Sparse multinomial logistic regression via approximate message passing

Evan Byrne

Joint work with Prof. Phil Schniter

Supported in part by NSF grant CCF-1218754 and NSF grant CCF-1018368.

Seminar @ OSU Laboratory for Artificial Intelligence September 25th, 2015

Outline

- Overview of linear classification
- Algorithm details
- Numerical results

Motivating example

Micro-array gene expression data

- Can we identify which genes are good predictors of certain diseases?
- Given samples containing:
 - class label y indicating the type of disease (e.g., cancer)
 - feature vector \boldsymbol{x} containing gene expression values
- How do we cope with $P\approx 10^4$ genes but only $N\approx 10^2$ samples?

Linear classification and feature selection

Linear classification: learn a weight matrix $\widehat{W} \in \mathbb{R}^{P \times C}$ from training data $\{y_n \in \{1, ..., C\}, x_n \in \mathbb{R}^P\}_{n=1}^N$ such that

$$y_n \approx \arg\max_i [\widehat{\boldsymbol{W}}^{\mathsf{T}} \boldsymbol{x}_n]_i,$$

and classification of unknown $oldsymbol{x}_0$ via

$$\widehat{y}_0 = rgmax_i [\widehat{oldsymbol{W}}^{\mathsf{T}} oldsymbol{x}_0]_i$$

has minimal error rate.

- Accurate classification when $N \ll P$ if "true" \boldsymbol{W} is sufficiently sparse.
- Feature selection from largest elements in \widehat{W} .
- How to design \widehat{W} ?

Multinomial logistic regression

One well known approach to multiclass linear classification is multinomial logistic regression (MLR).

$$\widehat{\boldsymbol{W}} = \operatorname*{arg\,max}_{\boldsymbol{W}} \sum_{n=1}^{N} \log q(y_n \,|\, \boldsymbol{x}_n, \boldsymbol{W}) + G(\boldsymbol{W})$$

where

$$q(y \mid \boldsymbol{x}, \boldsymbol{W}) = \frac{\exp([\boldsymbol{W}^{\mathsf{T}} \boldsymbol{x}]_y)}{\sum_{c=1}^{C} \exp([\boldsymbol{W}^{\mathsf{T}} \boldsymbol{x}]_c)}$$

and $G(\mathbf{W})$ is some concave regularization term, e.g., $-\lambda \|\mathbf{W}\|_1$.

Bayesian approach to MLR

Actual objective: minimize test-label error-rate \implies equivalent to finding test-label posterior $p(y_0 | y; X)$.

Assume \exists "true" W and y corresponding to X s.t.

$$oldsymbol{w}_p \sim p(oldsymbol{w}_p)$$

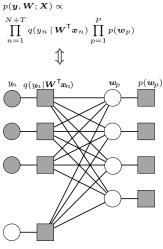
 $y_n \mid oldsymbol{W}^{\mathsf{T}} oldsymbol{x}_n \sim q(y_n \mid oldsymbol{W}^{\mathsf{T}} oldsymbol{x}_n).$

We can write the joint distribution of $oldsymbol{y}$ and $oldsymbol{W}$ as

$$p(\boldsymbol{y}, \boldsymbol{W}; \boldsymbol{X}) \propto \prod_{n=1}^{N+T} q(y_n \mid \boldsymbol{W}^{\mathsf{T}} \boldsymbol{x}_n) \prod_{p=1}^{P} p(\boldsymbol{w}_p),$$

where $y_n, n \leq N$ are known, $y_n, n > N$ are unknown, and w_p is a row of W.

