
                             Elsevier Editorial System(tm) for Journal of the Franklin Institute 
                                  Manuscript Draft 
 
 
Manuscript Number: FI-D-09-00471 
 
Title: On the Asymptotic Queueing Behavior of General AQM Routers  
 
Article Type: Modeling & Simulation in Advanced Comm. 
 
Keywords: AQM, Queueing theory 
 
Corresponding Author: Dr. Dongyu Qiu,  
 
Corresponding Author's Institution: Concordia University 
 
First Author: Dongyu Qiu 
 
Order of Authors: Dongyu Qiu; Ness Shroff 
 
 
 
 
 
 



On the Asymptotic Queueing Behavior of General AQM

Routers

Dongyu Qiu

ECE, Concordia University

Montreal, QC H3G 1M8, Canada

dongyu@ece.concordia.ca

Ness Shroff

ECE, Ohio State University

Columbus, OH 43210, USA

shroff@ece.osu.edu

Abstract

In this paper, we study the asymptotic behavior of an AQM router serving many AIMD

flows. Our model for the AQM router is general and covers most AQM schemes in the current

literature. We use a window-based model for the AIMD flows. When the number of AIMD

flows is large, we show that the system converges point wise to a limit model. Further, under

certain technical conditions, we prove that the system converges uniformly in time and that

a steady state exists. We then study the steady state of the system. We show that using ap-

propriate feedback control, the backward accumulation process of net input to the router can

be bounded. Under this condition and Gaussian assumption, the queue length distribution can

be shown to decay very fast in terms of the buffer size (squared exponential decay). We also

provide numerical results to study and support our analytical results.

1 Introduction

TCP [1] is the most dominant transport protocol in the Internet today. It plays an important role

in the efficient operation of the network. A key feature of TCP congestion control is the Addi-

tive Increase Multiplicative Decrease (AIMD) algorithm, which adjusts the data transfer rate based

on feedback information from the routers. A router can use different Active Queue Management

(AQM) schemes to generate feedback information. Popular AQM schemes are Random Early De-

tection (RED) [2], Random Exponential Marking (REM) [3], and Adaptive Virtual Queue (AVQ)

[4]. The traditional DropTail TCP mechanism can also be viewed as an AQM scheme, in which

packet loss is used as the feedback. Studying the behavior of an AIMD/AQM router is impor-

tant because it not only helps us understand how the network works, but can also provide us with

insight on how to design and improve network performance.

Modeling TCP traffic has long been an important topic. A popular approach was to use Markov

chain modeling [5][6], where the congestion window size acts as the state of the Markov chain and

the loss rate determines the transition probabilities. Since such modeling is done at the individual
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flow level, and while there have been efforts to extend the results to more than one flow [7][8],

generally speaking, this type of approach is not scalable when the number of flows is large. Another

approach is to apply limit theorems to the aggregate TCP traffic [9][10][11][12][13]. In [11], the

performance of a RED router with many TCP flows has been considered. It has been shown that

when the number of TCP flows N goes to infinity, the congestion window sizes of TCP flows

converge to the same distribution and become asymptotically independent of each other. In [11],

the normalized queue length (the real queue length over N) was shown to converge to a constant. A

more general model was developed in [12] to include both RED and REM. In [13], heterogeneous

TCP flows were considered for a RED router.

While the modeling in [11][12][13] shed new insight, it is limited to either RED or REM routers

and hence does not help understanding other AQM schemes. Further, the convergence proved in

those models is point wise in time. Since in reality, the number of flows is normally in a given

range, which doesn’t change with time, when time is large, it is not clear whether the limit model

is still a good approximation of the real system.

In this paper, we first present a general model for the router that covers virtually all AQM

schemes. We extend the results of [11] to this general model. We also prove uniform convergence

over time under certain conditions (global exponential stability). Hence, our model can be used

study the steady state behavior of the system. In addition, we develop a different approach from

[11] to study the queueing behavior of the system. We show that if we set the target link utilization

to be slightly less than one, the network performance can be significantly improved. When the

number of flows is fixed, we show that the overflow probability can be made to decay very fast

(squared exponential decay) if the AQM schemes are designed appropriately. Since our results are

derived from a general AQM model, they provide directions on how to design and improve AQM

schemes.

2 Model

We use a similar model as that in [11], but our model for the AQM router is more general. We

consider an AQM router serving N TCP flows. We let X(N) denote the explicit dependence of

the quantity X on the number of flows N . The link capacity of the router is NC, where C is a

constant. Time is discrete and all TCP flows have the round trip delay of one time unit. We assume

that the system begins at time t = 0.

The flow control algorithm of a TCP flow is as follows. The size of the congestion window (the

amount of unacknowledged packets in the network per round trip) is increased by one packet for

the next round trip if all packets transmitted in the current round trip are not marked or dropped.

Otherwise, if at least one packet is marked or dropped, the congestion window is halved. This

corresponds to the AIMD behavior of TCP.

The router marks or drops packets according to the AQM scheme deployed on the router. At

each time slot, a marking/dropping probability is calculated based on the current status of the

router. Different AQM schemes may use different parameters to calculate the marking/dropping
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probability. Generally the probability at time t can be expressed as

p(N)(t) = f
(N)
t (x(N)(0), · · · , x(N)(t)), (1)

where x(N)(s) is the input data rate to the router at time s. This model is general (i.e., all AQM

schemes are special cases) since the total history of the input rate determines everything at the

router. However, in practice, routers cannot keep the total history of the input data rate. Instead,

the router keeps the information of a finite number of state variables. Let the number of state

variables be K and the vector of state variables be S(N)(t) = [S
(N)
1 (t), · · · , S

(N)
K (t)]. Then a more

practical marking/dropping function (a special case of the marking/dropping function Eq. (1)) will

be

p(N)(t) = f (N)(S(N)(t − 1), x(N)(t)). (2)

S(N)(t) evolves according to

S(N)(t) = F (N)(S(N)(t − 1), x(N)(t)).

