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ABSTRACT

Across numerous disciplines, the ability to generate high-dimensional datasets is driv-

ing an enormous demand for increasingly efficient ways of both capturing and pro-

cessing this data. A promising recent trend for addressing these needs has developed

from the recognition that, despite living in high-dimensional ambient spaces, many

datasets have vastly smaller intrinsic dimensionality. When capturing (sampling) such

datasets, exploiting this realization permits one to dramatically reduce the number of

samples that must be acquired without losing the salient features of the data. When

processing such datasets, the reduced intrinsic dimensionality can be leveraged to

allow reliable inferences to be made in scenarios where it is infeasible to collect the

amount of data that would be required for inference using classical techniques.

To date, most approaches for taking advantage of the low intrinsic dimension-

ality inherent in many datasets have focused on identifying succinct (i.e., sparse)

representations of the data, seeking to represent the data using only a handful of

“significant” elements from an appropriately chosen dictionary. While powerful in

their own right, such approaches make no additional assumptions regarding possible

relationships between the significant elements of the dictionary. In this dissertation,

we examine ways of incorporating knowledge of such relationships into our sampling

and processing schemes.

One setting in which it is possible to dramatically improve the efficiency of sam-

pling schemes concerns the recovery of temporally correlated, sparse time series, and
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in the first part of this dissertation we summarize our work on this important problem.

Central to our approach is a Bayesian formulation of the recovery problem, which al-

lows us to access richly expressive models of signal structure. While Bayesian sparse

linear regression algorithms have often been shown to outperform their non-Bayesian

counterparts, this frequently comes at the cost of substantially increased computa-

tional complexity. We demonstrate that, by leveraging recent advances in the field of

probabilistic graphical models and message passing algorithms, we are able to dra-

matically reduce the computational complexity of Bayesian inference on structured

sparse regression problems without sacrificing performance.

A complementary problem to that of efficient sampling entails making the most of

the data that is available, particularly when such data is extremely scarce. Motivated

by an application from the field of cognitive neuroscience, we consider the problem

of binary classification in a setting where one has many possible predictive features,

but only a small number of training examples. We build on the mathematical and

software tools developed in the aforementioned regression setting, showing how these

tools may be applied to classification problems. Specifically, we describe how inference

on a generalized linear model can be conducted through our previously developed

message passing framework, suitably modified to account for categorical response

variables.
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CHAPTER 1

INTRODUCTION

“Data! Data! Data! I can’t make bricks without clay.”

- Sherlock Holmes

In 2011, an IDC Digital Universe study estimated that over 1.8 trillion gigabytes

(GB) of digital content would be generated over the course of the year [1]. This

volume of raw data, if stored on 32GB Apple iPads, would require 57.5 billion such

devices, enough to create a wall 4,005 miles long and 61 feet high, extending from

Anchorage, Alaska to Miami, Florida. Without question, society has entered the

era of “Big Data”. The dramatic growth in the size and scope of large datasets is

the result of many factors, including the proliferation of sensors and data acquisition

devices, declining storage costs, and the growth of web and cloud infrastructure.

In order to properly take advantage of the tremendous volume of data, a number

of important challenges must be addressed. Two critical, and highly interrelated,

challenges concern the acquisition and interpretation of such data. In a number of

Big Data applications, cost is a fundamental constraint in the acquisition process.

Consider the following examples: Many camera systems are capable of generating

gigabytes of raw data in a short period of time—data which is then immediately

compressed in order to discard unnecessary and redundant information. In some ap-

plications, this sample-then-compress paradigm is acceptable, while in others, where

hardware costs dominate (e.g., hyperspectral imaging), it is much more preferable to
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compress while sampling, that is, collect only the truly necessary information. Sim-

ilarly, in cardiac MRI, long acquisition times limit spatial and temporal resolution,

motivating a desire for the ability to reduce the number of measurements that must

be acquired without sacrificing image quality. As a final example, large corpora of

text classification datasets are expensive to generate, since each training example

must be hand-labeled—a time-consuming process.