Factor graph representation



- We could apply loopy belief propagation (based off the **Sum-Product** (SP) algorithm) to get approximate marginal posteriors (approximate due to loops in the factor graph), but...
- LBP is intractable due to the form of our distributions.
- Could try expectation-propagation, but infeasible due to large N and P.
- However, we can use previously developed approximate message passing (AMP) algorithms.

 y_0

Approximate message passing

- AMP is derived from a simplification of message passing (sum-product or min-sum) that holds in the large system limit.
 - CLT to approximate messages as Gaussian.
 - Taylor series to reduce to O(N+P) messages.
- The evolution of AMP:
 - AMP: for the linear model [Donoho, Maleki, Montanari 09].
 - Generalized-AMP (GAMP): for the generalized linear model with scalar variables [Rangan 11].
 - Hybrid-GAMP (HyGAMP): vector-valued extension of GAMP [Rangan, Fletcher, Goyal, Schniter 12].
- Since HyGAMP also approximates the **Min-Sum** (MS) algorithm, we can use it to solve the original MAP formulation of MLR.

Our contributions

- Sparse multinomial logistic regression via HyGAMP.
 - **③** SP-HyGAMP: approximate minimum probability of error classifier.
 - **②** MS-HyGAMP: regularized MAP estimate \widehat{W} (focus on ℓ_1 case).
- Simplified variants of both SP and MS-HyGAMP that are competitive with state-of-the-art algorithms w.r.t. algorithm runtime and test-error-rate.
- Expectation-maximization (EM) and Stein's unbiased risk estimate (SURE) based methods to tune the model parameters online.

The HyGAMP algorithm for MLR

- Via approximate message passing, breaks one $P \times C$ -dimensional inference problem into N+P C-dimensional inference problems (but iterative).
- Messages take the form of C-dim normal distributions.
- Approximates the posterior of w_p and 'hidden' z_n ≜ W^Tx_n as product of Gaussian and p(w_p) or q(y_n | W^Tx_n), respectively.
- Each iteration is a series of linear steps and inference steps.
 - SP and MS-HyGAMP have identical linear steps.
 - Inference steps find mean/mode of approx. posteriors.

