly a problem with data loss\ymerous schemes have been proposed in the literature to
or erasures. In this paper we describe techniques to addressBifipat the effects of data loss on encoded video. Currently the
probllem. o . approaches utilized for signal restoration/error concealment
It is envisioned that one of the most important network agye either active concealment or passive concealment. In active
plications will involve transmitting digital video [1]. During pe- concealment, error control coding techniques are used along
riods of network congestion, packets may be dropped, badly §@th retransmission. Since extra data must be transmitted, it
grading the quality of the video, as a result of the missing dafg.sometimes necessary to reduce the source coder’s data rate
Since retransmission is not a viable option for real-time Muly ayoid increasing network congestion. Active concealment
timedia applications, error concealment algorithms need to Rgs the advantage of permitting perfect reconstruction at the
developed. These algorithms estimate the missing data from H?ﬁ:oding end, if the amount of data lost is not significant, i.e.,
received video in an effort to conceal the effect of channel inyjthin the parameters of the error control coding scheme. In ad-

dition, unequal error protection can be provided by varying the
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Since video sequences that have been compressed accordiegdiscarded and the macroblocks constructed via temporal
to the current video compression standards [9]-[12] consistra@placement from the previous frame. The robustness of the
DCT coefficients and motion vectors, one approach to errstream is further enhanced by using reversible variable length
concealment over networks is to prioritize data as describeddades that can be uniquely forward or backward decoded, as
[13]-[20]. Encoded video data are segmented into low-priorityell as by repeating important header information [40], [41].
data such as high-frequency DCT coefficients, and high-priority
data such as addresses of blocks, motion vectors, and low-fre-
qguency DCT coefficients. In the event of network congestion,
packets carrying low-priority data are discarded, while those Ill. PASSIVE ERROR CONCEALMENT
carrying high-priority data are retained.

Alternative techniques for reducing the effect of packet loss The goal of passive error concealment is to estimate missing
were proposed in [16] and [21]. In [16] the data rate of the edata. In the case of MPEG video, the objective is to estimate
coded bitstream is decreased when the packet loss rate increagigsing macroblocks and motion vectors. The underlying idea
A similar approach for subband coded sequences is descriiethat there is still enough redundancy in the sequence to be ex-
in [21], wherein error correcting codes are employed to corre@lpited by the concealment technique. In particular, in I-frames
data lost due to packet loss. Since the use of error correctihds possible to have a lost macroblock surrounded by intact
codes increases the data rate, the source coder is throttled snghroblocks that are used to interpolate the missing data. This is
that the ultimate data rate is equal to the data rate of the origimaiesult of the fact that macroblocks in I-frames can span across
unprotected video sequence. If the packet loss rate is too &e packets. It also arises when the macroblocks in |-frames are
vere and the lost data cannot be retrieved by the error correctintgrieaved prior to packing them into packets. In P- and B-pic-
code, the damaged frame areas are then filled in with data fréuies, it is possible to have entire rows of macroblocks missing.
the previous frame. In this case, spatial interpolation will not yield acceptable re-

Since packet loss can result in the loss of entire rows of magenstructions. However, the motion vectors of the surrounding
roblocks in an image, packetization techniques that rely on ifégions can be used to estimate the lost vectors, and the dam-
terleaving data have been proposed [17], [22]-[24]. Interleaviaged region reconstructed via motion compensated interpola-
is performed either at the macroblock level [22], [23], or at thiéon [26], [27].

Slice level [17]. This has the advantage of distributing the error Let X be an/V; x N, decompressed frame from an MPEG
due to packet loss over the entire frame rather than localizingguence, and 1&f be the received version at the output of the
it, and hence aids passive concealment techniques that rely@rmnnel. Due to channel errors, it is conceivable tamay
tirely on spatial data to restore the damaged regions. Howeusaye missing data. Each transmitted picture consisig ofiac-

it increases decoder complexity. roblocks that haveV x N pixels. Letz,; be the lexicographic

Postprocessing (passive) techniques for the sake of eroodering of the pixels in théth macroblock inX. The vectotr
concealment utilize spatial data, or temporal data, or a hybi#then defined to be the concatenationeefz, . .. , x5, that
of both [5], [24], [26]-[39]. Missing macroblocks can be reconis, z = [z I ... z%,]T. The vectory is similarly defined
structed by estimating their low-frequency DCT coefficientfor Y. If the jth macroblock is missing due to packet loss then
from the DCT coefficients of the neighboring macroblockg = Dz, whereD is an(N; N> — N?) x N; No matrix that con-
[23], [29]-[31], by estimating missing edges in each blockists of the identity matrix excluding the rows from rg?
from edges in the surrounding blocks as proposed in [33], or byrow (j + 1)N? — 1. If n of the M macroblocks are missing
the method of projections onto convex sets [39] as describede to packet loss, theB will be an(N; N; — nN?) x N1 N,
in [34]. matrix. The goal of passive error concealment is to estinaate

An alternative to using spatial data for error concealment is given the received data A description of how this is done will
use motion compensated concealment [5] whereby the averbgegiven in the following sections.
of the motion vectors of neighboring macroblocks is used to In Sections IlI-A—C, we use spatial restoration techniques to
perform concealment. We will show later that this is a speciabtimate missing pixel values from neighboring intact pixels. In
case of one of our motion compensated techniques. particular, the original image is modeled as a Markov random

Currently the periodic insertion of Resynchronizatiofield, (Section IlI-A), and the MAP estimate of the original
Markers (unique codes that limit the effect of data loss and ésiage given the received image is then obtained (as described
tablish synchronization between encoder and decoder) is beinection IlI-Al). Since MAP estimation is computationally in-
considered for the MPEG-4 and JPEG2000 standards [4@nsive, an approximation that can be implemented in real time
[41]. The resilience of MPEG-4 bitstreams is also increased p42] is shown in Section I1I-B. In addition, macroblock restora-
placing coded motion vector data prior to coded DCT coefftion based on estimating macroblock boundary pixels is pre-
cients. These two groups of data are separated by a field knogemted in Section IlI-C.
as the Motion Boundary Marker (MBM) [40], [41]. The MBM  We also consider the use of motion compensated concealment
is utilized by the decoder to discern whether coded motidrased on estimating missing motion vectors in Section 111-D. In
vectors have been corrupted or not. Uncorrupted coded moti®action 111-D1, missing motion vectors are estimated from the
vectors are used to reconstruct macroblocks. However, if thmtion vectors belonging to surrounding intact macroblocks,
motion vector data between two resynchronization markesgile in Section 11I-D2, a missing motion vector is estimated
have been corrupted, all the data between the two markbesed on motion vector data as well as pixel values.
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A. Statistical Spatial Approach: MAP Estimation Hence,

Statistical techniques have been successfully used in image Ni1No—1 3 h
processing for edge reconstruction [4], [43]-[46]. The original Z Vo(= Z Z Z b oy < m(X: ’J)>
image is modeled as a Markov random field (MRF) [2]-[4], and ceC =0 j=0 m=0
edges are reconstructed by maximarposteriori(MAP) tech- Letting
niques. This is the approach adopted here. Each original frame Ni—1No—1 3
X and its received versiari are modeled as discrete parameter ho(z) = Z Z ¥ g <Dm(Xi,j)>
random fields where each pixel is a continuous random vari- HI o

able. Assuming a prior distribution fat, a maximuma pos- o s m=
teriori (MAP) estimate is obtained given the received data
Denoting the estimate afby #, & = arg max, | y—p. L(z |y), _

where L(z | y) is the log-likelihood function. In other words, o argxf;llnpxh +(2). “)