All of the aforementioned examples possess several unifying traits. First, each

problem entails working with very high-dimensional data. Images containing many

millions of pixels are routine, and text classification problems typically involve hun-

dreds of thousands, or even millions, of attributes associated with each training docu-

ment. Second, there is a strong motivation to reduce the amount of information that

must be measured, preferably without sacrificing the ability to make useful inferences

from the data. Third, each of these examples incorporates an inverse problem into

the process of interpreting the data.

1.1 Compressed Sensing

A particular inverse problem of interest in this dissertation is that of compressed

sensing (CS) [2–4]. At its most elemental, CS represents an alternative to the afore-

mentioned sample-then-compress data collection paradigm, namely, sample-while-

compressing. Traditional sampling theory conforms more to the former paradigm.

In particular, Shannon-Nyquist theory informs us that samples acquired uniformly

in time or space at twice the highest signal bandwidth (or desired resolution) can

be used to accurately reconstruct the signal through a simple, computationally in-

expensive process known as sinc interpolation. CS differs from Shannon-Nyquist

sampling in several important respects. First, it is primarily studied as a finite-

dimensional, digital-to-digital sampling scheme, although continuous-time sampling
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is possible within the theory [4]. Second, CS requires a more complex sampling

process; rather than acquiring point samples uniformly in time/space, CS collects

samples in the form of inner products between the complete signal and a series of

“test waveforms.” Third, unlike sinc interpolation, the CS inverse problem is highly

non-linear in nature, requiring more complex reconstruction algorithms. In exchange

for these tradeoffs, CS offers the ability to dramatically reduce the number of samples

that must be acquired without sacrificing reconstruction fidelity.

Mathematically, if y ∈ CM denotes a length-M complex-valued observation vec-

tor, and x ∈ CN denotes a length-N signal, then a generic (linear) sampling process

can be represented as

y = Ax + e, (1.1)

where A ∈ CM×N represents a known linear transformation of the signal, and e

represents (unknown) corrupting noise. When M ≥ N , corresponding to traditional

sampling, (1.1) represents an overdetermined linear system of equations, for which a

number of tools exist for estimating x from y. When M < N , the primary setting of

interest in CS, additional information about x must be brought to bear in order to

make the inverse problem well-posed.

The fundamental insight offered by CS is that, while Shannon-Nyquist sampling

enables the recovery of any bandlimited signal, most real-world signals possess ad-

ditional structure beyond being bandlimited. In particular, the “intrinsic” dimen-

sionality of such signals is vastly below their ambient dimensionality. That most

high-dimensional signals are compressed after acquisition is a testament to this fact.

The principle of sparsity is therefore central to CS.

Sparsity reflects the notion that, in a suitably chosen basis, Ψ ∈ CN×N , the

underlying signal being recovered has a succinct representation, i.e., there exists a
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K-sparse vector α ∈ C
N , ‖α‖0 = K ≪ N , such that

x = Ψα. (1.2)

Equation (1.2) expresses the idea that the signal x is composed of only a handful of

columns (or “atoms”) of Ψ corresponding to the non-zero entries of α. Without loss

of generality, in this dissertation we will generally assume x is sparse in the canonical

(identity) basis, and thus ‖x‖0 ≪ N . Revisiting (1.1), any sparsifying basis Ψ can

be incorporated into A via A = ΦΨ.

In the early days of CS, the primary inference objective was to estimate x by

seeking the sparsest representation consistent with the observations, e.g.,

x̂ = argmin
x

‖x‖0 s.t. ‖y −Ax‖22 < ε, (1.3)

where ε is a parameter that controls the fidelity of the recovery. Unfortunately,

solving (1.3) is an NP-hard optimization problem, motivating researchers to consider

alternative approaches that would achieve the same end. The literature on such

approaches is quite vast (see [5] for a partial summary), but a general taxonomy

can be deduced: convex optimization approaches, which solve relaxed versions of

(1.3) (e.g., the Lasso [6]); greedy algorithms, which iteratively add elements to the

signal support set until a convergence criterion is met; and probabilistic algorithms,

which frame the recovery problem as a signal estimation problem, with a signal prior

distribution chosen to encourage sparse solutions.