Note that x(N)(t) can also be a state variable and hence a component in S(N)(t). While some of

the results in this paper can be shown under the more general model in Eq. (1), in this paper, we

will mainly focus on the AQM model with state variables given by Eq. (2). It should be noted that

this model also covers virtually all practical AQM schemes studied in the literature.

After the marking/dropping probability is calculated, the router marks or drops packets ac-

cording to p(N)(t). Depending on whether the router uses random number generators or not,

we can classify AQM schemes into two categories. Some AQM schemes generate independent

[0, 1]-uniform random numbers for each packet. If the random number is greater than p(N)(t), the

packet will not be marked or dropped. Otherwise, the router marks/drops the packet. Hence, each

packet is independently marked or dropped with probability p(N)(t). Examples are RED and REM.

Other AQM schemes do not use random number generators. Examples are DropTail and AVQ. In

these schemes, at time t, if there are x(N)(t) input packets, the router will mark or drop exactly

p(N)(t)x(N)(t) packets. In this case, packets are no longer marked or dropped independently. Our

theoretical results will include both type of AQM schemes.

We assume that TCP flows always have enough data to transmit and define W
(N)
i (t) to be the

congestion window size of flow i at time t. The input data rate to the router at time t will then be

x(N)(t) =
∑N

i=1 W
(N)
i (t). We also assume that the integer W

(N)
i (t) is in the range {1, · · · , Wmax}

for some finite integer Wmax.

We define M
(N)
i,j (t + 1) as the indicator function of the event that the jth packet from source i

is not marked/dropped in time slot [t, t + 1), i.e.,

M
(N)
i,j (t + 1) = 1[Vi,j(t + 1) > p(N)(t)],

where {Vi,j(t + 1), i, j = 1, · · · ; t = 0, 1, · · ·} are [0, 1]-uniform random variables (r.v.s) and they

may or may not be independent with each other depending on the AQM scheme used. We also de-

fine M
(N)
i (t+1) as the indicator function of the event that no packet from flow i is marked/dropped

in time slot [t, t + 1), i.e.,

M
(N)
i (t + 1) = Π

W
(N)
i

(t)
j=1 M

(N)
i,j (t + 1)
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The evolution of the congestion window for source i can then be described by

W
(N)
i (t + 1) = min (W

(N)
i (t) + 1,Wmax)M

(N)
i (t + 1)

+p
W

(N)
i (t)

2
q(1 − M

(N)
i (t + 1)).

where pxq is the smallest integer that is greater than or equals to x.

3 Point Wise Convergence

We first make two assumptions.

(A1) There exist continuous functions f and F such that

p(N)(t) = f (N)(S(N)(t − 1), x(N)(t))

= f(
S(N)(t − 1)

N
,
x(N)(t)

N
)

and

S(N)(t) = F (N)(S(N)(t − 1), x(N)(t))

= N · F (
S(N)(t − 1)

N
,
x(N)(t)

N
)

(A2) The system starts with the initial conditions:

S(N)(0) = S, W
(N)
i (0) = W,

for i = 1, · · · , N , where 1 ≤ W ≤ Wmax is a constant and S is a constant vector.

Assumption (A1) tells us how the marking function and state variables scale when N increases

and assumption (A2) simply give us the initial conditions. As should be clear, these are fairly non-

restrictive assumptions and can model various AQM schemes, as shown in Section 3.1. The limit

behavior of the system is described by the following theorem. In this paper, we use
P

−→N to denote

convergence in probability, use ⇒N to denote convergence in distribution, and use
a.s.

−→N to denote

almost surely convergence. Equivalence in distribution between random variables is denoted by

=st.

Theorem 1 Under the assumptions (A1) − (A2), for each time t, there exists a constant p(t), a

constant vector S(t), and a r.v. W (t) such that:

1. p(N)(t)
P

−→N p(t), S(N)(t)
N

P
−→N S(t),

and W
(N)
i (t) ⇒N W (t).
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2. For any function g,

1

N

N
∑

i=1

g(W
(N)
i (t)) →N E[g(W (t)].

3. For any integer I = 1, 2, · · ·, the r.v.s {W
(N)
i (t), i = 1, · · · , I} become asymptotically inde-

pendent as N goes to infinity.

4. For the limit model, we have

p(t) = f(S(t − 1), E[W (t)]),

S(t) = F (S(t − 1), E[W (t)]) (3)

and

W (t + 1) =st min(W (t) + 1, Wmax)M(t + 1)

+p
W (t)

2
q(1 − M(t + 1)), (4)

where

M(t + 1) = 1[V (t + 1) ≤ (1 − p(t))W (t)]

for i.i.d [0, 1]-uniform r.v.s {V (t + 1), t = 0, 1, · · ·}.

All proofs are provided in the Appendices.

3.1 Different AQM schemes

As mentioned earlier, our AQM model with state variables is quite general. Next, we will discuss

how practical AQM schemes such as DropTail, RED, REM, and AVQ can fit in our model.

For a RED router with infinite buffer, there is only one state variable, the queue size Q(N)(t),
and it evolves according to

Q(N)(t) = [Q(N)(t − 1) + x(N)(t) − NC]+,

where NC is the link capacity. The marking function is then

p(N)(t) = f (N)(Q(N)(t − 1)) = f(
Q(N)(t − 1)

N
),

where f(·) is a continuous function.

For a REM router with infinite buffer, in addition to the queue size Q(N)(t), there is another

state variable P (N)(t) called the price and evolves according to

P (N)(t) = [P (N)(t − 1)+

γ(α(Q(N)(t) − NQ∗) + x(N)(t) − NC)]+, (5)
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where γ and α are REM parameters and Q∗ ≥ 0 is the normalized target queue length. The

marking function is

p(N)(t) = 1 − Φ−
P

(N)(t)
N ,

where Φ > 1 is a constant.

For a DropTail router with buffer size NB, the state variable is the queue size Q(N)(t) and it

evolves according to

Q(N)(t) = [Q(N)(t − 1) + x(N)(t) − NC]NB
0 ,

where

[x]ba =







a if x < a
x if a ≤ x ≤ b
b if x > b

The marking/dropping function is then

p(N)(t) =
[Q(N)(t − 1) + x(N)(t) − NC − NB]+

x(N)(t)
.