L(z |y) = log f(z|y), wheref(x | y) is the conditional prob-

ability density function ofr giveny. It is shown in Appendix |  The solution to (4) above can be obtained by means of the

we have

that iterative conditional modes (ICM) algorithm [49]. In particular
R _ if the ith element of, denoted by:;, corresponds to a lost pixel
z= argzgl;nm[— log f(x)]. (1) value, andry; denotes the neighborhood ef then
SinceX is modeled as a Markov Random Field (MRF), the & = argmax f(vi [ 25:). ()
probability density function of is given by [2], [4], [47], Using (3) and (5), the MAP estimate of pix@l, j), given its
neighbors, is
f(=) =—exp< > Vil ) 2 i+1 i+ 3 (x
S =i 3N Y e (25) @)
whereZ is a normalizing constant known as thartition func- =i k=j m=0

tion, V.(-) a function of a local group of pointe known as Let Xy; denote the neighborhood of tith macroblocke;. The

cliques, and” the set of all cliques [4]. Using (1) and (2), theMAP estimate oft; satisfiest; = arg max,, f(z; | X5;). If we

MAP estimate oft is then let J; denote the set of indices of the pixels belongingtdhen
it can be similarly shown that

> Velw)

i+1j+1 3 Xl k)
ceC = arg Inln Z ZZ Z b0 <m7> @)

(i,§)ed; 1=i k=j m=0

Z = arg min
z | y=D=

In the following we will indicate our choice of the potential
functions [4], and describe the process by which we obtain tfi@e solution to (7) can be obtained iteratively. This, however,
MAP estimate. is computationally intensive. Next we describe how we speed

1) The MAP Estimate:The proper choice of is crucial in up the process of finding a solution by using median filtering
the reconstruction of the macroblocks. In this case, the potentiathniques to obtain a suboptimal MAP estimate.
functions are chosen such that

B. Median Filtering: A Suboptimal Approach

Ni1—1Nz—1
m X
ZVc Z Z Zb( ) <—J)> ®3) The choice ofy ands is crucial to the reconstruction of edges.

ceC i=0 j=0 m=0 The smaller the produeto, the less the edges are penalized.
where Do(X; ;) = Xij1 — Xoj Di(Xi)) = Xio1jur — S'lnceh7(:c). is continuous, convex, and .has continuous first par-
. tial derivatives, then by successively iterating with respect to
Xigy Da(Xig) = Kiag = Xij, and Dg(X;;) ach pixel, a global minimum is attainedJsing (6) we obtain
Xi—1;-1 — X, , are used to approximate the flrst orde?
derivatives at pixek, 7. p(-) is a cost functiongs a scaling 0 b”+1 , DO(X”H)
(m) —— hy(x) = o8
factor, b; .’ weighting coefficients, and the set of cliques [4] 90X, ;
s C = {{(i.j ),( DG = L+ 1), @ 0NH{G -
. A .o Z+1,] 1 z—l—l,] 1
17])7@ J)} {( J _1)7(17J)}' {‘/< )
Several cost functions have been proposed [43], [45]. A
convexp(-) results in the minimization of a convex functional. b % < Xit1,j )
The cost function used here is the one introduced by Huber for
obtaining robust\/ -estimates of location [48]. Its advantage is thlJJr1 , (D (XZ+11+1)
that it is convex, does not heavily penalize edges, and is simpler + P ¥ P
to implement than most of the convex cost functions used in 3 ym
the literature [45]. It is defined to be _ Z 26y o, <M)
g

m=0

B 2 lz] < v
pw(a:) B 72 + 27(|x| — ry) |x| > 7. 1There is, however, more than one global minimum.
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where
2z lz] <~
plz)=42y x>v (8
-2y < —7.

Each pixel in the interior has eight neighbors. ket 2, 23,
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the optimum value. The estimate of each missing pixel value
is now obtained by finding the median of 8 values instead of
performing line search techniques.
C. Estimation of Boundary Pixels

The above-mentioned techniques coupled with macroblock

4, 75, %6, 27, 23 b€ the eight neighbors arranged in ascending Slice [9] interleaving are particularly useful in the restoration

order, and rename the associated weidlf§, [! = ¢, i + 1,
l - J J + 1 m 3} a-Sbl! b21 b31 b4! bov va b7a bS
Defining
U={kD|k=¢t—1landl=j—1,j,5+1or
k=dandl=j -1}

L={(k,)|k=i+1landl=4—-1,4,5+1or
k=dandl =j+ 1}
and
N 2 — Xi,j Zkflf
Ak(XZ’]) o {XiJ' — 21 zpel
then
9 i4)
;) = 5 S (M)
1 o[ Ar(Xi )
U;m%< L) )
Since, we are iterating fak; ;, we need to solve
0

When solving (10), three cases need to be considered.
Case 1:|Ag| < vo, VE.
This occurs whenes — vo < 21 + ~vo, and the optimum
value of X; ; satisfies the constrainfAx| < vo Vk. Hence,

ho(Xij) = Y-, bu(Ar/0)2. Using (10) and (8)
8
Z bkzk
Xj=m (11)

>

Case 2:|Ag| < ~o for somek
We show in Appendix Il, that the optimum estlmaX’eJ sat-
isfies

Ja
Z bpzi +yo

X _ k=J1

Z b — lel bk]

k=J,+1

S

k=J
—z5 <o, Jy 2 Ji.

whereJ; andJ; satisfyz,

of intracoded macroblocks that belong to a frame that serves as
the anchor frame for a new scene within the same sequence.

An alternative approach that is useful for reconstructing intra-
coded macroblocks when the current damaged frame and the
previous reference frame belong to the same scene is next de-
scribed. The underlying idea is to try to find a macroblock sized
region in the previous frame&—!, that will maximize the MAP
estimate of the boundary pixels of the missing macroblock given
its neighbors.

Formally, suppose again that th#¢h macroblockz; is
missing. Let Xy; denote its neighboring macroblocks and
let (m,n) denote the coordinates of the upper left corner
of z;. Establish a search range of (25 + 1) x (25 + 1)
pixels in the previous fram& —* centered atm,n), that is,

S ={X; | ke[m — S,m+S),le[n — S, n+ S|, k, I integerg.
Let » denote a macroblock sized regiondh that is,u C S,
and letuz denote the boundary pixels af then

&; = argmax f(up | Xoi)-

Using the potential functions described above, this can be

written as
r+1s+1 3

2. 220 Wi

(r,s) |X(hs>eug I=r k=s m=0

().

This technique is particularly useful for restoring I-frames that
have been heavily damaged due to network packet loss.

In the following, we describe how we achieve motion com-
pensated restoration by first estimating the missing motion vec-
tors and then utilizing the estimates of the missing motion vec-
tors to reconstruct the missing macroblocks.