The HyGAMP algorithm for MLR

Require: Mode \in {Sum-Prod, Min-Sum}, $\boldsymbol{y}, \boldsymbol{X}$, prior $p(\boldsymbol{w})$, inits. $\hat{\boldsymbol{w}}_{p}, \boldsymbol{Q}_{p}^{\boldsymbol{w}}$ Ensure: $t \leftarrow 0$; $\hat{\boldsymbol{s}}_n(0) \leftarrow \boldsymbol{0}$ repeat $\forall n: \mathbf{Q}_n^{\mathbf{p}} \leftarrow \sum_n X_{nn}^2 \mathbf{Q}_n^{\mathbf{w}}(t)$ $\forall n: \widehat{p}_n \leftarrow \sum_p X_{np} \widehat{w}_n - Q_n^p \widehat{s}_n$ if Min-Sum then $\forall n: \ \widehat{\boldsymbol{z}}_n \leftarrow \operatorname{arg\,max}_{\boldsymbol{z}} \log q(y_n \,|\, \boldsymbol{z}) \mathcal{N}(\boldsymbol{z}; \widehat{\boldsymbol{p}}_n, \boldsymbol{Q}_n^{\mathsf{p}})$ $\forall n: Q_n^z \leftarrow \left[-\frac{\partial^2}{\partial z^2} \log q(y_n \mid z) \mathcal{N}(z, p_n, Q_n) \right]^{-1}$ $\forall n: Q_n^z \leftarrow \left[-\frac{\partial^2}{\partial z^2} \log q(y_n \mid \hat{z}_n) \mathcal{N}(\hat{z}_n; \hat{p}_n, Q_n^p) \right]^{-1}$ e if Sum-Prod then $= \prod_{n=1}^{n} \left[(z_n \mid z) \mathcal{N}(z, p_n, Q_n^p) \right]^{-1}$ hinference steps else if Sum-Prod then $\forall n: \widehat{\boldsymbol{z}}_n \leftarrow \mathrm{E}\left\{q(y_n \mid \boldsymbol{z})\mathcal{N}(\boldsymbol{z}; \widehat{\boldsymbol{p}}_n, \boldsymbol{Q}_n^{\mathsf{p}})\right\}$ $\forall n: \mathbf{Q}_n^{\mathbf{z}} \leftarrow \operatorname{Cov} \left\{ q(y_n \mid \mathbf{z}) \mathcal{N}(\mathbf{z}; \widehat{\mathbf{p}}_n, \mathbf{Q}_n^{\mathbf{p}}) \right\}$ end if $\forall n: \mathbf{Q}_n^{\mathsf{s}} \leftarrow [\mathbf{Q}_n^{\mathsf{p}}]^{-1} - [\mathbf{Q}_n^{\mathsf{p}}]^{-1} [\mathbf{Q}_n^{\mathsf{z}}] [\mathbf{Q}_n^{\mathsf{p}}]^{-1}$ $\forall n: \hat{\boldsymbol{s}}_n \leftarrow [\boldsymbol{Q}_n^{\mathsf{p}}]^{-1}(\hat{\boldsymbol{z}}_n - \hat{\boldsymbol{p}}_n)$ $\forall p: \mathbf{Q}_n^{\mathsf{r}} \leftarrow \left[\sum_n X_{nn}^2 \mathbf{Q}_n^{\mathsf{s}}\right]^{-1}$ $\forall p: \hat{\boldsymbol{r}}_{p} \leftarrow \hat{\boldsymbol{w}}_{p} + \boldsymbol{Q}_{p}^{r} \sum_{n} X_{np} \hat{\boldsymbol{s}}_{n}$ if Min-Sum then $\begin{aligned} \forall p: \ \widehat{\boldsymbol{w}}_p \leftarrow \arg\max_{\boldsymbol{w}} \log_{\boldsymbol{P}(\boldsymbol{w}_p), \boldsymbol{v}_{(\boldsymbol{v}_p)}} \\ \forall p: \ \boldsymbol{Q}_p^{\boldsymbol{w}} \leftarrow \big[-\frac{\partial^2}{\partial \boldsymbol{w}^2} \log p(\widehat{\boldsymbol{w}}_p) \mathcal{N}(\widehat{\boldsymbol{w}}_p; \widehat{\boldsymbol{r}}_p, \boldsymbol{Q}_p^{\boldsymbol{r}}) \big]^{-1} \end{aligned}$ $\forall p: \hat{\boldsymbol{w}}_p \leftarrow \arg \max_{\boldsymbol{w}} \log p(\boldsymbol{w}) \mathcal{N}(\boldsymbol{w}; \hat{\boldsymbol{r}}_p, \boldsymbol{Q}_p^r)$ > inference steps else if Sum-Prod then $\forall p: \ \widehat{\boldsymbol{w}}_p \leftarrow \mathrm{E}\left\{p(\boldsymbol{w})\mathcal{N}(\boldsymbol{w}; \widehat{\boldsymbol{r}}_p, \boldsymbol{Q}_p^{\mathsf{r}})\right\}$ $\forall p: \boldsymbol{Q}_{n}^{\boldsymbol{w}} \leftarrow \operatorname{Cov}\left\{p(\boldsymbol{w})\mathcal{N}(\boldsymbol{w}; \widehat{\boldsymbol{r}}_{p}, \boldsymbol{Q}_{n}^{\boldsymbol{r}})\right\}$ end if

until Terminated

Simplified HyGAMP (SHyGAMP)

- HyGAMP for MLR is computationally costly.
- We simplify by constraining message covariance matrices to be diagonal.
- Leads to:
 - faster matrix inversions
 - greatly simplifies inference steps
 - enables use of existing GAMPmatlab software

Online parameter tuning

- Model parameters require tuning.
 - SP: Bernoulli-Gaussian prior parameters $\{\alpha, \mu, \sigma^2\}$.
 - MS: ℓ_1 regularization parameter λ .
- We tune the SP parameters using EM [Vila, Schniter 13].
- We tune the MS parameter using a method based on Stein's unbiased risk estimate (SURE) [Mousavi, Maleki, Baraniuk 13].