For an AVQ router with link capacity NC and buffer size NB, the state variable will be the

queue length V Q(N)(t) of the virtual queue (with link capacity ρNC, where ρ < 1 is a constant),

V Q(N)(t) = [V Q(N)(t − 1) + x(N)(t) − ρNC]NB
0 .

The marking/dropping probability is the dropping probability of the virtual queue

p(N)(t) =
[V Q(N)(t − 1) + x(N)(t) − ρNC − NB]+

x(N)(t)
.

One can easily check that assumption (A1) is satisfied for all AQM schemes discussed and

hence Theorem 1 holds.

4 Stability and Uniform Convergence

A shortcoming of Theorem 1 (and also the results of [11]) is that the proved convergence is for

each point in time (point-wise convergence). This means that for a given error, the required N
may depend on time t. Hence, stronger results such as uniform convergence are needed. The

convergence is uniform in time t if for any given error ε, there exists a N0 (not dependent on t),
such that when N > N0, the actual error is always less than ε, no matter what the time t is. We

believe that uniform convergence is related to the stability of the limit model, which we will discuss

next.

Now, for the limit model, let gj(t) = P{w(t) = j}, G(t) = [g1(t), · · · , gWmax
(t)], and A(t) =

[S(t), G(t)]. Then A(t) is the state vector of the system. For each time t, we have

x(t) = [1, · · · , Wmax]G
T (t)

S(t) = F (S(t − 1), x(t))

p(t) = f(S(t − 1), x(t))

G(t + 1) = T (p(t))G(t), (6)
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where T (p(t)) is the transition matrix and depends on p(t). We assume this system is stable and

let A∗ = [S∗, G∗] be the equilibrium point. The system is called global exponential stable [14] if

there exist constants m, a (0 < a < 1), such that

||A(t) − A∗|| ≤ mat−t0 ||A(t0) − A∗|| (7)

for any t and t0 (t ≥ t0), where || · || is the Euclid norm. In practice it is desirable to have a stable

flow control system. This can be done by correctly choosing the AQM parameters [15][16]. In

[16], it has been shown that if the AQM parameters are properly chosen, the system can be made

to be global exponential stable.

For the real system, let n
(N)
j (t) be the number of flows with window size j at time t and define

g
(N)
j (t) =

n
(N)
j

N

G(N)(t) = [g
(N)
1 (t), · · · , g

(N)
Wmax

(t)]

A(N)(t) = [
S(N)(t)

N
, G(N)(t)].

Next, we assume A(N)(t) ∈ L2 and study the convergence in L2 space. Note that for DropTail

and AVQ, since the buffer size is finite, this assumption is always true. For RED, if the buffer size

is finite, this assumption is also true. Even if the buffer size is infinite, if the queue distribution

decays fast (e.g., exponential decay), we still have this assumption satisfied.

We also assume that function F satisfy the following Lipschitz condition, i.e., there exists a

constant α ≥ 0, such that

||F (S(t− 1), x1(t) − F (S(t − 1), x2(t)|| ≤ α||x1(t) − x2(t)||, (8)

for any S(t − 1), x1(t), and x2(t). It is easy to see that DropTail, AVQ, RED, and REM all satisfy

this condition. The next proposition shows the relationship between the stability and uniform

convergence.

Proposition 1 If the limit model defined by Eq. (6) is global exponential stable with m = 1,

A(N)(t) ∈ L2, and F satisfies the Lipschitz condition Eq. (8), then A(N)(t) converges uniformly to

A(t) in L2 as the number of flows N goes to infinity.

Proposition 1 tells us that if we choose AQM parameters correctly, the system will uniformly

converge to the limit model and a steady state exists. Note that global exponential stability is a

sufficient, but not necessary condition, for the uniform convergence. Hence, there may be other

scenarios in which the system converges uniformly.

Next, we will assume that the limit model is stable and study its steady state behavior, which

we believe can give us insight on how different AQM schemes perform.

In [11], the authors studied RED. When N goes to infinity, the normalized queue size Q(N)

N
goes

to a constant (greater than zero) and the normalized input rate x(N)

N
goes to the link capacity C. But
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the actual queue size goes to infinity, which may not be desirable in practice. From the proof of

our theorem, we can see that although the queue size is important to the network performance, it

is not necessary that the marking/dropping probability will be related with it. In fact, in our proof,

we do not really need information on the queue size at all. It is only in some special cases of

AQM schemes (e.g. RED) that the queue size is used as a state variable. Later, we will see that

if we decouple the real queue size and the marking/dropping probability, we may get improved

performance.

Similarly, in REM, if we assume the limit model is stable, we can easily see that in steady state,

the normalized queue size Q(N)

N
goes to a constant Q∗ and the normalized input rate x(N)

N
goes to

the link capacity C. Different from RED, the limit of the normalized queue size (Q∗) is chosen by

the user and can take zero value. But even if we set Q∗ = 0, because the link utilization is 1, it is

still possible for the actual queue size to be large or even go to infinity, when N goes to infinity.

In a router using DropTail (note that we have finite buffer here), if we assume steady state,

we can see that the normalized queue size Q(N)

N
goes to the normalized buffer size B and the

normalized input rate x(N)

N
goes to C

1−p
, where p is the marking/dropping probability. This tells us

that the buffer is always full and the input rate is in fact greater than the link capacity.

In AVQ, the marking/dropping probability is no longer directly related to the real queue size.

In steady state, the normalized virtual queue size V Q(N)

N
goes to the normalized buffer size B and

the normalized input rate x(N)

N
goes to ρC

1−p
. Remember that ρ is a parameter that we can choose.

If we choose ρ to be slightly less than 1 − p, then the normalized input rate is less than the link

capacity C. Hence, the normalized queue size Q(N)

N
goes to zero.

From the discussion of different AQM schemes, we can see that different AQM schemes do

exhibit different limiting behavior. Our model provides us with an analytical tool to compare

different AQM schemes and also sheds light on how to design an appropriate AQM scheme (e.g.,

decoupling the marking probability from the real queue size). An interesting observation is that if

we set the target link utilization to be one (such as RED and REM), the normalized queue length

is generally greater than zero and hence the real queue length could be very large when N is

large. But once we set target utilization to be less than one, no matter how close it is to one, the

normalized queue length becomes zero.