Z; = argmin
uCS

12)

D. Motion Compensated: Motion Vector Estimation

Most frames in an MPEG sequence are predicted frames that
have motion vectors associated with their macroblocksai et
be the motion vector associated with thle macroblock in the
current frame. In lossless transmissimbo,), theith macroblock
in the current frame, is reconstructed by the decodmégs:
:cf:i) +n,. Herexéj_?_ is the macroblock in the reference frame
that closely matches ), n; is the error arising from having

replacedm(o) by zi” o) ands indicates the spatial coordinates

—U;!

We fix o and choosey to be arbitrarily small and positive. of the sth macroblock. In lossy transmission, it is not possible
Then according to Case 2A in Appendix Il, if equal weightgo recovem,. The goal is to obtain an estimate fes that will

by |m=0--
possible choice for the optimum value,j, will be the median

-3, 1=i,i+1, k=j,j+1} are used, one pointtoz, ).

T—v;

One approach to reconstructing a lost macroblock would be

of its neighbors, unless there are at least two neighboring pixedsestimate its associated missing motion vector by averaging
that are equal in value. Under such conditions, the commtre motion vectors of surrounding macroblocks [5], [14]. This

pixel value is used. Although this is a suboptimal strategy, tlmeotion vector estimate is then used to fill in the missing mac-

resulting reconstruction technique is faster than searching foblock.
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In the following we present alternative means of estimating
the missing motion vector based on the use of Markov Random
Field (MRF) models. In particular, in Section 11I-D1 we obtain
the MAP estimate of the missing motion vector given its neigh-
bors. We also describe an alternative technique for estimating
missing motion vectors that incorporates spatial as well as tem-
poral data in Section IlI-D2.

1) MAP Estimation of Motion Vectorsttilizing the same
MRF model described above to model each component of the
motion field, we can obtain an MAP estimate of the missing
motion vector given its neighboring motion vectors. In addi-
tion, using the results of Section 11I-B, we immediately infehg
that the median of the motion vectors of the surrounding mac-
roblocks yields a suboptimal estimate of the missing motion
vector. These estimates are then utilized to perform motion com- I
pensated restoration of the missing macroblock.

It is also evident from (11) that when= 1,y — oc (larger
than the image dimensions sufficely),= 1fork =1,..-.8,
and z;.s are motion vectors, the MAP estimate of the motion
vector is the average of all surrounding motion vectors, as pro-
posed in [5]. Thus, the median and average of the surrounding : =
motion vectors are special cases of the MAP estimate. | I

2) Temporal-Spatial ApproachThe above-described tech-
niques for estimating missing motion vectors rely solely on

. 1. Tree classification of motion vectors.

i

temporal data (neighboring motion vectors). An alternative Frospective macrobiock
approach that uses both temporal and spatial data is described Neghboes of ksl macroblock
next. The use of both temporal and spatial data yields estimates R

I-ﬂ'l

for missing motion vectors that are more reliable, as will be

presented in Section IV. Fi . .
ig. 2. Boundary pixels of prospective macroblock.
The alternative approach is based on using a ternary tree to
classify the motion vectors neighboring the missing motion )
vector, and the MRF models of the image and motion fiela\.’here“ is some constant and
Each neighboring motion vector is classified into one of nine
classes according to whether each of its components are posi- gi(v,u) = {
tive, negative, or zero. This is shown in Fig. 1, whegalenotes
the horizontal component of a motion vector andts vertical
component. The idea is to implicitly model the discontinuity ithatis,g; (-, -) is 0 when both arguments belong to the same class
the motion field, and is similar to the approaches consideredahmotion vectors.
[50] and [51], wherein the discontinuities of motion fields were Let K* denote the set of classes that have the same minimum
modeled by means of binary MRF's. cost. It is conceivable that two or more classes will have the

After classifying all the neighboring motion vectors into theif@me cost. In this case, we need to use spatial information to
respective classes, we then determine the class or group to wilgide between which classes of vectors to choose. However,
the missing motion vector belongs. This is done by assigning?Hor to that we need to obtain an MAP estimatewpfgiven
cost to each class and then choosing the class with the lowi&t it belongs to the clas&'eXC*. This is done by solving the
cost. After the class with the lowest cost has been chosen, faowing for every K X
motion vectors belonging to that class are modeled via the MRF
and an MAP estimate of the missing motion vector obtained. If {9;} v = argmax f(v| K)
the MAP estimate is not unique, the motion vector that provides velk

the macroblock with the “best” matching boundaries, given the . o
neighboring macroblocks, is then chosen. where {#; }  is the class of vectors that maximize the above

equation.

Choosing the motion vector with the “best” matching bound-
a}ries is performed as follows. L¥tdenote the set of MAP mo-
Q X . A .
tion vectors, thatisy = |J ;.- {9: } k', thenv;, the estimate of
v;, is given by

0 weK;,ucK;
1 otherwise

Formally, letX = {K;,i = 1---9} denote the set of 9
classes. Also lety, vy, vi, andw,. be the top, bottom, left, and
right neighboring motion vectors of the missing motion vect
v;, respectively. Then, the co§t; incurred by assuming that
v,eK; is given by

A oo (-1 )
C; = algi(vi,ve) + g:(vi,v8) + 9:(vi, v1) + gi(vs,vr)] Vi = arg Iyr}gzxf (Bi*"' |Xaz) '
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Fig. 3. Spatial reconstruction: (a) decoded frame fronstiiesmarsequence, (b) same frame with missing macroblocks, (c) reconstructed using median filtering,
(d) reconstructed by using line search techniques to obtain the MAP estimates with00.0,v = 1.0,b, = 1.0 fork = 1...8, and (e) reconstructed using
bilinear interpolation.

HereB( Y consists of the pixels lying on the boundary of thét is to be noted that this approach is different from that proposed
macroblockz! Y, as illustrated in Fig. 2. Using the potentiain [52] in the following sense.

—v '

functions described above, this can be rewritten as 1) The metric usedin[52]is thk; norm, whereas the metric
used by the temporal-spatial approach is based on the
1ol 3 Huber cost function. Furthermore, in [52] only the differ-
b — g pm ence between cﬁrectly adjacent pIXE|S.IS obta}med., whilein
vi = A Iﬁl\? Z o lz:; ; g::o LEPy this case the differences between neighboring pixels that
() | XeroyeBy are at a 45 angle is also used.

o above, below, and to the left of the damaged macroblock

' <Dm(X17k)>' (13) 2) When computing the metric in [52], the macroblocks
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Fig. 4. Reconstruction based on finding the macroblock that has “best” matching boundaries: (a) decoded framsétesniasequence, (b) damaged version
due to cell loss, and (c) the reconstructed version.

are used, whereas the temporal-spatial approach usesratt MPEG1 System Layer Streams. For our experiments, we

available surrounding macroblocks. assumed that the protocol for transmitting video over networks
3) In [52], candidate motion vectors are chosen from thie the ATM protocol. In ATM, information is transmitted in
following: fixed size packets of data called “cells.” The respective system
a) the zero motion vector, layer streams were then packed into ATM cells. This is done by
b) one of the neighboring motion vectors, packing important header information such as MPEG1 system

c) the median of the neighboring motion vectors, layer or MPEG2 Program Stream pack and packet headers, and
d) the average of the neighboring motion vectors, any header data necessary for the proper decoding of the com-

e) the motion vector of the macroblock in the previouBressed sequences, into high-priority célsl other data, such
frame that has the same spatial location as the c&@S motion vectors and DCT coefficients, are packed into low-

rent damaged macroblock. priority cells. An extra 16 bits are inserted at the start of each

