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Problem Statement

Goal: Infer the D-ary label y0 from “test” feature vector a0 ∈ R
N given training {ym,am}Mm=1.

Linear classification: Estimate weight matrix X̂ ∈ R
N×D, then predict ŷ0 = argmaxd

[
X̂

T
a0

]
d
.

Feature selection: Determine which subset of N features is needed to accurately predict the label y0.

We’re especially interested in the case M ≪ N (MVPA, text-mining, micro-array gene expression).
Possible if “true” X is K-row-sparse with K ≪ M .

Multinomial Logistic Regression

One approach to designing X is Multinomial Logistic Regression (MLR).

In MLR, we use the multinomial logistic likelihood:

py|z(ym|zm) =
exp([zm]ym)∑D
d=1 exp([zm]d)

, ym ∈ {1, . . . , D} where zm , XTam. (1)

Also, X is regularized through some prior pX(X).

Existing approaches to sparse MLR include SMLR [Krishnapuram Carin Figueiredo Hartemink 05], SBMLR
[Cawley Talbot Girolami 07], and GLMNET [Friedman Hastie Tibshirani 10], which all employ a Laplacian

prior for px and MAP estimation to find X̂ .

HyGAMP for MLR

Assuming a separable likelihood py |Z(y |Z) =
∏

m py|z(ym |zm) and prior pX(X) =
∏

n px(xn),

py,X(y,X) can be represented by the following factor graph:
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Through message passing, we break one large inference problem into many smaller inference problems.

Under large i.i.d. A and scalar zm & xn, we can apply generalized approximate message passing (GAMP)
[Rangan 11]. Has been used for binary logistic regression [Ziniel Schniter Sederberg 15].

However, our zm & xn are vector valued, so we instead apply hybrid GAMP (HyGAMP) [Rangan Fletcher
Goyal Schniter 12].

MSA variant: computes MAP estimate of X.
SPA variant: computes approximate marginal posteriors of y0 and X ⇒ approximately minimizes test-error rate!
Passes O(M+N) messages in the form of D-dimensional Gaussian pdfs.

Algorithm Summary

HyGAMP iteratively passes messages back and forth between the py|z and px nodes until convergence.

The algorithm can be divided into “linear” and “non-linear” steps.

Linear steps:

Involve N+M matrix inversions of size D×D.

Identical for SPA and MSA variants of HyGAMP.

Non-linear steps:

At each node n and m, HyGAMP approximates the posterior distributions as:

px|r(xn | r̂n;Q
r
n) ∝ px(xn)N (xn; r̂n,Q

r
n) (2)

pz|y,p(zm | ym, p̂m;Q
p
m) ∝ py|z(ym |zm)N (zm; p̂m,Q

p
m), (3)

for p̂m, Q
p
m, r̂n, Q

r
m calculated in the linear steps.

SPA variant: computes the means (x̂n and ẑm) and covariances (Qx
n and Qz

m) of above posteriors.

MSA variant: computes the modes (x̂n and ẑm) and inverse Hessians of above log posteriors.

For MLR likelihood and most sparsity-inducing priors, there are no closed-form solutions. Need
approximations like numerical integration, importance sampling, Newtons method, minorize-maximization.

Typically, to enforce sparsity, we use a Bernoulli-Gaussian prior in SPA-HyGAMP and a Laplacian prior in
MSA-HyGAMP.

Simplified HyGAMP (SHyGAMP) for MLR

Unfortunately, HyGAMP is not computationally competitive due to
expensive linear steps (e.g., matrix inversion)
expensive non-linear steps (e.g., iterative algorithms)
numerical instabilities

Our Solution: Assume all matrices Q are diagonal.
trivializes the linear steps (i.e., no matrix inversion)
drastically simplifies the non-linear steps
enables use of existing GAMPmatlab software framework [Rangan, Schniter, Parker, Ziniel, et al.]

SPA SHyGAMP

Non-linear zm steps:

Simplified posterior mean/variance computations:

ẑmd = C−1
m

∫

RD
zd py|z(ym|z)

D∏

k=1

N (zk; p̂mk, q
p
mk

) dz (4)

qzmd = C−1
m

∫

RD
z2d py|z(ym|z)

D∏

k=1

N (zk; p̂mk, q
p
mk

) dz − ẑ2md (5)

Investigated approaches based on numerical integration, importance sampling, Taylor series approximation

Proposed novel Gaussian-mixture approximation with improved accuracy-runtime tradeoff

Non-linear xn steps:

Choosing separable prior allows further decoupling into D scalar inference problems

Example: i.i.d. BG: px(xnd) , βN (xnd; 0, σ
2
x) + (1− β)δ(xnd) ∀n, d

Parameters σ2x and β can be tuned online via EM [Vila, Schniter 13].

MSA SHyGAMP

Non-linear zm steps: solved via component-wise Newton’s method.

Non-linear xn steps: choose ℓ1 regularization, solve via soft-thresholding.

λ tuned online via variation on SURE procedure [Mousavi Maleki Baraniuk 13].

SURE tuning procedure

Idea: at each GAMP iteration, choose λ to minimize the SURE of the thresholder.

Challenge: objective function is highly non-smooth.

Our Solution: approximate empirical data by GM distribution ⇒ smooth objective function. Minimize
using conventional techniques (e.g., gradient descent, bisection search).
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Test error rate vs λ for fixed-λ MSA SHyGAMP, with final error
and λ of SURE-tuned MSA SHyGAMP superimposed

N = 30000

M = 300

K = 25

D = 4

Bayes Error Rate = .1

average of 12 trials
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Classification Performance on Synthetic Data

Data generation model:

features am | (ym = d) ∼ N (µd, σ
2
aIN )

feature means {µd}
D
d=1 orthonormal with K non-zero entries

balanced training labels

Average classification error and runtime vs M for fixed D = 4, N = 10000, K = 10, 12 trials:
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SPA-SHyGAMP wins in error. MSA-SHyGAMP beats SBMLR and GLMNET in both error and runtime (for
large M).

Average classification error and runtime vs N for fixed D = 4, M = 200, K = 10, 12 trials:
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N
MSA-SHyGAMP beats SBMLR and GLMNET in both error and runtime (for large N).

Average classification error and runtime vs K for fixed D = 4, M = 300, N = 30000, 12 trials:
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SPA-SHyGAMP wins overall in error. MSA-SHyGAMP beats SBMLR and GLMNET in both error and
runtime.

Classification Performance on RCV1 Dataset
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Features are word frequency; labels are
document subject (e.g., business).

D = 25, Mtrain = 14147, N = 47236,
and Mtest = 469571.

Shown is test error rate vs training time
for auto-tuned algorithms.

Both MSA and SPA SHyGAMP converge to the final error rate faster than SBMLR.