From Theorem 1, we also see that the asymptotic independence of TCP congestion windows

does not really come from the randomized marking/dropping (RED, REM), but is mainly because

of the large number of TCP flows. Even if a router uses DropTail, when N goes to infinity, the

TCP congestion windows of different flows become asymptotically independent.

5 Asymptotic Queueing Behavior

While Theorem 1 tells us what the system converges to, it does not provide us with an explicit

distribution for the queue length. For example, from the discussion of the steady state behavior of

different AQM schemes in Section 4, we see that the only information we can get about the queue

is that the normalized queue length goes to a constant (the constant could be zero). We cannot tell

how the queue length is distributed.
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When the number of flows are large, there are typically three types of approximations we can

use to study the queueing behavior: Central Limit Theorem (CLT) [17], Large Deviation Principles

(LDP) [18][19], Moderate Deviation Principles (MDP) [20]. In [20], it has also been shown that

when the traffic is heavy, Gaussian approximation performs better than the other two methods.

Note that TCP always tries to fully utilize the link capacity if there are enough data to transmit.

Hence we expect the AQM router to operate in a heavy traffic mode. Based on this observation,

we use the Gaussian approach to study the queueing behavior of the AQM router.

We assume that the target link utilization of the AQM router is slightly less than one and that

the system is in steady state. Note that we take a different approach to that of [11]. In [11], the

CLT is directly applied to the queue size and tells us how fast the queue size increases when N
increase. But that is not what we want in a real network since we want the queue size to be small.

This is also the reason why we are interested in AQM routers that have target link utilization less

than one. In Section 6, we will see that a very high target link utilization does not mean that the

actual link utilization will be high, and may only cause unnecessary workload.

Now, let

X
(N) = [x(N)(0), x(N)(1), · · ·]

be the process of the aggregate input rate. Since X
(N) is the sum of many small flows, we expect

it to behave like a Gaussian process. Define

V
(N)
t = Var{

t−1
∑

i=0

x(N)(t0 − i)}

to be the variance of the backward accumulation of X over a time period of t. Since we assume

that the system is in steady state, V
(N)
t will not depend on t0. Let the mean value of the congestion

window size E[W (t)] = ρC, where ρ < 1 is the target link utilization. Then under the Gaussian

assumption, the real queue size distribution can be approximated by

log P{Q(N) > b} ≈ − inf
t≥0

(b + N(1 − ρ)Ct)2

2V
(N)
t

, (9)

where b is queue size.

Rigorous forms and proofs of Eq. (9) can be found in [17][21][20]. When N is large, Eq. (9)

can be used as an approximation of the tail probability of the real queue. We can see that when the

target link utilization ρ is fixed, V
(N)
t plays an important role in determining how fast the queue

decays. For a fixed N , we will next simply use Vt instead of V
(N)
t .

In an open-loop network, Vt generally goes to infinity when t goes to infinity. For example, if

the input process is a long range dependent process with Hurst parameter H ∈ [1/2, 1), we will

have Vt ∼ St2H , when t → ∞, where S is a constant. In our system, if we assume that the marking

probability is a fixed constant (i.e., it does not change according to the status of the router) and

the router marks/drops packets independently, then the flows are independent of each other and the

aggregate input process can be seen as the sum of many independent Markov modulated processes.

In this setting, we will have Vt increasing linearly with time t. However in a closed-loop network
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with appropriately designed AQM schemes, Vt can be bounded and does not go to infinity when t
goes to infinity. The intuition behind this is that in a closed-loop network, when the input rate is

higher than the average value for a long time, the router will detect it and try to reduce the input

rate. While in an open-loop network, there is no mechanism to prevent to the input rate from being

higher than the average rate for a long period of time (although with a small probability).

We will use a RED router with link capacity C as an example. Let x(t) be the input rate at

time t and assume that x(t) is bounded by Xmax, where Xmax > C. We also assume that when all

packets are marked, x(t) can be decreased to be less than C in a finite time T0, which is obviously

true for AIMD flows. We design the RED scheme such that the marking probability p(Q(t)) = 1
if Q(t) ≥ Bh and p(Q(t)) = 0 if Q(t) ≤ Bl, where Bl ≤ Bh are two constants. We claim

that for any t0 and T ≥ 0, the net input accumulation
∑T

j=1 x(t0 + j) − CT can be bounded by

Bh +(T0 +1)(Xmax−C). The proof is simple. Once the accumulation is greater than Bh, it means

the queue size is greater than Bh and all packets will be marked. x(t) will begin to decrease, but it

may be still higher than C for at most a time period of T0. Within this time period, the accumulation

may continue increasing, but by at most (T0 + 1)(Xmax − C). After that, x(t) will be less than C
and the accumulation decreases. Similarly, by correctly choosing Bl, we can derive a lower bound

for
∑T

j=1 x(t0 + j) − CT . This tells us that the net input accumulation is bounded no matter how

long the time period is. Hence, the variance Vt will also be bounded.

In REM and AVQ, things are more complicated and it is not clear whether Vt can be bounded.

In REM, the net input accumulation itself obviously cannot be bounded because, with exponential

marking, the marking probability can never be one and hence, no matter how large the accumu-

lation is, there always a small probability that it will increase. Finding the properties of Vt for a

general AQM scheme will be part of our future work. Note that even if Vt is not bounded, because

of the feedback mechanism, we expect that it can at least be made to increase slowly, and hence

still expect that the queue distribution will decay quickly.

Note that Eq. (9) holds no matter whether V
(N)
t is bounded. However, in [21], it has been

shown that when V
(N)
t is bounded, the queue length distribution decays squared exponentially, i.e.,

P{Q(N) > b} ≤ e
− b

2

2D
(N) , (10)

when b is large. Note that D(N) is a constant related to N and we assume N is fixed here. Recall

that if V
(N)
t increases linearly with t, the tail probability decays at most exponentially [17]. Hence

Eq. (10) not only gives us an asymptotic upper bound on the queue distribution, but also give us

insight on how to design AQM schemes, i.e., try to ensure that V
(N)
t is bounded.