On the other hand, the temporal-spatial approach g@ll nine of which provide the location of the first macroblock
tempts to estimate the missing motion vector given tfReing packed into the ce'II, and the rest are _usgd as an ATM cell
neighboring motion vectors. counter. The extra nine bits are also used to mdmgtg when amac-

In Section IV we will compare the performance of the varioucfsObIOCk Spans across more thgn one cell. In addltlo'n, fqr every
motion compensated error concealment techniques. fl(;?rtnrggcroblock being packed into a cell, the following is per-
* The address of the macroblock is coded relative to the
position of the Slice [9], [10] to which it belongs.
To test the reconstruction algorithms, teesmanfootball, » Any motion vectors associated with the macroblock are
flowergarden and hockey sequences, encoded at data rates of ¢oded as is, not differentially.
0.3 Mbits/s, 1.15 Mbits/s, 1.5 Mbits/s, and 1.5 Mbits/s, respec-

tively,2 were multiplexed with MPEGL1 Layer Il audio streams 30ur goal is to protect the least amount of data and yet be able to reconstruct

damaged frames unlike other approaches [13]-[16], [20]. Hence, we only pro-

2The GOP’s in each sequence were 15 frames, and the frame pattern of @achthe headers, without which proper decoding of the sequence would not be
GOP was |IBBPBBPBBPBBPBB. possible.

IV. EXPERIMENTAL RESULTS
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Fig. 5. (a) Decoded frame from tHowergardensequence, (b) frame is damaged due to 5% ATM cell loss, (c) the frame was restored by using temporal
replacement, and (d) the frame was reconstructed by finding the average of the neighboring motion vectors. The PSNR values are 26.75 dB and 27.50 dB,
respectively.

« If the macroblock is intracoded, then the DC coefficientsorrectly decoded macroblocks is obtained. This difference be-
of its first Y block and chrominance blocks are coded retween both addresses is taken to be the number of macroblocks
ative to a value of 1024. (between both macroblocks) that were lost. This can lead to,

The above measures are performed for every first mdo-the case of MPEG-1 and MPEG-2, an error in determining
roblock being packed into an ATM cell to prevent the loswhich macroblocks in a P- or B-frame were actually lost or dam-
of macroblocks in prior cells from affecting the decoding ofiged. This is a consequence of the fact that in MPEG video,
succeeding macroblocks. The packed System Layer Stregwedicted macroblocks that have zero motion vectors and neg-
were then subjected to 2% and 5% random ATM cell loskgible difference DCT coefficients are not coded but skipped.
Fifty trials with different random number generator seeds weténder lossless conditions, a macroblock address difference that
conducted for each error rate. is greater than 1 is interpreted by the MPEG decoder to mean

It is to be noted that coding the address of a macroblock réat the intervening macroblocks are to be duplicated from the
ative to the position of the Slice to which it belongs, absolutéference frame. In particular, those macroblocks in the refer-
coding of its motion vectors, and coding its DC coefficients rence frame that have the same locations as those that are being
ative to a value of 1024, are described in the MPEG video staecoded are used. Thus, our techniques for estimating which
dards [9], [10] as the means for encoding the first macroblogkacroblocks are missing can misinterpret skipped macroblocks
of every Slice. However, this does not mean that we start a né# being lost. This may result in skipped macroblocks being
Slice at the beginning of every ATM cell, as this would result ifmproperly constructed, particularly if all the surrounding mac-
alarger increase in the overhead than required. Rather, it metgi§ocks have nonzero motion vectors.
that we only utilize the concepts for coding the first macroblock Having assigned the missing macroblocks, reconstruction
in a Slice. The codes used were those specified by the Huffmii@ceeds as follows.
coding tables provided in the MPEG standards [9], [10]. « If the damaged frame is an I-frame and all the neighbors

To determine which macroblocks were lost due to cell loss, of a missing macroblock are available, then reconstruc-
the difference between the addresses of the two most recent tion is performed by means of one of the spatial recon-
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Fig. 6. (Continuation of previous figure.) (a) The frame was restored by finding the median of the neighboring motion vectors, (b) the frame wasteetons
by finding the MAP estimate of the missing motion vector, and (c) the frame was restored by using the temporal-spatial approach. The PSNR v@ludBare 28.
30.18 dB, and 30.30 dB, respectively.

struction techniques discussed above. In particular, the ap- 4) The MAP estimate of the missing motion vector
proach based on median filtering is used. given its neighboring motion vectors is obtained.
« If the damaged frame is an I-frame and some of the neigh- 5) The temporal-spatial approach is used to esti-
bors of a missing macroblock are not available, then recon- mate the missing motion vector.
struction is performed by searching for the macroblock in The estimate of the missing motion vector is then
the most recent I- or P-frame that optimizes the boundary used to provide error concealment. This is achieved
pixels [equation (12)]. The search space used i 21 by replacing the missing macroblock by the region in
pixels in size. the past I- or P-reference frame to which the estimated
« If the damaged frame is a P- or B-frame, reconstruction motion vector is pointing. We will compare the per-
proceeds as follows. formance of all the above enumerated motion vector
o If the missing macroblock is surrounded by intracoded estimation techniques later on.
macroblocks, it is then reconstructed by the same For all of the motion compensated techniques, the parame-
method used for restoring macroblocks missing frongrs, ~, {by, k =1,...,8} were set to unit value. It was ob-
an I-frame, served that changing the values of these parameters did not sig-

o Otherwise, the missing macroblock is assumed to Bgficantly impact the quality of the reconstruction.
intercoded and it is reconstructed by first estimating To compare the performance of the different spatial re-
its associated motion vector. This is done by a numbgpnstruction techniques, 25% of the macroblocks belonging
of ways enumerated below. to a frame from thesalesmansequence were dropped. In
1) Temporal replacement, that is, a motion vectd¥ig. 3(a) and (b) we show the original and damaged frames
with zero components is used. (due to missing macroblocks), from tlealesmansequence.
2) The average of the surrounding motion vectors Reconstruction was performed spatially in Fig. 3(c) via median
obtained. filtering, in Fig. 3(d) by iteratively solving for the MAP esti-
3) The median of the surrounding motion vectors imate of each missing pixel within the damaged macroblock,
obtained. and in Fig. 3(e) by means of bilinear interpolation [25]. The
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Fig. 7. Average reconstruction PSNR values forftbevergardensequence when 5% of the cells were dropped. (a) Zero motion vector (temporal replacement),
the average of the neighboring motion vectors, and the median of the neighboring motion vectors used. (b) The MAP estimate of the missing mdtien vector
temporal spatial approach, and the average of the neighboring motion vectors are used. (c) The MAP estimate of the missing motion vector, Sgatexhporal
approach, and the median of the neighboring motion vectors are used. (d) The MAP estimate of the missing motion vector, the temporal-spatiainapbproach
temporal replacement are used.

reconstruction PSNR’s were found to be 29.16 dB, 29.85 dBn spatial data rather than DCT coefficients which may not be
and 29.86 dB, respectively. From a PSNR point of view, thevailable.