SURE method to tune λ

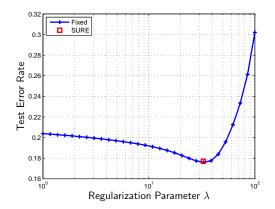
Basic idea: select λ to min Stein's unbiased risk estimate of the MSE.

- Recall: $\widehat{\boldsymbol{w}}_p = \arg \max_{\boldsymbol{w}} \log \mathcal{N}(\boldsymbol{w}; \widehat{\boldsymbol{r}}_p, \boldsymbol{Q}_p^{\mathsf{r}}) p(\boldsymbol{w}; \lambda).$
- Assume $\widehat{r} = w + \sigma v$ where \widehat{r} and σ are known.
 - Then, $\mathrm{E}\{S(\widehat{\boldsymbol{r}};\sigma,\lambda)\} = \mathrm{E}\{|\widehat{\boldsymbol{w}}-\boldsymbol{w}|^2\}.$
 - Choose $\widehat{\lambda} = \arg \min_{\lambda} S(\widehat{r}; \sigma, \lambda).$
- \bullet However... the objective $S(\cdot)$ is non-smooth and has many local minima.
 - Prior work proposed approximate gradient descent, but too slow.
- We replaced an empirical average with a statistical average.
 - Smooth, easy to compute gradient.
 - Can now efficiently minimize via bisection.

Experimental validation of SURE

Synthetic data

- C = 4, N = 300, $P = 30\,000$
- $\boldsymbol{x}_n \mid (y_n = c) \sim \mathcal{N}(\boldsymbol{\mu}_c, v\boldsymbol{I})$
- Orthonormal $\{\boldsymbol{\mu}_c\}_{c=1}^C$
- K = 25 discriminatory features
- Ran MS-SHyGAMP with fixed λ, then with SURE



Numerical Results

- Metrics
 - Classification accuracy
 - Algorithm runtime
- Target regime
 - High dimensional, and data-starved, i.e., $N \ll P$
 - Multiclass, $C\approx 10$
- Applications
 - Microarray gene-expression analysis
 - Text classification
 - Handwritten digit classification
- Competing algorithms
 - SBMLR [Cawley, Talbot, Girolami 07]
 - GLMNET [Friedman, Hastie, Tibshirani 10]

Gene-expression data

Sun et al

- Classes represent different types of glioma.
- N = 179, P = 54613, C = 4

Algorithm	% Error (SD)	Runtime (s)	\widehat{K}_{99}	$\ \widehat{oldsymbol{W}}\ _0$
SP-SHyGAMP	32.0 (14.8)	7.68	10.29	218 452
MS-SHyGAMP	30.9 (16.5)	12.33	31.04	49.25
SBMLR	32.3 (16.6)	24.10	48.41	72.41
GLMNET	31.1 (15.9)	32.30	24.79	39.28

Bhattacharjee et al

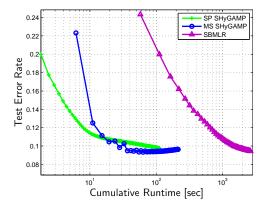
- Classes represent different types of lung carcinoma.
- N = 203, P = 12600, C = 5

Algorithm	% Error (SD)	Runtime (s)	\widehat{K}_{99}	$\ \widehat{oldsymbol{W}}\ _0$
SP-SHyGAMP	8.0 (8.0)	3.50	14.64	63 000
MS-SHyGAMP	6.2 (8.1)	8.04	40.62	66.29
SBMLR	6.6 (8.1)	7.36	46.55	79.68
GLMNET	6.6 (8.1)	13.96	53.17	93.50

Text classification

Reuter's Corpus Volume 1 (RCV1)

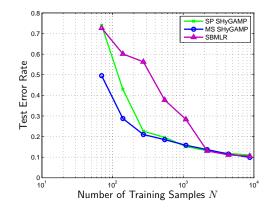
- Classes are the article's topic
- Features are frequency of keywords
- Sparse and non-zero mean $oldsymbol{X}$
- N = 14147, P = 47236, C = 25
- $\bullet~$ Tested on $469\,571$ samples
- Plot test-error-rate vs algorithm runtime