6 Numerical Results

We use an ns2 simulator to simulate a router that serves N TCP flows. The link capacity is 2N
Mbps and the buffer size is 12N packets. Each packet is 1000 bytes. The round trip delay is 10
msec for all flows. AVQ is used as the AQM scheme and the target link utilization is set to be

96%. We run the simulations for N = 25, 50, 100, and 200. Fig 1 shows the distribution of the

10



0 0.2 0.4 0.6 0.8 1 1.2 1.4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

b (packet)

P
(Q

>
b)

N=25
N=50
N=100
N=200

Figure 1: Tail Probability of the Normalized Queue
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Figure 2: Tail Probability of the Real Queue

normalized queue P{Q(N)

N
> b}. From Fig 1, we can see that when N increases, the tail probability

of the normalized queue decreases. This matches our theoretical result in Theorem 1.

In Fig 2, we show the tail probability of the real queue. Two important observations can be

made from this figure. First, the tail probability decays very fast as we discussed in Section 5.

This differs significantly with that of an open-loop network, where the decay is at most linear

(note that the probability has a log scale). Second, when N increases, the tail probability also

increases (for a fixed queue size b). This also differs with what we typically see in an open-loop

network. Note that in an open-loop network, under some mild conditions, we can show that when

the number of flows increases, the real queue size goes to zero by the many sources asymptotic

results [19]. In a closed-loop network with feedback control, the traffic is generally smoother

than that in an open-loop network [21]. Hence, we expect that the real queue size decreases

when the number of flows increases. But this simulation shows that this is in fact not true. It
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also tells us that simply assuming that the marking probability is fixed and treating TCP flows as

independent Markov modulated processes may not be appropriate if we want to understand the

queueing behavior of a TCP network because it cannot explain the result of this simulation (i.e.,

why statistical multiplexing does not happen).

In all above simulations, we also measured the actual link utilization and they all equal to the

target link utilization 96%. In the next simulation, we show that trying to fully utilize the link

capacity may not work well in practice. We fix N = 100 and set the target link utilization to be

98% and 96.2% respectively. We measure the actual link utilization and find that it is 96.2% in both

simulations. Under the same actual link utilization, we compare their tail probabilities in Fig 3.

We can see that when the target link utilization is set to 98%, the tail probability is much higher

than the other one. This tells us that setting a very high target link utilization does not guarantee

that the actual link utilization is high and may only cause unnecessary workload.

7 Conclusion

In this paper, we have studied the asymptotic behavior of a general AQM router serving many

AIMD flows. We first proved that when the number of flows is large, the system converges to a

limit model. We then showed that under certain conditions, the convergence is uniform in time and

that a steady state exists. Furthermore, we studied the steady state queueing behavior of the AQM

router under Gaussian assumption. If the target link utilization is slightly less than one, we find

that when the number of flows is fixed, if the AQM scheme is designed appropriately, it is possible

to bound the variance of the net input accumulation, and the overflow probability will decay as a

squared exponential. These results also provide us with insight on how to design an AQM scheme.

Moreover, since our model is general and covers most AQM schemes, it can be used to study and

compare different AQM schemes in the current literature.
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A Proof of Theorem 1

Our proof of Theorem 1 follows the same approach as that in [11]. But now we focus on the mark-

ing/dropping probability rather than the queue size. In addition, we need to deal with AQM schemes that do

not use random number generator.

To prove the theorem, for each t = 0, 1, · · ·, we will prove the statements [A:t], [B:t], [C:t], and [D:t]

below.

[A:t] p(N)(t)
P

−→N p(t), S(N)(t)
N

P
−→N S(t), and p(t), S(t) satisfy Eq. (3).

[B:t] W
(N)
i (t) ⇒N W (t) and W (t) evolves according to Eq. (4).

[C:t] For any integer I = 1, 2, · · ·, the r.v.s {W
(N)
i (t), i = 1, · · · , I} become asymptotically independent

as N goes to infinity.

[D:t] For any function g, 1
N

∑N
i=1 g(W

(N)
i (t))

P
−→N E[g(W (t)].

It is easy to see that statements [A:t]-[D:t] hold for t = 0. Next, we will prove that if [A:t]-[D:t] are true,

[A:t+1]-[D:t+1] will also be true. Hence, by induction, the statements [A:t]-[D:t] hold for all t = 0, 1, · · ·.
We prove this and hence the theorem by the following lemmas.

Lemma 1 If [A:t]-[D:t] hold, [B:t+1] also holds.

14



Proof: Define Z
(N)
i (t) = (1 − p(N)(t))W

(N)
i

(t). The convergence [A:t] and [B:t] imply the joint

convergence (p(N)(t),W
(N)
i (t)) ⇒N (p(t),W (t)). Since (x,w) → (1 − x)w is a continuous mapping, by

the Continuous Mapping Theorem, we have,

(Z
(N)
i (t),W

(N)
i (t)) ⇒N (Z(t),W (t)),

where Z(t) = (1 − p(t))W (t). Consider an arbitrary bounded mapping g : N → R and define

Fg(z,w) = zg(min(w + 1,Wmax)) + (1 − z)g(p
w

2
q).

Then Fg is bounded and continuous on [0, 1]×N (N is topologized according to the usual discrete topology).

By the definition of convergence in distribution, we have

lim
N→∞

E[Fg(Z
(N)
i (t),W

(N)
i (t))] = E[Fg(Z(t),W (t))] (11)

Let Ft be the σ-field generated by the r.v.s {W (0), V (s), s = 1, · · · , t}. From Eq. (4), we get

E[M(t + 1)|Ft] = (1 − p(t))W (t) = Z(t)

and

E[g(W (t + 1))|Ft] = Z(t)g(min(W (t) + 1,Wmax))

+(1 − Z(t))g(p
W (t)

2
q)

= Fg(Z(t),W (t)).