performance of all techniques is comparable. It was observedn our experiments it was observed that using values that

that the reconstructions due to the first two techniques hazee greater than 1 and= 1.0 provided the best MAP restora-
sharper edges. Furthermore, our approach based on med@amwhen the weight$b,, £ = 1--- 8} were of unitvalue. This
filtering is attractive since it can be implemented in realtimean be seen since fer = 1.0, > 1 values will not heavily
[42], does not require a search for dominant edges, and opergtesalize edges. The image in Fig. 3(d) was reconstructed with
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Fig. 8. Average reconstruction PSNR values for fiheball sequence when 5% of the cells were dropped. (a) Zero motion vector (temporal replacement), the
average of the neighboring motion vectors, and the median of the neighboring motion vectors used. (b) The MAP estimate of the missing moti@n vector, th
temporal spatial approach, and the average of the neighboring motion vectors are used. (c) The MAP estimate of the missing motion vector, smat@ahporal
approach, and the median of the neighboring motion vectors are used. (d) The MAP estimate of the missing motion vector, the temporal spatiahdpproach,
temporal replacement are used.

o = 100. It was also observed that using the median values ah area of 7 7 pixels, and hence an exhaustive search for the
the border pixels as initial values led to rapid convergence to thtion vector was implemented. A small search region was used
optimal MAP estimate. in this case since there is little motion in this sequence. In the
Fig. 4(a) is adecoded frame from th@lesmarsequence. Due case of sequences where a substantial amount of motion exists,
to random cell loss, major portions of the frame were lost @ exhaustive search may be too costly, and thus other searches
shown in Fig. 4(b). Reconstruction is performed by minimizinguch as the logarithmic search may be implemented but at a cost
(12). The search space for the motion vectors did not excesfdower fidelity. As seen, the reconstructed version in Fig. 4(c)
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Fig. 9. Average reconstruction PSNR values of all trials for tleekeysequence when 5% of the cells were dropped. (a) Zero motion vector (temporal
replacement), the average of the neighboring motion vectors, and the median of the neighboring motion vectors used. (b) The MAP estimate of the missin
motion vector, the temporal spatial approach, and the average of the neighboring motion vectors are used. (c) The MAP estimate of the missintomotion ve
the temporal spatial approach, and the median of the neighboring motion vectors are used. (d) The MAP estimate of the missing motion vectoglthe tempor
spatial approach, and temporal replacement are used.

closely matches the original in Fig. 4(a) with a reconstruction Fig. 5(a) is a frame from th@owergardensequence, and
PSNR value of 35.72 dB. The PSNR value was obtained viaFig. 5(b) is the same frame with missing macroblocks from
one of the trials of that involved 5% ATM cell loss. The frame

2552
PSNR= 101log is restored via temporal replacement, obtaining the average
MSE(Y) + MS';(U) + MSE(V) of the neighboring motion vectors, finding the median of the

neighboring motion vectors, obtaining the MAP estimate of the
where MSE-) denotes the mean square error of the recomissing motion vector, and via the temporal-spatial approach
structed color component. in Figs. 5(c), (d), and 6(a)—(c), respectively. The reconstruction
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TABLE | TABLE IV
AVERAGE PSNR \ALUES IN DECIBELS FOR AVERAGE PSNR \ALUES IN DECIBELS FOR THEDIFFERENT ERROR
THE DIFFERENT ERROR CONCEALMENT SCHEMES FOR THEFLOWERGARDEN CONCEALMENT SCHEMES FOR THEFLOWERGARDEN FOOTBALL AND HOCKEY
FOOTBALL AND HOCKEY SEQUENCES AT A2% ATM CELL LOSSRATE SEQUENCES AT A5% ATM CELL LOSSRATE
Error Concealment Technique flowergarden | football | hockey Error Concealment Technique flowergarden | football | hockey
Temporal Replacement 31.37 - 33.07 | 34.92 Temporal Replacement 28.45 29.83 | 31.94
Average Motion Vector 33.32 33.58 | 36.07 Average Motion Vector 30.27 30.26 | 33.19
Median Motion Vector 34.13 34.13 | 36.78 Median Motion Vector 31.16 30.88 | 33.92
MAP estimation of Motion Vector 34.86 34.15 | 36.74 MAP estimation of Motion Vector 31.64 30.62 | 33.53
Temporal-Spatial Approach 35.33 34.96 | 38.73 Temporal-Spatial Approach 32.10 31.57 | 35.64
TABLE I TABLE V
MINIMUM PSNR VALUES IN DECIBELS FOR THEDIFFERENT ERROR MINIMUM PSNR VALUES IN DECIBELS FOR THEDIFFERENT ERROR
CONCEALMENT SCHEMES FOR THEFLOWERGARDEN FOOTBALL, AND Hockgy ~— CONCEALMENT SCHEMES FOR THEFLOWERGARDEN FOOTBALL, AND HOCKEY
SEQUENCES AT A2% ATM CELL LOSSRATE SEQUENCES AT AS% ATM CELL LOSSRATE
Error Concealment Technique flowergarden | football | hockey Error Concealment Technique flowergarden | football | hockey
Temporal Replacement 30.51 31.95 | 33.31 Temporal Replacement 27.58 28.81 | 30.65
Average Motion Vector 32.51 32.58 | 34.41 Average Motion Vector 29.51 29.20 | 32.00
Median Motion Vector 33.00 3280 | 34.94 Median Motion Vector 30.34 29.88 | 32.57
MAP estimation of Motion Vector 33.64 33.08 | 34.92 MAP estimation of Motion Vector 30.84 29.63 | 32.20
Temporal-Spatial Approach 34.46 33.75 | 36.73 Temporal-Spatial Approach 31.21 30.63 | 34.55
TABLE il MaxiMum PSNR \ALUES Il:lr’?)BEIEZIIEBE\IfIS FOR THEDIFFERENT ERROR
MAxiMUM PSNR VALUES IN DECIBELS FOR THEDIFFERENT ERROR CONCEALMENT SCHEMES FOR THEFLOWERGARDEN FOOTBALL AND HOCKEY
CONCEALMENT SCHEMES FOR THEFLOWERGARDEN FOOTBALL AND HOCKEY o N b
SEQUENCES AT A2% ATM CELL LOSSRATE SEQUENCES AT A5% ATM CELL LossRATE
Error Concealment Technique flowergarden | football | hockey Error Concealment Technique flowergarden | football | hockey
Tomporal Replacement 32.13 | 34.48 | 36.60 Temporal Replacement 29.14 30.92 | 33.37
Average Motion Vector 34.11 34.93 | 38.01 Average Motion Vector 31.17 3105 | 34.42
Median Motion Vector 35.92 35.60 | 38.61 Median Motion Vector 32.12 31.71 | 3591
MAP estimation of Motion Vector | 35.91 3551 | 38.80 MAP estimation of Motion Vector || 32.62 3155 | 34.51
Temporal-Spatial Approach 36.51 36.56 | 40.80 Temporal-Spatial Approach 32.79 32.55 | 36.72

PSNR values are 26.75 dB, 27.50 dB, 28.77 dB, 30.18 dB, by at least 1 dB. Furthermore, the gap in performance between

; he temporal-spatial approach and the MAP estimation of the
30.30 dB, respectively. missing motion vector widened in the case of bothfthwtball
As is evident, the use of an MRF field that does not penalize g

the discontinuities in the motion field outperforms using the a%ndhockeysequences. This is also seenin Figs. 8 and 9, and can

; . . . e attributed to the fact that the motion field fildwergarden
erage or the median of the surrounding motion vectors. Itis alSo

observed that using spatial information, as is done in the telpe> more uniform than those fafotballandhockey In the case

. . . ; OFthe latter, the motion vectors do not point in one general di-
poral-spatial approach, results in better restoration. This can be. . o : .
S L " regtion. In addition, it is possible for a macroblock to lie on the
seen in Fig. 6(c) where it is evident that the damaged portions 0

the tree trunk are almost perfectly restored. This is attributed 8undary between two objects moving in opposite directions.