Handwritten digit recognition

Mixed National Institute of Standards and Technology (MNIST)

- Classes are the digits 0-9
- Features pixels of an image (P = 784)
- We had in total $N = 70\,000$ samples
- Varied N from 70 to 10000



Summary

- Motivated by multiclass problems where $N \ll P$, want feature selection.
- Novel approach to sparse MLR by using message passing to break high dimensional inference problem into many smaller inference problems.
 - SP yields approximate marginal test label posteriors.
 - MS solves traditional ℓ_1 -regularized objective.
- Automatically tune model parameters using EM and SURE techniques.
- Numerical results show we are competitive/superior to state-of-the-art.

References

- Paper: E. Byrne and P. Schniter, "Sparse multinomial logistic regression via approximate message passing," arXiv:1509.04491, Sep. 2015.
- GAMP: S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," in *Proc. IEEE Int. Symp. Inform. Thy.*, pp. 2168-2172, Aug. 2011.
- HyGAMP: S. Rangan, A. K. Fletcher, V. K. Goyal, and P. Schniter, "Hybrid generalized approximate message passing with applications to structured sparsity," in *Proc. IEEE Int. Symp. Inform. Thy.*, pp. 1236-1240, July 2012.
- EM: J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing," *IEEE Trans. Signal Process.*, vol. 61, pp. 4658-4672, Oct. 2013.
- SURE: A. Mousavi, A. Maleki, and R. G. Baraniuk, "Parameterless, optimal approximate message passing," *arXiv:1311:0035*, Nov. 2013.

Thank you

Questions?

SP-HyGAMP for MLR

Marginal posteriors are approximated as

"weights": $p(\boldsymbol{w}_p \,|\, \boldsymbol{\widehat{r}}_p; \boldsymbol{Q}_p^{\mathsf{r}}) \propto p(\boldsymbol{w}_p) \mathcal{N}(\boldsymbol{w}_p; \boldsymbol{\widehat{r}}_p, \boldsymbol{Q}_p^{\mathsf{r}})$

"scores": $p(\boldsymbol{z}_n | y_n, \widehat{\boldsymbol{p}}_n; \boldsymbol{Q}_n^{\mathbf{p}}) \propto q(y_n | \boldsymbol{z}_n) \mathcal{N}(\boldsymbol{z}_n; \widehat{\boldsymbol{p}}_n, \boldsymbol{Q}_n^{\mathbf{p}})$ for $\boldsymbol{z}_n \triangleq \boldsymbol{W}^{\mathsf{T}} \boldsymbol{x}_n$

Inference of weight vector $\widehat{\boldsymbol{w}}_p$

- Sparsity-promoting prior: $p(w_p) = \alpha_0 \mathcal{N}(\mu_0, \Sigma_0) + (1 \alpha_0) \delta(w_p)$
- Must compute $\widehat{m{w}}_p = \mathrm{E}\{p(m{w}_p\,|\,\widehat{m{r}}_p;m{Q}_p^{\mathsf{r}})\}$, also covariance $m{Q}_p^{\mathsf{w}}$

Inference of score $\widehat{\boldsymbol{z}}_n$

- Must compute $\widehat{\boldsymbol{z}}_n = \mathrm{E}\{p(\boldsymbol{z}_n \,|\, y_n, \widehat{\boldsymbol{p}}_n; \boldsymbol{Q}_n^p)\}$, also covariance \boldsymbol{Q}_n^z .
 - Intractable due to form of $P(y_n | \boldsymbol{z}_n)$ (recall multinomial logistic function)
 - Solve via numerical integration (slow) or importance sampling (inaccurate)