While the early CS algorithms broke important theoretical and application-driven

ground, in more recent years it has become increasingly evident that additional per-

formance gains (in the form of further reductions in sampling rates, or increases in
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signal-to-noise ratio (SNR)) can be obtained by exploiting additional signal struc-

ture that goes beyond “simple sparsity”.1 This additional structure is present in a

wide range of applications, including magnetoencephalography (MEG) [7], dynamic

MRI [8], and underwater communications [9], and manifests itself primarily through

complex relationships between signal coefficients (e.g., the phenomenon of “persis-

tence across scale” observed in wavelet decompositions of natural images [10]). Duarte

and Eldar [11] provide a comprehensive review of such contemporary “structured CS”

research thrusts.

1.2 Bayesian Inference

While any technique will have advantages and disadvantages in different applica-

tions, we argue that Bayesian approaches represent the most promising avenue for

the development of future structured sparse inference algorithms. A primary moti-

vator for this argument is the substantial body of empirical evidence (e.g., [12–16])

that has demonstrated that Bayesian approaches offer superior performance (w.r.t.

mean square error (MSE)) over non-Bayesian techniques. Although the success of

a Bayesian method will depend in no small part on how well its signal model is

matched to the true signal, non-Bayesian approaches are likewise sensitive to the

statistics of the true signal, and in certain instances can be viewed as implicitly seek-

ing maximum a posteriori (MAP) estimates under certain families of priors. Indeed,

one might consider Bayesian methods to be more robust to model mismatch than

their non-Bayesian counterparts, since Bayesian methods view departures from the

assumed model of signal structure as unlikely, but not impossible, events, whereas

1By “simple sparsity,” we mean signals for which all support sets of a given cardinality are equiprob-
able.
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non-Bayesian structured sparsity models, e.g., union-of-subspaces [11], can enforce a

rigid “all or nothing” conformity to the assumed type of signal structure.

A closely related advantage of the Bayesian paradigm in structured CS problems

concerns the task of characterizing the structure inherent in the underlying signal.

By adopting a Bayesian mindset, we provide ourselves access to the richly expressive

framework of probabilistic graphical models (PGMs). The PGM framework is advan-

tageous for describing complex forms of signal structure because, as noted by Koller

and Friedman [17, §1.2.2], “the type of representation provided by this framework

is transparent, in that a human expert can understand and evaluate its semantics

and properties. This property is important for constructing models that provide an

accurate reflection of our understanding of a domain. Models that are opaque can

easily give rise to unexplained, and even undesirable, answers.” PGMs offer us a way

to translate qualitative descriptions of structure into concrete mathematical language

while still remaining flexible enough to accommodate deviations from our model.

One important characteristic of all structured sparsity algorithms is the depen-

dence of performance on model/algorithm parameters. Algorithms that fall within the

Bayesian framework rely on a statistical model of structure that is characterized by a

collection of parameters and hyperparameters. By nature of their Bayesian formula-

tion, a number of approaches are available to automatically learn model parameters

from the data through, e.g., an expectation-maximization algorithm [13, 14, 18, 19],

or margin them out completely [20, 21]. In contrast, while non-Bayesian methods

retain a dependence on algorithmic parameters, little attention has been devoted to

finding ways to set these parameters in a principled manner. Consequently, one is

left with a dilemma when applying these non-Bayesian techniques: either fix the pa-

rameters according to some heuristic criteria and hope that they are near-optimal,
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or else resort to a computationally expensive cross-validation procedure. The abil-

ity to automatically tune parameters is thus another strong advantage of Bayesian

algorithms.

Given the number of Bayesian approaches to solving CS problems, one might

assume that there is little room for improvement. On the contrary, our research

to-date has sought to alleviate one of the primary deficiencies of Bayesian methods:

their high computational complexity relative to non-Bayesian schemes.2

As a very coarse rule, in most structured sparse regression problems, the compu-

tational complexity of different methods can be rank-ordered (from fastest to slowest)

as follows:3

1. Greedy methods (e.g., OMP: O(MNK) [22])

2. Convex relaxations (e.g., Lasso: O(M2N) [6]; IHT: O(MN +K2M) [22])

3. Bayesian methods (e.g., approaches involving covariance matrix inversion: O(N2);

BCS: O(M2N) [23])

The relative performance of these methods appears to be ordered inversely, reflecting

the fact that “there’s no free lunch”.