. In such a case, the use of spatial data was needed to determine
the fact that the temporal-spatial approach attempts to preserye . . .

. L o . . which object the missing macroblock belonged to. It is also ob-
the discontinuities in the motion field while matching the mac-

roblock boundaries. In this case, the “best” matching bouna(_erved that using the median of the neighboring motion vectors

aries were those that preserved the discontinuity between ﬁggltsm b(_etter performance than using the average of the neigh-
tree trunk and the background. Also shown in Figs. 5(c), ( ang motion vectors.
and 6(a)—(c) are the effect of error propagation due to inaccu-
rate részor(azion. Propes V. CONCLUSION
For comparison purposes, we provide the average PSNRDue to the nature of how channel errors and congestion are
curves of all trials for the various error concealment schemesghibited on data networks, error concealment must be used
when 5% of the ATM cells were lost, for thigowergarden when video is transmitted. We have presented both spatial and
football, andhockeysequences, respectively, in Figs. 7-9. Wkamporal error concealment techniques for compressed video.
also provide the average, minimum, and maximum PSNBur spatial technique based on median filtering, although sub-
values for the different error concealment strategies at 28ptimal, can be implemented in real time. We have also shown
and 5% ATM cell loss rate for the same three sequencestirat using temporal-spatial data yields better reconstructions
Tables I-VI, respectively. than only using temporal data. We are currently investigating
In general, restoration based on using the temporal-spatia®¢ use of DSP’s for the deployment of error concealment
approach was better than that attained by the other techniguresideo codecs used in ATM networks. Our methods can
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be extended to wireless networks and streaming video onln this case,

packet-switched networks, for example, the Internet.

APPENDIX |

We show here that = argming |,—pz[—In f(x)]. Let A
be the event thaj = Dz. In general [53]f(z, y)P(A|x,y) =
f(z,y| A)P(A). Using Bayes’ rule, then,

f@|y)P(A|z,y) = LEYIALA)

f(y)
But
0 D
Pile ={] Y200
Thus,

Sz, y| AP(A)
fly) '

LetIs, = {z|||z — z| < bz}, andls, = {u|||u —y|| < by}
Now

f(=ly) =

f(z.ylA)
Rewriting P(xels;, yelsy | A) as Plxelsy, yelsy, | A)
P(yels, | zelsy, A)P(zels, | A), where

0 Dis,n Igy 103
| DIl # ¢

=1 lim P(xels,,yels, .
520 8520 (welor yeloy | A)

P(yels, |zels,, A) = {

and DIs, = {Dz|zels}, then f(z,y| A)P(A) =
fz| A)P(A). Since

f(z| A)P(A) = f(z)P(A|z)
thenL(z|y) = In f(z) + In P(A|z) — ln f(y). For a given

observed image, the third term in the preceding equation is in-

dependent ok, hence the MAP estimate is obtained as

T = arg max [Inf( )+ 1n P(A| )]

z|y=
=arg min [—Inf(z) —In P(A|x)].
x| y=D=z
Since
_J0 y#Dz
P(A|$)_{1 y=Dzx

thenz = argming | y—ps[—In f(z)].

APPENDIX I
We show here that

Ja
Z brzi + o

X‘ _ k:Jl

i =

Z by — lel bk]

k=J>+1

>

k=Jy

whereJ; andJ; satisfyz;, — z5, < vo, Jo2 > J;. We assume
positive weights as well as positive values fgr - - zg
Consider the following special case.
Case 2A]Ag| > yo VE
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the optimal estimat&;; will lie be-
tween z; and zg. It will either be within a o of
some zn or not. If the former is true, therh,(X; ;)

(B ) + 35 e (27124 /7) — 22]; otherwise,

8
. 29| Ay
ho(Xi ) = Ejbkl'ﬂ i —72]

8

o)

2v|A,,
:Zbk 8l k|—7225k
k=1 k=1
where
A Zk — Xi,j Zkflf
A“ — 2k zrell.

Considering the latter, that ié{m ¢ [z — vo, 2z + vo| Yk,
let hy(X; ;) = Srey bx(27|Ak|/o) For the following inter-
vals and for the variablé; ;, h-(X; ;) is a straight line with
negative, zero, or positive slope.

1) Xij <z —no:

h"/(Xl i)

[ (z@ X1,+zbk7k]

2) yy—yo <X, <zy—vyoforl=1.-.-7

o (X, [(Zbk— > m)Xu

k=141

+ Z bi 2k _Zbk7k

k=141
3) 25 —vo < Xi,j:

27 8 8 7
7 [(Z bk) Xm' — Z bkzk .
k=1 k=1 i

Sinceh ( ZJ) is continuous, then there exists an inteder
such tha@ Ek g b <0, Ek 1 b Ek e e =
0, andZ"Jrl - Zk J+2bk > 0, that is, 1 (X ;) has a
flat bottom, or 3"~ L Lby — Y5, b < 0 and Ek b
S sy be > 0. 1If h.(X; ;) does have a flat bottom then
27 < XZJ < 2741 otherW|se)A(i7j = zjJ.

Case 2B]Ag| < ~vo for somek

Suppose now that there exigt andJ; such that/; < Js

B”/(X J) =

andzJ2 — 27 < ~vo, then 'I:OI'ZJ1 < Xi,j < ZJos
Ji—1 2’}/
(X Zbk[ X5 = a7
o SR IR R
o J
k=Jo+1
J2 2
X, i — 2
]
w5 n( )

k=J,

In light of Case 2A above, F-7" bx — S5_;, b > 0, then
there exists an integef; such that]3 < J; and;vJ3 < X ;i £
7J3+1,orX” = zz,. Similarly, |f2k 1 0k— Zk Jot1 Uk < 0,
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ttlen there existg an integédy such that/, > J; andz;, <

(10]

Xij £ 721,41 Or X; ; = 25,. Otherwise, there exists an integer

Js such that/; < J; < Jyandzy, —vo < X ; < 25, + 0.

(11]

Since

(12]
Ji—1

hy(Xig) =D b - 72}
k=1
8 %
b | = |1 X — 2| — 42
+ > k|:0_|71 21| ’7}

k=J241
2
Xi,j — Rk
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Ja
+E by
2y 2
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2y
[— [ Xij — =
g

[14]

[15]
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k=J,
Ji—1

.Zbk
k=1

8
+ > b

[17]

5 [18]
y
[? [z — Xi ] = ’72}

k=Jo+1 [19]
Jo 2
Xij — 2
2 h <JT> [20]
k=J1
—a h (:ﬂ) =0,=> [21]
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gz 8 Ji—1
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% _ k=4 k=Jo41 k=1
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whereJ; andJs satisfyzy, — 25, < vo,Ja > J1. ASyo — o0,

Case 2A above is satisfied, that is, there exists an intégech
that>; < Xi,j < ZJ41 when ZZ=1 by = Zi:J-{—l by, or
Xi,j = ZJ Whenz,‘le b, > Ei:.]-l—l by. If J = 3, then a
possible value forf(i,j, would be the median of; - - - 3. This

(25]

(26]

is in fact the case when all the weiglits - - bg are equal.