So,

E[g(W (t + 1))] = E[E[g(W (t + 1))|Ft]]

= E[Fg(Z(t),W (t))]. (12)

Let F
(N)
t be the σ-field generated by the r.v.s {W

(N)
1 (0), · · · ,

W
(N)
N (0), Vi,j(s), i, j = 1, 2, · · · , s = 1, · · · , t}. Then

E[g(W
(N)
i (t + 1))|F

(N)
t ] = Fg(Y

(N)
i (t),W

(N)
i (t)),

where Y
(N)
i (t) is the probability that no packet from flow i is marked/dropped at time t under the σ-field

F
(N)
t . Next, we will prove that

Y
(N)
i (t) − Z

(N)
i (t)

a.s.
−→N 0. (13)

When the router marks/drops packets independently, It is easy to show that Y
(N)
i (t) = Z

(N)
i (t) [11]. Hence,

Eq. (13) is true. When packets are not marked/dropped independently (i.e., the router marks/drops exactly

p(N)(t)x(N)(t) packets), we have

Y
(N)
i (t) =

C
p(N)(t)x(N)(t)

x(N)(t)−W
(N)
i

(t)

C
p(N)(t)x(N)(t)

x(N)(t)

=
(1 − p(N)(t)) · · · (1 − p(N)(t) −

W
(N)
i

(t)−1

x(N)(t)
)

1 · · · (1 −
W

(N)
i

(t)−1

x(N)(t)
)

.
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Remember that

Z
(N)
i (t) = (1 − p(N)(t))W

(N)
i

(t).

When N → ∞, we also have x(N)(t) → ∞. Since W
(N)
i (t) is always less than Wmax, we can see that

Y
(N)
i (t)(ω)−Z

(N)
i (t)(ω) →N 0 for any ω ∈ Ω and hence Eq. (13) is true. From the definition of Fg(z,w),

it is then easy to show that

Fg(Y
(N)
i (t),W

(N)
i (t)) − Fg(Z

(N)
i (t),W

(N)
i (t))

a.s.
−→N 0.

So,

lim
N→∞

E[Fg(Y
(N)
i (t),W

(N)
i (t)) − Fg(Z

(N)
i (t),W

(N)
i (t))] = 0,

i.e.,

lim
N→∞

E[g(W
(N)
i (t + 1))] = lim

N→∞
E[Fg(Z

(N)
i (t),W

(N)
i (t))]. (14)

From Eqs. (11),(12), and (14), we have

lim
N→∞

E[g(W
(N)
i (t + 1))] = E[g(W (t + 1)].

Since g is an arbitrary bounded mapping, this means that

W
(N)
i (t + 1) ⇒N W (t + 1)

Lemma 2 If [A:t]-[D:t] and [B:t+1] hold, [C:t+1] also holds.

Proof: Without loss of generality, we will just prove that W
(N)
1 (t + 1) and W

(N)
2 (t + 1) are asymptot-

ically independent as N goes to infinity. [B:t] and [C:t] imply the joint convergence

(W
(N)
1 (t),W

(N)
2 (t)) ⇒N (W1(t),W2(t)),

where W1(t) and W2(t) are i.i.d r.v.s, each distributed according to W (t). Let g1 and g2 be arbitrary bounded

mappings. We then have

(Fg1(Z
(N)
1 (t),W

(N)
1 (t)), Fg2(Z

(N)
2 (t),W

(N)
2 (t)))

⇒N (Fg1(Z1(t),W1(t)), Fg2(Z2(t),W2(t))),

where (Z1(t),W1(t)), (Z2(t),W2(t)) are i.i.d. r.v.s. By the definition of convergence in distribution, we

have

lim
N→∞

E[Fg1(Z
(N)
1 (t),W

(N)
1 (t))Fg2(Z

(N)
2 (t),W

(N)
2 (t))]

= E[Fg1(Z1(t),W1(t))Fg2(Z2(t),W2(t))]

= E[Fg1(Z1(t),W1(t))]E[Fg2(Z2(t),W2(t))]

= E[g1(W1(t + 1))]E[g2(W2(t + 1))]
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Next, we will prove

E[g1(W
(N)
1 (t + 1))g2(W

(N)
2 (t + 1))|F

(N)
t ]

− Fg1(Z
(N)
1 (t),W

(N)
1 (t))Fg2(Z

(N)
2 (t),W

(N)
2 (t))

a.s.
−→N 0.

(15)

First, we can write

E[g1(W
(N)
1 (t + 1))g2(W

(N)
2 (t + 1))|F

(N)
t ]

= g1(min(W
(N)
1 (t) + 1,Wmax)) ·

g2(min(W
(N)
2 (t) + 1,Wmax))Y

(N)
00 (t)

+g1(min(W
(N)
1 (t) + 1,Wmax))g2(p

W
(N)
2 (t)

2
q)Y

(N)
01 (t)

+g1(p
W

(N)
1 (t)

2
q)g2(min(W

(N)
2 (t) + 1,Wmax))Y

(N)
10 (t)

+g1(p
W

(N)
1 (t)

2
q)g2(p

W
(N)
2 (t)

2
q)Y

(N)
11 (t),

where Y
(N)
00 (t) is the probability that no packet from both flow 1 and 2 is marked/dropped at time t under

the σ-field Ft and Y
(N)
01 (t) is the probability that no packet from flow 1 is marked/dropped but at least one

packet from flow 2 are marked/dropped etc. Similarly, we can write

Fg1(Z
(N)
1 (t),W

(N)
1 (t))Fg2(Z

(N)
2 (t),W

(N)
2 (t))

= g1(min(W
(N)
1 (t) + 1,Wmax)) ·

g2(min(W
(N)
2 (t) + 1,Wmax))Z

(N)
1 (t)Z

(N)
2 (t)

+ g1(min(W
(N)
1 (t) + 1,Wmax)) ·

g2(p
W

(N)
2 (t)

2
q)Z

(N)
1 (t)(1 − Z

(N)
2 (t))

+ g1(p
W

(N)
1 (t)

2
q) ·

g2(min(W
(N)
2 (t) + 1,Wmax))(1 − Z

(N)
1 (t))Z

(N)
2 (t)

+ g1(p
W

(N)
1 (t)