The reasons why Bayesian methods are slower than their non-Bayesian counter-

parts on structured sparse inference problems are varied. In the case of approaches

that employ empirical Bayesian strategies, such as the Sparse Bayesian Learning

paradigm [24], the computational costs typically arise from the need to invert co-

variance matrices in Gaussian models. In Markov chain Monte Carlo (MCMC) ap-

proaches to approximating a full posterior distribution using a collection of samples

2In comparing computational complexity, we are ignoring the potentially expensive parameter
tuning processes of non-Bayesian algorithms, since these costs will vary depending on the specific
algorithm and application at hand.

3For illustrative purposes, we are reporting complexity for common unstructured/traditional CS
algorithms, where M is the number of measurements, N is the number of unknowns, and K is
the number of non-zero signal coefficients.
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drawn from the distribution, complexity may result from matrix inversion, or from

the slow convergence that can be encountered in high-dimensional inference settings.

It is precisely this challenge of devising computationally efficient and highly accurate

Bayesian inference methods for high-dimensional CS problems that we have been

addressing through our work.

1.3 Our Contributions

In what follows, we highlight three structured CS research problems that comprise

the focus of this dissertation. The first two problems align with the traditional CS

focus of sparse linear regression, while the final problem moves CS from the domain

of regression to that of classification. Several common themes can be found across

our work on these problems. First, a great deal of emphasis is placed on designing al-

gorithms that are computationally tractable for high-dimensional inference problems.

This emphasis on tractability motivates the application of recently developed approx-

imate message passing (AMP) [25,26] and generalized AMP (GAMP) [27] techniques,

which leverage concentration of measure phenomena in high-dimensions in order to

approximate otherwise intractable loopy belief propagation (loopy BP) [28] methods.

The resultant first-order algorithms are fast, highly accurate, and admit to rigorous

analysis (see, e.g., [29, 30]). A comprehensive discussion of loopy BP and (G)AMP is

beyond the scope of this dissertation, however, the interested reader can find a brief

primer in Appendix A.

A second common theme across our work is the adoption of a Bayesian inference

strategy. As noted in Section 1.2, there are a number of compelling reasons to consider

a Bayesian approach, including the ability to adopt a PGM framework. Our use

of PGMs to model the various forms of structure is intimately connected to our

chosen methods of inference; the close ties between (G)AMP and belief propagation
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are exploited in our algorithms by embedding (G)AMP inference within larger PGMs

that model the relevant statistical structure. This provides us with a great deal of

flexibility and modularity in three aspects: how we model structure, how we conduct

inference, and how we implement our algorithms in software.

A third and final theme is our use of automatic parameter tuning techniques.

In Section 1.2, we identified Bayesian systems’ automatic parameter tuning capa-

bilities as a desirable alternative to other tuning schemes such as cross-validation.

Therefore, in developing our algorithms, we went to great lengths to ensure that we

could not only specify structured statistical models, but also learn the parameters

of those models adaptively from the data. Fortunately, the PGM framework under-

girding our algorithms readily lends itself to such automatic tuning, particularly via

expectation-maximization techniques. We find that, in most cases, the quantities

that must be computed in order to update model parameter estimates are available

as a byproduct of our message passing-based primary inference process. This ability

to tune parameters in a principled manner from the data often sets our methods

apart from competing approaches, offering the end-user an alternative to expensive

and time-consuming cross-validation or heuristic hand-tuning.

1.3.1 The Multiple Measurement Vector Problem

In Chapter 2, we explore one particular structured CS problem that is a generalization

of the single measurement vector (SMV) CS problem (1.1), known as the multiple

measurement vector (MMV) problem [31,32]. As the name implies, in the MMV CS

problem, one seeks to recover a collection of sparse signals, x(1),x(2), . . . ,x(T ) from

another collection of undersampled linear measurements, y(1),y(2), . . . ,y(T ). The crux

of the MMV problem is in the additional structure that is imposed on the sparse

collection of signal vectors {x(t)}Tt=1.
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In its earliest incarnation [7], the MMV problem was viewed as a problem of

recovering a row-sparse signal matrix X = [x(1), . . . ,x(T )] from observations Y =

[y(1), . . . ,y(T )] obtained via

Y = AX + E, (1.4)

when all signal vectors x(t) are assumed to be “jointly sparse”, i.e., supp(x(t)) =

supp(x(s)) ∀ t, s. Such a problem finds application in magnetoencephalography [7,12],

direction-of-arrival estimation [33], and parallel MRI [34]. The benefits afforded by

modeling joint sparsity can be significant; under mild conditions, the probability of

failing to accurately recover X decays exponentially in the number of measurement

vectors, T , when accounting for the joint sparsity [35].