MS-HyGAMP for MLR

Inference of weight vector $\widehat{m{w}}_p$

- Compute $\hat{w}_p = \arg \max_{w} \log p(w_p) + \log \mathcal{N}(w_p; \hat{r}_p, Q_p^r)$
- Under ℓ_1 regularization, i.e., Laplacian $p({m w}_p)$

$$\widehat{\boldsymbol{w}}_p = \operatorname*{arg\,max}_{\boldsymbol{w}} - \frac{1}{2} (\boldsymbol{w} - \widehat{\boldsymbol{r}}_p)^{\mathsf{T}} [\boldsymbol{Q}_p^{\mathsf{r}}]^{-1} (\boldsymbol{w} - \widehat{\boldsymbol{r}}_p) - \lambda \|\boldsymbol{w}\|_1$$

• No CF solution, but can be solved iteratively using, e.g., minorization-maximization

Inference of score $\widehat{m{z}}_n$

$$\widehat{\boldsymbol{z}}_n = \operatorname*{arg\,max}_{\boldsymbol{z}} \log q(y_n \,|\, \boldsymbol{z}) - \frac{1}{2} (\boldsymbol{z} - \widehat{\boldsymbol{p}}_n)^{\mathsf{T}} [\boldsymbol{Q}_n^{\mathsf{p}}]^{-1} (\boldsymbol{z} - \widehat{\boldsymbol{p}}_n)$$

Convex, solved via Newton's method

GM approximation details

We expand on

$$\frac{1}{1 + \exp(-z)} \approx \sum_{l=1}^{L} \Phi\left(\frac{z - \mu_l}{\sigma_l}\right).$$

Change of variables:

$$q(y \mid \boldsymbol{z}) = \frac{1}{1 + \sum_{c \neq y} \exp(-\gamma_c^y)}, \ \gamma_c^y = z_y - z_c.$$

Gaussian mixture approximation:

$$\frac{1}{1 + \sum_{c \neq y} \exp(-\gamma_c^y)} \approx \sum_{l=1}^L \alpha_l \prod_{c \neq y} \Phi\left(\frac{\gamma_c - \mu_{cl}}{\sigma_{cl}}\right).$$

SURE details

Input soft thresholding:

$$\widehat{w}_{pc} = f(\widehat{r}_{pc}, q^{\mathsf{r}}; \lambda) = \operatorname{sign}(\widehat{r}_{pc}) \max\{0, |\widehat{r}_{pc}| - \lambda q^{\mathsf{r}}\}.$$

Shifted estimation function

$$g(\widehat{r}, q^{\mathbf{r}}; \lambda) = f(\widehat{r}, q^{\mathbf{r}}; \lambda) - r.$$

Stein's result

$$\mathbf{E}\{|\widehat{w} - \mathsf{w}|^2\} = q^{\mathsf{r}} + \mathbf{E}\{g^2(r, q^{\mathsf{r}}; \lambda) + 2q^{\mathsf{r}}g'(r, q^{\mathsf{r}}; \lambda)\}.$$

We know $E{S(r, q^r; \lambda)} = MSE(\lambda)$, so we choose λ to minimize $E{S(r, q^r; \lambda)}$.

SURE details con't

Minimize empirical average

$$\widehat{\lambda} = \underset{\lambda}{\arg\min} \sum_{p=1}^{P} \sum_{c=1}^{C} g^2(\widehat{r}_{pc}, q^{\mathbf{r}}; \lambda) + 2q^{\mathbf{r}} g'(\widehat{r}_{pc}, q^{\mathbf{r}}; \lambda).$$

Above is difficult, so instead solve

$$\widehat{\lambda} = \operatorname*{arg\,min}_{\lambda} \mathrm{E}\{g^{2}(\mathbf{r},q^{\mathbf{r}};\lambda) + 2q^{\mathbf{r}}g'(\mathbf{r},q^{\mathbf{r}};\lambda)\},\label{eq:constraint}$$

where $p(r) = \sum_{l=1}^{L} \alpha_l \Phi\left(\frac{r-\mu_l}{\sigma_l}\right)$.