2
q)g2(p

W
(N)
2 (t)

2
q) ·

(1 − Z
(N)
1 (t))(1 − Z

(N)
2 (t)),

To prove Eq. (15), we need to prove

Y
(N)
00 (t) − Z

(N)
1 (t)Z

(N)
2 (t)

a.s.
−→N 0

Y
(N)
01 (t) − Z

(N)
1 (t)(1 − Z

(N)
2 (t))

a.s.
−→N 0

Y
(N)
10 (t) − (1 − Z

(N)
1 (t))Z

(N)
2 (t)

a.s.
−→N 0

Y
(N)
11 (t) − (1 − Z

(N)
1 (t))(1 − Z

(N)
2 (t))

a.s.
−→N 0 (16)
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The proof of these equations is very similar. Hence, we will only prove the first one here. When the router

marks/dropps packets independently,

Y
(N)
00 (t) = Z

(N)
1 (t)Z

(N)
2 (t).

Hence, Eq. (16) is true. When packets are not marked/dropped independently, we have

Y
(N)
00 (t) =

C
p(N)(t)x(N)(t)

x(N)(t)−W
(N)
1 (t)−W

(N)
2 (t)

C
p(N)(t)x(N)(t)

x(N)(t)

=
(1 − p(N)(t)) · · · (1 − p(N)(t) −

W
(N)
1 (t)+W

(N)
2 (t)−1

x(N)(t)
)

1 · · · (1 −
W

(N)
1 (t)+W

(N)
2 (t)−1

x(N)(t)
)

.

Note that

Z
(N)
1 (t)Z

(N)
2 (t) = (1 − p(N)(t))W

(N)
1 (t)+W

(N)
2 (t)

When N → ∞, we also have x(N)(t) → ∞. Since W
(N)
1 (t)+ W

(N)
2 (t) is always less than 2Wmax, we can

see that Y
(N)
00 (t)(ω) − Z

(N)
1 (t)Z

(N)
2 (t)(ω) →N 0 for any ω ∈ Ω and hence Eq. (16) is true.

Now from Eq. (15), we have

lim
N→∞

E

[

E[g1(W
(N)
1 (t + 1))g2(W

(N)
2 (t + 1))|F

(N)
t ]

− Fg1(Z
(N)
1 (t),W

(N)
1 (t))Fg2(Z

(N)
2 (t),W

(N)
2 (t))

]

= 0,

i.e.,

lim
N→∞

E[g1(W
(N)
1 (t + 1))g2(W

(N)
2 (t + 1))]

= lim
N→∞

E[Fg1(Z
(N)
1 (t),W

(N)
1 (t))Fg2(Z

(N)
2 (t),W

(N)
2 (t))].

(17)

From Eq. (15) and (17), we can now get

lim
N→∞

E[g1(W
(N)
1 (t + 1))g2(W

(N)
2 (t + 1))]

= E[g1(W1(t + 1))]E[g2(W2(t + 1))].

Since g1 and g2 are arbitrary bounded mappings, we conclude that W
(N)
1 (t + 1) and W

(N)
2 (t + 1) are

asymptotically independent as N goes to infinity.

Lemma 3 If [A:t]-[D:t], [B:t+1], and [C:t+1] hold, [D:t+1] also holds.

Proof: Let g : N → R be an arbitrary mapping. Note that W
(N)
1 (t), · · · ,W

(N)
N (t) are exchangeable.

We have

Var[
1

N

N
∑

i=1

g(W
(N)
i (t + 1))] =

1

N
Var[g(W

(N)
1 (t + 1))]

+
N − 1

N
Cov[g(W

(N)
1 (t + 1)), g(W

(N)
2 (t + 1))].
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From [C:t+1], we know that W
(N)
1 (t + 1) and W

(N)
2 (t + 1) are asymptotically independent. Hence,

lim
N→∞

Cov[g(W
(N)
1 (t + 1)), g(W

(N)
2 (t + 1))] = 0.

Combining this with the fact that g(W
(N)
1 (t + 1)) is bounded, we can see that

lim
N→∞

Var[
1

N

N
∑

i=1

g(W
(N)
i (t + 1))] = 0.

And hence

1

N

N
∑

i=1

g(W
(N)
i (t + 1))

P
−→N E[g(W

(N)
1 (t + 1))]

Lemma 4 If [A:t]-[D:t], [B:t+1], [C:t+1], and [D:t+1] hold, [A:t+1] also holds.

Proof: From assumption (A1), we have

p(N)(t + 1) = f(
S(N)(t)

N
,
x(N)(t + 1)

N
)

S(N)(t + 1)

N
= F (

S(N)(t)

N
,
x(N)(t + 1)

N
)

where f and F are continuous functions. Since

x(N)(t + 1)

N
=

1

N

N
∑

i=1

W
(N)
i (t + 1)

P
−→N E[W (t + 1)],

and
S(N)(t)

N

P
−→N S(t).

It is easy to see that

p(N)(t + 1)
P

−→N f(S(t), E[W (t + 1)]) = p(t + 1),

S(N)(t + 1)

N

P
−→N F (S(t), E[W (t + 1)]) = S(t + 1)

B Proof of Proposition 1

We first simplify the notation and write Eq. (6) as A(t + 1) = H(A(t)), where H is a function determined

by Eq. (6). From Eq. (6), it is easy to see that H is continuous. Note that at each time step, the real system

does not evolve exactly as Eq. (6). It introduces errors at each time step and these errors will be memorized

in the state vector. Let Â(N)(t+1) = H(A(N)(t)) be the state vector at time t+1 if the real system A(N)(t)
evolves exactly as Eq. (6), i.e., no error is introduced in time slot [t, t + 1). Then we expect that the real

system A(N)(t + 1) is close to Â(N)(t + 1) when N is large. This is shown in the next Lemma (note that all

lemmas in this section assume the same assumptions as Proposition 1).
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Lemma 5 Under the σ-field F
(N)
t , A(N)(t + 1) converges to Â(N)(t + 1) in L2 and the convergence is

uniform in A(N)(t).