(1]
(2]
(3]
[4]

(5]
(6]

(71

(8]
[9]

[27]

REFERENCES [28]
M. Tomordy, “Airline with the personal touchJEE Rev, vol. 44, no. 6,

pp. 261-264, Nov. 1998. [29]
J. Besag, “Spatial interaction and the statistical analysis of lattice sys-
tems,”J. Royal Stat. Sogcser. B, vol. 36, pp. 192-326, 1974.

R. Kinderman and J. L. SnelMarkov Random Fields and their Appli- [30]
cations: Amer. Math. Soc., 1980, vol. 1, Contemporary Mathematics.

S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of imagd&EE Trans. Pattern Anal. Ma-  [31]
chine Intell, vol. PAMI-6, pp. 721-741, Nov. 1984.

M. Wada, “Selective recovery of video packet loss using error conceal-
ment,”|EEE J. Select. Areas Communwol. 7, pp. 807-814, June 1989.

H. Man, F. Kossentini, and M. J. T. Smith, “A class of EZW image coders [32]
for noisy channels,” ifProc. Int. Conf. Image Processingpl. Ill, Santa
Barbara, CA, Oct. 26-29, 1997, pp. 90-93.

J. Hagenauer, “Rate compatible punctured convolutional codes (RCP@33]
Codes) and their applications|EEE Trans. Communuyol. 36, pp.
389-400, Apr. 1988.

Y. Wang and Q. Zhu, “Error control and concealment for video commu- [34]
nication: A review,”Proc. IEEE vol. 86, pp. 974-996, May 1998.

ISO/IEC 11172-2 MPEG-1 Video Coding Standard, “ISO/IEC
11172-2, Information technology-coding of moving pictures and asso{35]
ciated audio for digital storage media at up to about 1.5 Mbits/s—Part

2: Video,”, 1993. ISO.

1143

ISO/IEC 13818-2 MPEG-2 Video Coding Standard, “ISO/IEC
13818-2, Generic coding of moving pictures and associated audio
information—Part 2: Video,”, 1995. ISO.

ITU-T, “CCIR recommendation H.261: Codec for audiovisual services
atp x 64 kbits/sec,”, 1990.

ITU-T, “Draft ITU-T recommendation H.263 version 2: Video coding
for low bitrate communication,”, Sept. 1997.

F. Kishino, K. Manabe, Y. Hayashi, and H. Yasuda, “Variable bit rate
coding of video signals for ATM networks,|[EEE J. Select. Areas
Commun,.vol. 7, pp. 801-806, June 1989.

M. Ghanbari and V. Seferidis, “Cell-loss concealment in ATM video
codecs,1EEE Trans. Circuits Syst. Video Technebl. 3, pp. 238-247,
June 1993.

M. Ghanbari and C. J. Hughes, “Packing coded video signals into ATM
cells,” IEEE/ACM Trans. Networkingrol. 1, pp. 505-508, Oct. 1993.

P. Pancha and M. El Zarki, “MPEG coding for variable bit rate video
transmission,IEEE Commun. Magvol. 32, pp. 54—66, May 1994.

W. Luo and M. El Zarki, “Analysis of error concealment schemes for
MPEG-2 video transmission over ATM based networks,Pmc. SPIE
Conf. Vis. Commun. Image Processingl. 1605, Taipei, Taiwan, May
1995, pp. 1358-1368.

L. H. Kieu and K. N. Ngan, “Cell loss concealment techniques for lay-
ered video codec in an ATM networklEEE Trans. Image Processing
vol. 3, pp. 666-677, Sept. 1994.

D. Raychaudhuri, H. Sun, and R. S. Girons, “ATM transport and cell-loss
concealment techniques for MPEG video,"Rroc. Int. Conf. Acoust.,
Speech, Signal Processirginneapolis, MN, Nov. 1993, pp. 117-120.
C. Hahm and J. Kim, “An adaptive error concealment in SNR scal-
able system,” ifProc. SPIE Conf. Vis. Commun. Image Processuof
2501/3, Taipei, Taiwan, May 24-26, 1995, pp. 1380-1387.

V. Parthasarathy, J. Modestino, and K. S. Vastola, “Design of a transport
coding scheme for high quality video over ATM network&EEE Trans.
Circuits Syst. Video Technplol. 7, pp. 358-376, Apr. 1997.

A. S. Tom, C. L. Yeh, and F. Chu, “Packet video for cell loss protec-
tion using deinterleaving and scrambling,”fmoc. Int. Conf. Acoust.,
Speech, Signal Processinpronto, Canada, May 1991, pp. 2857-2860.
Q. Zhu, Y. Wang, and L. Shaw, “Coding and cell loss recovery in DCT
based packet videoJEEE Trans. Circuits Syst. Video Technalol. 3,

pp. 248-258, June 1993.

J. Y. Park, M. H. Lee, and K. J. Lee, “A simple concealment for ATM
bursty cellloss,|EEE Trans. Consumer Electrgvol. 39, pp. 704-710,
Aug. 1993.

P. Salama, N. Shroff, E. J. Coyle, and E. J. Delp, “Error concealment
techniques for encoded video streams,Pimc. Int. Conf. Image Pro-
cessingvol. I, Washington, DC, Oct. 23-26, 1995, pp. 9-12.

P. Salama, N. Shroff, and E. J. Delp, “A Bayesian approach to error
concealment in encoded video streams,Pioc. Int. Conf. Image Pro-
cessingvol. Il, Lausanne, Switzerland, Sept. 16—-19, 1996, pp. 49-52.
——, “A fast suboptimal approach to error concealment in encoded
video streams,” ifProc. Int. Conf. Image Processingpl. I, Santa Bar-
bara, CA, Oct. 26-29, 1997, pp. 101-104.

——, “Error concealmentin encoded video streams|iiage Recovery
Techniques for Image Compression ApplicatiddsP. Galatsanos and
A. K. Katsaggelos, Eds. Norwell, MA: Kluwer, 1998.

Y. Wang, Q. Zhu, and L. Shaw, “Maximally smooth image recovery in
transform coding,1EEE Trans. Communvol. 41, pp. 1544-1551, Oct.
1993.

Y. Wang and Q. Zhu, “Signal loss recovery in DCT-based image and
video codecs,” inProc. SPIE Conf. Vis. Commun. Image Processing
vol. 2501/3, Boston, MA, Nov. 1991, pp. 667-678.

L. T. Chia, D. J. Parish, and J. W. R. Griffiths, “On the treatment of video
cellloss in in the transmission of motion-JPEG and JPEG ima@esti-
puters Graphics: Image Communol. 18, no. 1, pp. 11-19, Jan.—Feb.
1994.

H. Sun and J. Zdepski, “Adaptive error concealment algorithm for
MPEG compressed video,” iRroc. SPIE Conf. Vis. Commun. Image
Processingvol. 1818, Boston, MA, Nov. 1992, pp. 814-824.