Our proposed algorithm, AMP-MMV, leverages AMP algorithmic techniques to

enable accurate, rapid recovery of the unknown X. Key features of our approach, as

compared to alternative MMV solvers, include:

1. A statistical model of the MMV problem that explicitly incorporates amplitude

correlation within the non-zero rows of X.

2. A computational complexity that grows only linearly in all problem dimensions,

yielding unrivaled speed amongst state-of-the-art Bayesian algorithms.

3. A principled scheme for automatically tuning the parameters of our statistical

model, based on the available data.

4. An ability to support heterogeneous measurement matrices, (i.e., A(t) instead

of A).

5. Performance on-par with that of an oracle-aided Kalman smoother that lower-

bounds the achievable MSE.
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1.3.2 The Dynamic Compressed Sensing Problem

The jointly sparse MMV problem can be generalized to allow for small changes in the

support over time, as well as time-varying measurement matrices, e.g.,

y(t) = A(t)x(t) + e(t), t = 1, . . . , T (1.5)

This generalized MMV problem, known as the dynamic CS problem [36,37], is preva-

lent in applications in which the sparse signal vectors x(1),x(2), . . . describe a slowly

time-varying phenomenon, such as dynamic MRI [8].

In Chapter 3, we describe a novel, computationally efficient Bayesian algorithm

designed to solve the dynamic CS problem. As with AMP-MMV, our proposed

dynamic CS algorithm, DCS-AMP, employs an AMP algorithm as a sub-routine to

perform the computationally intensive inference tasks. Unique advantages of DCS-

AMP include:

1. The ability to perform soft (i.e., probabilistic) signal estimation and support

detection, which alleviates the problem of errors accumulating over time due to

erroneous hard estimates.

2. A computational complexity that grows only linearly in all problem dimensions,

yielding unrivaled speed amongst state-of-the-art Bayesian algorithms.

3. A common framework for performing both causal filtering and non-causal smooth-

ing of sparse time-series.

4. A principled scheme for automatically tuning the parameters of our statistical

model, based on the available data.

5. Strong algorithmic connections to an oracle-aided Kalman smoother that lower-

bounds the achievable MSE.
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1.3.3 Binary Classification and Structured Feature Selection

In Chapters 2 and 3, we considered two structured sparse linear regression problems.

In Chapter 4, we turn our attention to the complementary problem of binary linear

classification and structured feature selection. In binary linear classification, our

objective is to learn a hyperplane, defined by the normal vector w, that separates RN

into two half-spaces, for the purpose of predicting a discrete class label y ∈ {–1, 1}

associated with a vector of quantifiable features x ∈ RN from a mapping g(z) : R→

{–1, 1} of the linear “score” z , 〈x,w〉. The goal of structured feature selection

is to identify a subset of the N feature weights in w that contain the bulk of the

discriminatory power for segregating the two classes. In particular, the identified

subset is expected to possess non-trivial forms of structure, e.g., a spatial clustering

of discriminative features in an image classification task.

While the mapping from z to y in Chapters 2 and 3 consisted of the addition of

additive white Gaussian noise (AWGN), in binary linear classification the mapping

is complicated by the discrete nature of the output y. The original AMP [25, 26]

framework was intended to work only in the AWGN setting. Fortunately, GAMP [27]

extends AMP to non-AWGN, generalized-linear mappings, such as g(z), allowing us

to leverage the design principles developed in previous chapters. Our work represents

the first study of GAMP’s suitability for classification tasks, and our contributions

include:

1. Implementation of several popular binary classifiers, including logistic and pro-

bit classifiers, and support vector machines.

2. A characterization of GAMP’s misclassification rate under various weight vector

priors, p(w), using GAMP’s state evolution formalism.

3. A principled scheme for automatically tuning model parameters that govern the

bias-variance tradeoff, based on the available training data.
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CHAPTER 2

THE MULTIPLE MEASUREMENT VECTOR PROBLEM

“It is of the highest importance in the art of detection to be able to

recognize, out of a number of facts, which are incidental and which vital.