Proof: To prove the lemma, we need to prove that for any A(N)(t) and ε > 0, there exists a constant

N0 (not dependent on A(N)(t)), such that when N > N0, ||A(N)(t + 1) − Â(N)(t + 1)||t ≤ ε, where

|| · ||t =

√

E|| · |F
(N)
t ||2.

We first have a look at state variable g
(N)
i (t + 1) in A(N)(t + 1) and ĝ

(N)
i (t + 1) in Â(N)(t + 1). Note

that a flow with window size i at time t + 1 has at most three possible window sizes at time t: i− 1, 2i, and

2i − 1 (recall that an AIMD flow either increases window size by one or halves it). So

g
(N)
i (t + 1) = g

(N)
i−1 (t)Ti−1,i + g

(N)
2i (t)T2i,i + g

(N)
2i−1(t)T2i−1,i, (18)

where Tj,i is the proportion of flows with window size j that jump to window size i. For simplicity, we will

only consider the first term g
(N)
i−1 (t)Ti−1,i here. The other two terms can be treated similarly.

If there is no error introduced at time slot [t, t + 1), the jumping probability from i − 1 to i will be

(1 − p(N)(t))i−1. Next, we will prove g
(N)
i−1 (t)Ti−1,i converges to g

(N)
i−1 (t)(1 − p(N)(t))i−1 uniformly in

g
(N)
i−1 (t). The proof is simple, for any give ε1 > 0, if g

(N)
i−1 (t) < ε1, then

|g
(N)
i−1 (t)Ti−1,i − g

(N)
i−1 (t)(1 − p(N)(t))i−1| < ε1. (19)

If g
(N)
i−1 (t) ≥ ε1, then the number of flows with window size i− 1 at time t will be greater than Nε1 and we

can find a constant N1 (dependent on ε1, but not dependent on p(N)(t)), such that when N > N1,

||Ti−1,i − (1 − p(N)(t))i−1||t < ε1. (20)

We omit the proof of Eq. (20) here, since it can be proved with the similar approach as the proof of Theo-

rem 1. From Eq. (19)(20), we have that if N > N1,

||g
(N)
i−1 (t)Ti−1,i − g

(N)
i−1 (t)(1 − p(N)(t))i−1||t < ε1,

no matter what g
(N)
i−1 (t) is.

From Eq. (18), we now have g
(N)
i (t + 1) converges to ĝ

(N)
i (t + 1) uniformly in A(N)(t) and hence

G(N)(t + 1) converges to Ĝ(N)(t + 1) uniformly in A(N)(t). We still need to prove
S(N)(t+1)

N
converges to

Ŝ(N)(t+1)
N

uniformly in A(N)(t). This is true because of the following two facts.

First, the normalized input rate
x(N)(t+1)

N
is a linear combination of g

(N)
i (t + 1) and hence

x(N)(t+1)
N

converges to
x̂(N)(t+1)

N
uniformly in A(N)(t). Second, function F satisfy the Lipschitz condition Eq. (8).

Hence from the uniform convergence of
x(N)(t+1)

N
, we can derive the uniform convergence of

S(N)(t+1)
N

.

Lemma 5 tells us that when N is large, one step error can be made to be small no matter what the state

vector is. The next lemma states the point wise convergence of the system.

Lemma 6 For each time t, A(N)(t) converges to A(t) in L2 when N goes to infinity.
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We omit the proof here since it follows the similar approach as the proof of Theorem 1. Note that if all

normalized state variables are bounded (e.g., RED with a finite buffer, AVQ, and DropTail), then there exists

a constant vector Y ∈ L2, such that ||A(N)(t)|| ≤ Y for all N . The convergence in probability (Theorem 1)

will simply imply convergence in L2 (Lemma 6).

Now, we are ready to prove Proposition 1.

Proof: Let || · ||p =
√

E|| · ||2 be the norm in L2 space. Note that for a constant vector, || · ||p =
|| · ||. We now need to prove that for any ε > 0, there exists a constant N0, such that when N > N0,

||A(N)(t) − A(t)||p ≤ ε for all time t.

For any ε1 > 0, since the limit model is global exponential stable, there exists a constant t0, when

t ≥ t0, we have

||A(t) − A∗|| ≤ ε1 (21)

Note that A(t) and A∗ are not random variables. Also, for any sample path of the real system, from the

definition of Â(N)(t + 1) and the definition of global exponential stability (m=1), we have

||Â(N)(t + 1) − A∗|| ≤ a||A(N)(t) − A∗|| (22)

for all t.

From Lemma 6, we know that there exists a constant N1, such that when N > N1,

||A(N)(t) − A(t)||p ≤ ε1, (23)

for all t ≤ t0. So

||A(N)(t0) − A∗||p ≤ ||A(N)(t0) − A(t0)||p + ||A(t0) − A∗||p ≤ 2ε1. (24)

From Lemma 5, we know that for ε1 > 0, there exists a constant N2, such that when N > N2,

||A(N)(t + 1) − Â(N)(t + 1)||p ≤ (1 − a)2ε1. (25)

Note that Eq. (25) is true for all t and N2 is not dependent on t.

Now, let N0 = max{N1, N2}, we will show that when N > N0, ||A(N)(t)−A∗||p ≤ 2ε1 is true for all

t ≥ t0. From Eq. (24), we know that it is true for t = t0. Now we assume it is true for t and prove that it is

also true for t + 1 and hence by induction, it is true for all t ≥ t0.

||A(N)(t + 1) − A∗||p ≤ ||A(N)(t + 1) − Â(N)(t + 1)||p

+||Â(N)(t + 1) − A∗||p

≤ (1 − a)2ε1 + a||A(N)(t) − A∗||

≤ (1 − a)2ε1 + 2aε1 = 2ε1. (26)

Now, from Eqs (26)(21), we have that when N > N0, for any t > t0,

||A(N)(t) − A(t)||p ≤ ||A(N)(t) − A∗|| + ||A(t) − A∗|| ≤ 3ε1. (27)

From Eqs (23)(27), we have that when N > N0,

||A(N)(t) − A(t)||p ≤ 3ε1. (28)

for all t. Simply let ε1 = ε
3 and we are done.
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