

Evan Byrne and Philip Schniter

Problem Statement

- Goal: Infer the *D*-ary label y_0 from "test" feature vector $a_0 \in \mathbb{R}^N$ given training $\{y_m, a_m\}_{m=1}^M$.
- Linear classification: Estimate weight matrix $\widehat{X} \in \mathbb{R}^{N \times D}$, then predict $\widehat{y}_0 = \arg \max_d \left[\widehat{X}^T a_0 \right]_d$.
- **Feature selection**: Determine which subset of N features is needed to accurately predict the label y_0 .
- We're especially interested in the case $M \ll N$ (MVPA, text-mining, micro-array gene expression). Possible if "true" X is K-row-sparse with $K \ll M$.

Multinomial Logistic Regression

- One approach to designing X is Multinomial Logistic Regression (MLR).
- In MLR, we use the multinomial logistic likelihood:

$$p_{\mathbf{y}|\mathbf{z}}(y_m|\mathbf{z}_m) = \frac{\exp([\mathbf{z}_m]_{y_m})}{\sum_{d=1}^{D} \exp([\mathbf{z}_m]_d)}, \quad y_m \in \{1, \dots, D\} \quad \text{where} \quad \mathbf{z}_m \triangleq \mathbf{X}_m$$

- Also, X is regularized through some prior $p_{\mathbf{X}}(\mathbf{X})$.
- **Existing approaches** to sparse MLR include SMLR [Krishnapuram Carin Figueiredo Hartemink 05], SBMLR [Cawley Talbot Girolami 07], and GLMNET [Friedman Hastie Tibshirani 10], which all employ a Laplacian prior for $p_{\mathbf{x}}$ and MAP estimation to find \mathbf{X} .

HyGAMP for MLR

• Assuming a separable likelihood $p_{\mathbf{y} \mid \mathbf{Z}}(\mathbf{y} \mid \mathbf{Z}) = \prod_{m} p_{\mathbf{y} \mid \mathbf{Z}}(y_m \mid \mathbf{z}_m)$ and prior $p_{\mathbf{X}}(\mathbf{X}) = \prod_{n} p_{\mathbf{x}}(\mathbf{x}_n)$, $p_{\mathbf{y},\mathbf{X}}(\mathbf{y},\mathbf{X})$ can be represented by the following factor graph:

- Under large i.i.d. A and scalar $\mathbf{z}_m \& \mathbf{x}_n$, we can apply generalized approximate message passing (GAMP) [Rangan 11]. Has been used for *binary* logistic regression [Ziniel Schniter Sederberg 15].
- However, our $\mathbf{z}_m \& \mathbf{x}_n$ are vector valued, so we instead apply hybrid GAMP (HyGAMP) [Rangan Fletcher Goyal Schniter 12].
- **MSA** variant: computes MAP estimate of X.
- SPA variant: computes approximate marginal posteriors of y_0 and $X \Rightarrow$ approximately minimizes test-error rate! Passes O(M+N) messages in the form of D-dimensional Gaussian pdfs.

Algorithm Summary

• HyGAMP iteratively passes messages back and forth between the $p_{y|z}$ and p_x nodes until convergence. The algorithm can be divided into "linear" and "non-linear" steps.

Linear steps:

Involve N + M matrix inversions of size $D \times D$.

Identical for SPA and MSA variants of HyGAMP.

Non-linear steps:

• At each node n and m, HyGAMP approximates the posterior distributions as:

 $p_{\mathbf{x}|\mathbf{r}}(\mathbf{x}_n \,|\, \widehat{\mathbf{r}}_n; \mathbf{Q}_n^{\mathbf{r}}) \propto p_{\mathbf{x}}(\mathbf{x}_n) \mathcal{N}(\mathbf{x}_n; \widehat{\mathbf{r}}_n, \mathbf{Q}_n^{\mathbf{r}})$

$$p_{\mathbf{z}|\mathbf{y},\mathbf{p}}(\boldsymbol{z}_m \mid y_m, \widehat{\boldsymbol{p}}_m; \boldsymbol{Q}_m^{\mathbf{p}}) \propto p_{\mathbf{y}|\mathbf{z}}(y_m \mid \boldsymbol{z}_m) \mathcal{N}(\boldsymbol{z}_m; \widehat{\boldsymbol{p}}_m, \boldsymbol{Q}_m^{\mathbf{p}}),$$

for $\widehat{m{p}}_m$, $m{Q}_m^{m{p}}$, $\widehat{m{r}}_n$, $m{Q}_m^{m{r}}$ calculated in the linear steps.

- SPA variant: computes the means $(\hat{x}_n \text{ and } \hat{z}_m)$ and covariances $(Q_n^x \text{ and } Q_m^z)$ of above posteriors.
- MSA variant: computes the modes $(\hat{x}_n \text{ and } \hat{z}_m)$ and inverse Hessians of above log posteriors.
- For MLR likelihood and most sparsity-inducing priors, there are no closed-form solutions. Need approximations like numerical integration, importance sampling, Newtons method, minorize-maximization
- Typically, to enforce sparsity, we use a Bernoulli-Gaussian prior in SPA-HyGAMP and a Laplacian prior in MSA-HyGAMP.

Sparse Multinomial Logistic Regression via Approximate Message Passing

Simplified HyGAMP (SHyGAMP) for MLR

- Unfortunately, HyGAMP is not computationally competitive due to expensive linear steps (e.g., matrix inversion)
- expensive non-linear steps (e.g., iterative algorithms) numerical instabilities
- \blacksquare Our Solution: Assume all matrices Q are diagonal. trivializes the linear steps (i.e., no matrix inversion)
- drastically simplifies the non-linear steps
- enables use of existing GAMPmatlab software framework [Rangan, Schniter, Parker, Ziniel, et al.]