W. Kwok and H. Sun, “Multidirectional interpolation for spatial error
concealment, IEEE Trans. Consumer Electrgrvol. 3, pp. 455-460,
Aug. 1993.

H. Sun and W. Kwok, “Concealment of damaged block transform coded
images using projections onto convex sel§EE Trans. Image Pro-
cessingvol. 4, pp. 470-477, Apr. 1995.

S. Aign and K. Fazel, “Error detection and concealment measures in
MPEG-2 video decoder,” ifProc. Int. Workshop HDT\VTorino, ltaly,

Oct. 1994.



1144

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]

[47]

[48]

(49]

(50]

(51]

(52]

(53]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 6, JUNE 2000

——, “Temporal and spatial error concealment techniques for hieraRess B. Shroff(S’90-M’94) received the B.S. degree from the University of
chical MPEG-2 video codec,” iRroc. Int. Workshop CommurSeattle, Southern California, Los Angeles, the M.S.E. degree from the University of
WA, June 18-20, 1995, pp. 1778-1783. Pennsylvania, Philadelphia, and the M.Phil. and Ph.D. degrees from Columbia
S. Aign, “Error concealment enhancement by using the reliability outdniversity, New York, NY.

puts of a SOVA in MPEG-2 video decoder,” Froc. URSI Int. Symp.  He is currently an Assistant Professor in the School of Electrical and Com-
Signal, Syst., ElectronSan Francisco, CA, Oct. 25-27, 1995, pp. 59-62uter Engineering, Purdue University, West Lafayette, IN. His current research
J. F. Shen and H. M. Hang, “Compressed image concealment and pasterests are in broadband networks and wireless communication networks.
processing for digital video recording,” Rroc. IEEE Asia-Pacific Conf. Dr. Shroff was the Conference Chair for the 14th Annual IEEE Computer
Circuits Syst. Taipei, Taiwan, Dec. 5-8, 1994, pp. 636—641. Communications Workshop (CCW) and is the program co-chair for the sympo-
D. C. Youla and H. Webb, “Image restoration by the method of convesium on High-Speed Networks at the IEEE Globecomm’2000. He is the secre-
projections: Part 1—Theory/EEE Trans. Med. Imagvol. MI-1, pp.  tary of the IEEE Communications Society Technical Committee on Computer

81-94, Oct. 1982. Communications (TCCC). He is also on the Editorial Board for Computer Net-
R. Talluri, “Error resilient video coding in the ISO MPEG-4 standard,'works and IEEE ©MMUNICATION LETTERS He received the NSF CAREER
IEEE Commun. Magvol. 36, pp. 112-119, June 1998. award from the National Science Foundation in 1996.

J. Liang and R. Talluri, “Tools for robust image and video coding in
JPEG2000 and MPEG4 standards, Hroc. SPIE Conf. Vis. Commun.
Image Processingol. 3653, San Jose, CA, Jan. 23-29, 1999, pp. 40-51.
E. Asbun and E. J. Delp, “Real-time error concealment in compress|
digital video streams,” irProc. Picture Coding SympPortland, OR,
Apr. 21-23, 1999.

R. L. Stevenson, B. E. Schmitz, and E. J. Delp, “Discontinuity preservi
regularization of inverse visual problem$FEE Trans. Syst. Man Cy-
bern, vol. 24, pp. 455-469, Mar. 1994.

D. Geman and G. Reynolds, “Constrained restoration and the recov:
of discontinuities,”lEEE Trans. Pattern Anal. Machine Intelkol. 14,
pp. 367-382, Mar. 1992.

Edward J. Delp (S'70-M'79-SM'86-F'97) was
born in Cincinnati, OH. He received the B.S.E.E.
(cum laude) and M.S. degrees from the University
of Cincinnati, Cincinnati, OH, and the Ph.D. degree
from Purdue University, West Lafayette, IN.

From 1980 to 1984, he was with the Department
of Electrical and Computer Engineering, University
of Michigan, Ann Arbor. Since August 1984, he has
been with the School of Electrical and Computer En-

C. Bouman and K. Sauer, “A generalized Gaussian image model {1 ~ ; __,,.-l" gineering at Purdue University, where he is a Pro-
edge-preserving MAP estimatiorlEEE Trans. Image Processingol. fessor of electrical engineering. His research interests
2, pp. 296-310, July 1993. include image and video compression, image processing, multimedia security,

J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic solution of ill-medical imaging, parallel processing, multimedia systems, nonlinear filtering,
posed problems in computational visiod,”Amer. Stat. Assgovol. 82, and communication and information theory. He has also consulted for various
no. 397, pp. 76-89, Mar. 1987. companies and government agencies in the areas of signal and image processing,
R. Schultz and R. L. Stevenson, “A Bayesian approach to image expaabot vision, pattern recognition, and secure communications.

sion for improved definition,1IEEE Trans. Image Processingpl. 3, pp. Dr. Delp is amember of Tau Beta Pi, Eta Kappa Nu, Phi Kappa Phi, Sigma Xi,

233-241, May 1994. ACM, and the Pattern Recognition Society. He is a Fellow of the SPIE, and a
P. J. HuberRobust Statistics New York: Wiley, 1981. Fellow of the Society for Imaging Science and Technology (IS&T). In 1997,

J. Besag, “On the statistical analysis of dirty picturek,Royal Stat. he was elected Chair of the Image and Multidimensional Signal Processing
Soc, ser. B, vol. 48, no. 3, pp. 259-302, 1986. (IMDSP) Technical Committee of the IEEE Signal Processing Society. From

J. Konrad and E. Dubois, “Bayesian estimation of motion vector fields1994 to 1998, he was Vice-President for Publications of IS&T. He was Co-Chair
IEEE Trans. Pattern Anal. Machine Intelkol. 14, pp. 910-926, Sept. of the SPIE/IS&T Conference on Security and Watermarking of Multimedia
1992. Contents held in San Jose in January 1999. He was the General Co-Chair of the
J. Li, X. Lin, and C. C. J. Kuo, “Boundary control vector motion field 1997 Visual Communications and Image Processing Conference (VCIP) held in
representation and estimation by using a markov random field mallel,"San Jose. He was Program Chair of the IEEE Signal Processing Society’s Ninth
Vis. Commun. Image Represenbl. 7, no. 3, pp. 230-243, Sept. 1996.IMDSP Workshop held in Belize in March 1996. He was General Co-Chairman
W. M. Lam, A. R. Reibman, and B. Liu, “Recovery of lost or erroneouslyf the 1993 SPIE/IS&T Symposium on Electronic Imaging.

received motion vectors,” ifProc. Int. Conf. Acoust., Speech, Signal

ProcessingMinneapolis, MN, Apr. 27-30, 1993, pp. V417-V420.

A. Papoulis,Probability, Random Variables, and Stochastic Processes

3rd ed. New York: McGraw-Hill, 1984.

Paul Salama(S'94-M’00) received the B.S. degree
(first class honors) from the University of Khartoum,
and the M.S.E.E. and Ph.D. degrees from Purdue
University, West Lafayette, IN.

He is currently an Assistant Professor in the De-
partment of Electrical and Computer Engineering,
Purdue School of Engineering and Technology,
IUPULI, Indianapolis. His research interests include
image and video compression, image processing,
and medical imaging.

Dr. Salama is a member of SPIE, Tau Beta Pi, and

Eta Kappa Nu.