Otherwise your energy and attention must be dissipated instead of being

concentrated.”

- Sherlock Holmes

In this chapter,1 we develop a novel Bayesian algorithm designed to solve the

multiple measurement vector (MMV) problem, which generalizes the sparse linear

regression, or single measurement vector (SMV), problem to the case where a group

of measurement vectors has been obtained from a group of signal vectors that are

assumed to be jointly sparse—sharing a common support. Such a problem has many

applications, including magnetoencephalography [7, 12], direction-of-arrival estima-

tion [33] and parallel magnetic resonance imaging (pMRI) [34].

2.1 Introduction

Mathematically, given T length-M measurement vectors, the traditional MMV ob-

jective is to recover a collection of length-N sparse vectors {x(t)}Tt=1, when M < N .

1Work presented in this chapter is largely excerpted from a journal publication co-authored with
Philip Schniter, entitled “Efficient High-Dimensional Inference in the Multiple Measurement Vec-
tor Problem.” [32]
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Each measurement vector, y(t), is obtained as

y(t) = Ax(t) + e(t), t = 1, . . . , T, (2.1)

where A is a known measurement matrix and e(t) is corrupting additive noise. The

unique feature of the MMV problem is the assumption of joint sparsity: the support of

each sparse signal vector x(t) is identical. Oftentimes, the collection of measurement

vectors forms a time-series, thus we adopt a temporal viewpoint of the MMV problem,

without loss of generality.

A straightforward approach to solving the MMV problem is to break it apart

into independent SMV problems and apply one of the many SMV algorithms. While

simple, this approach ignores valuable temporal structure in the signal that can be

exploited to provide improved recovery performance. Indeed, under mild conditions,

the probability of recovery failure can be made to decay exponentially as the number

of timesteps T grows, when taking into account the joint sparsity [35].

Another approach (e.g., [38]) to the joint-sparse MMV problem is to restate (2.1)

as the block-sparse SMV model

ȳ = D(A)x̄ + ē, (2.2)

where ȳ ,
[
y(1)T , . . . ,y(T )T

]T
, x̄ ,

[
x(1)T , . . . ,x(T )T

]T
, ē ,

[
e(1)T , . . . , e(T )T

]T
, and

D(A) denotes a block diagonal matrix consisting of T replicates of A. In this case,

x is block-sparse, where the nth block (for n = 1, . . . , N) consists of the coefficients

{xn, xn+N , . . . , xn+(T−1)N}. Equivalently, one could express (2.1) using the matrix

model

Y = AX + E, (2.3)
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where Y ,
[
y(1), . . . ,y(T )

]
, X ,

[
x(1), . . . ,x(T )

]
, and E ,

[
e(1), . . . , e(T )

]
. Under

the matrix model, joint sparsity in (2.1) manifests as row-sparsity in X. Algorithms

developed for the matrix MMV problem are oftentimes intuitive extensions of SMV

algorithms, and therefore share a similar taxonomy. Among the different techniques

that have been proposed are mixed-norm minimization methods [12, 39–41], greedy

pursuit methods [12, 42, 43], and Bayesian methods [13, 14, 21, 33, 44]. Existing lit-

erature suggests that greedy pursuit techniques are outperformed by mixed-norm

minimization approaches, which in turn are surpassed by Bayesian methods [12–14].

In addition to work on the MMV problem, related work has been performed on

a similar problem sometimes referred to as the “dynamic CS” problem [36, 45–48].

The dynamic CS problem also shares the trait of working with multiple measurement

vectors, but instead of joint sparsity, considers a situation in which the support of

the signal changes slowly over time.

Given the plethora of available techniques for solving the MMV problem, it is

natural to wonder what, if any, improvements can be made. In this chapter, we will

primarily address two deficiencies evident in the available MMV literature. The first

deficiency is the inability of many algorithms to account for amplitude correlations in

the non-zero rows of X.2 Incorporating this temporal correlation structure is crucial,

not only because many real-world signals possess such structure, but because the

performance of MMV algorithms is particularly sensitive to this structure [13,14,35,

43, 49]. The second deficiency is that of computational complexity: while Bayesian

MMV algorithms appear to offer the strongest recovery performance, it comes at

the cost of increased complexity relative to simpler schemes, such as those based on

greedy pursuit. For high-dimensional datasets, the complexity of Bayesian techniques

may prohibit their application.