SPA SHyGAMP

Non-linear \boldsymbol{z}_m steps:

Simplified posterior mean/variance computations:

$$\widehat{z}_{md} = C_m^{-1} \int_{\mathbb{R}^D} z_d \, p_{\mathbf{y}|\mathbf{z}}(y_m|\mathbf{z}) \, \prod_{k=1}^D \mathcal{N}(z_k; \widehat{p}_{mk}, q_{mk}^{\mathbf{p}}) \, \mathrm{d}\mathbf{z}$$

$$q_{md}^{\mathbf{z}} = C_m^{-1} \int_{\mathbb{R}^D} z_d^2 \, p_{\mathbf{y}|\mathbf{z}}(y_m|\mathbf{z}) \, \prod_{k=1}^D \mathcal{N}(z_k; \widehat{p}_{mk}, q_{mk}^{\mathbf{p}}) \, \mathrm{d}\mathbf{z} - \widehat{z}_{md}^2$$
(4)
(5)

- Investigated approaches based on numerical integration, importance sampling, Taylor series approximation
- Proposed novel Gaussian-mixture approximation with improved accuracy-runtime tradeoff

Non-linear \boldsymbol{x}_n steps:

- Choosing separable prior allows further decoupling into D scalar inference problems
- Example: i.i.d. BG: $p_{\mathbf{x}}(x_{nd}) \triangleq \beta \mathcal{N}(x_{nd}; 0, \sigma_x^2) + (1 \beta) \delta(x_{nd}) \ \forall n, d$
- Parameters σ_x^2 and β can be tuned online via EM [Vila, Schniter 13].

MSA SHyGAMP

- **Non-linear** z_m steps: solved via component-wise Newton's method.
- **Non-linear** x_n steps: choose ℓ_1 regularization, solve via soft-thresholding.
- λ tuned online via variation on SURE procedure [Mousavi Maleki Baraniuk 13].
- SURE tuning procedure
- Idea: at each GAMP iteration, choose λ to minimize the SURE of the thresholder.
- Challenge: objective function is highly non-smooth.
- Our Solution: approximate empirical data by GM distribution \Rightarrow smooth objective function. Minimize using conventional techniques (e.g., gradient descent, bisection search).

Test error rate vs λ for fixed- λ MSA SHyGAMP, with final error and λ of SURE-tuned MSA SHyGAMP superimposed

Selected References

- E. M. Byrne, "Sparse multinomial logistic regression via approximate message passing," Mas B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, "Sparse multinomial logistic re
- Trans. Pattern Anal. Mach. Intell., vol. 27, pp. 957-968, June 2005. G. C. Cawley, N. L. C. Talbot, and M. Girolami, "Sparse multinomial logistic regression via E
- Syst. Conf., pp. 209-216, 2007. J. Friedman, T. Hastie, and R. Tibshirani, "Regularization paths for generalized linear models
- Jan. 2010. S. Rangan, "Generalized approximate message passing for estimation with random linear mix
- Petersburg, Russia), pp. 2168-2172, Aug. 2011. (full version at *arXiv*:1010.5141) J. Ziniel, P. Schniter, and P. Sederberg, "Binary classification and feature selection via generalized approximate message passing," IEEE Trans. Signal
- *Process.*, vol. 63, no. 8, pp. 2020-2032, 2015.
- S. Rangan, A. K. Fletcher, V. K. Goyal, and P. Schniter, "Hybrid generalized approximate message passing with applications to structured sparsity," in Proc. IEEE Int. Symp. Inform. Thy., pp. 1236-1240, July 2012. (full version at arXiv:1111.2581)
- S. Rangan, P. Schniter, J. T. Parker, J. Ziniel, J. Vila, M. Borgerding, and et al. GAMPmatlab. https://sourceforge.net/projects/gampmatlab/. J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing," IEEE Trans. Signal Process., vol. 61, pp. 4658-4672. Oct. 2013.
- A. Mousavi, A. Maleki, and R. G. Baraniuk, "Parameterless optimal approximate message passing," Oct. 2013. (full version at arXiv:1311.0035)

The Ohio State University

ter's thesis, The Ohio State University, July 2015. egression: Fast algorithms and generalization bounds," <i>IEEE</i>
Bayesian L1 regularisation," in <i>Proc. Neural Inform. Process</i> .
s via coordinate descent," <i>J. Statst. Softw.</i> , vol. 33, pp. 1-22
ing," in Proc. IEEE Int. Symp. Inform. Thy., (Saint

(Supported by NSF CCF-1018368 and CCF-1218754) Classification Performance on Synthetic Data

Data generation model:

- features $\boldsymbol{a}_m \mid (y_m = d) \sim \mathcal{N}(\boldsymbol{\mu}_d, \sigma_a^2 \boldsymbol{I}_N)$
- feature means $\{\mu_d\}_{d=1}^D$ orthonormal with K non-zero entries
- balanced training labels

Average classification error and runtime vs M for fixed D = 4, N = 10000, K = 10, 12 trials:

large M).

Average classification error and runtime vs N for fixed D = 4, M = 200, K = 10, 12 trials:

runtime.

Classification Performance on RCV1 Dataset

runtime

Both MSA and SPA SHyGAMP converge to the final error rate faster than SBMLR.

SPA-SHyGAMP wins in error. MSA-SHyGAMP beats SBMLR and GLMNET in both error and runtime (for

MSA-SHyGAMP beats SBMLR and GLMNET in both error and runtime (for large N). Average classification error and runtime vs K for fixed D = 4, M = 300, N = 30000, 12 trials: - SPA SHyGAMF - MSA SHyGAMF GLMNET