2Notable exceptions include [44], [41], and [14], which explicitly model amplitude correlations.
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Our goal is to develop an MMV algorithm that offers the best of both worlds,

combining the recovery performance of Bayesian techniques, even in the presence

of substantial amplitude correlation and apriori unknown signal statistics, with the

linear complexity scaling of greedy pursuit methods. Aiding us in meeting our goal

is a powerful algorithmic framework known as approximate message passing (AMP),

first proposed by Donoho et al. for the SMV CS problem [25]. In its early SMV

formulations, AMP was shown to perform rapid and highly accurate probabilistic

inference on models with known i.i.d. signal and noise priors, and i.i.d. random

A matrices [25, 26]. More recently, AMP was extended to the block-sparse SMV

problem under similar conditions [50]. While this block-sparse SMV AMP does solve

a simple version of the MMV problem via the formulation (A.1), it does not account

for intra-block amplitude correlation (i.e., temporal correlation in the MMV model).

Recently, Kim et al. proposed an AMP-based MMV algorithm that does exploit

temporal amplitude correlation [44]. However, their approach requires knowledge

of the signal and noise statistics (e.g., sparsity, power, correlation) and uses matrix

inversions at each iteration, implying a complexity that grows superlinearly in the

problem dimensions.

In this chapter, we propose an AMP-based MMV algorithm (henceforth referred

to as AMP-MMV) that exploits temporal amplitude correlation and learns the signal

and noise statistics directly from the data, all while maintaining a computational

complexity that grows linearly in the problem dimensions. In addition, AMP-MMV

can easily accommodate time-varying measurement matrices A(t), implicit measure-

ment operators (e.g., FFT-based A), and complex-valued quantities. (These latter

scenarios occur in, e.g., digital communication [51] and pMRI [52].) The key to our

approach lies in combining the “turbo AMP” framework of [53], where the usual
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AMP factor graph is augmented with additional hidden variable nodes and infer-

ence is performed on the augmented factor graph, with an EM-based approach to

hyperparameter learning. Details are provided in Sections 2.2, 2.4, and 2.5.

In Section 2.6, we present a detailed numerical study of AMP-MMV that includes

a comparison against three state-of-the-art MMV algorithms. In order to establish

an absolute performance benchmark, in Section 2.3 we describe a tight, oracle-aided

performance lower bound that is realized through a support-aware Kalman smoother

(SKS). To the best of our knowledge, our numerical study is the first in the MMV

literature to use the SKS as a benchmark. Our numerical study demonstrates that

AMP-MMV performs near this oracle performance bound under a wide range of

problem settings, and that AMP-MMV is especially suitable for application to high-

dimensional problems. In what represents a less-explored direction for the MMV

problem, we also explore the effects of measurement matrix time-variation (cf. [33]).

Our results show that measurement matrix time-variation can significantly improve

reconstruction performance and thus we advocate the use of time-varying measure-

ment operators whenever possible.

2.1.1 Notation

Boldfaced lower-case letters, e.g., a, denote vectors, while boldfaced upper-case let-

ters, e.g., A, denote matrices. The letter t is strictly used to index a timestep,

t = 1, 2, . . . , T , the letter n is strictly used to index the coefficients of a signal, n =

1, . . . , N , and the letter m is strictly used to index the measurements, m = 1, . . . ,M .

The superscript (t) indicates a timestep-dependent quantity, while a superscript with-

out parentheses, e.g., k, indicates a quantity whose value changes according to some

algorithmic iteration index. Subscripted variables such as x
(t)
n are used to denote the

nth element of the vector x(t), while set subscript notation, e.g., x
(t)
S , denotes the
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sub-vector of x(t) consisting of indices contained in S. The mth row of the matrix A

is denoted by aT
m, and the transpose (conjugate transpose) by AT (AH). An M-by-M

identity matrix is denoted by I
M

, a length-N vector of ones is given by 1
N

and D(a)

designates a diagonal matrix whose diagonal entries are given by the elements of the

vector a. Finally, CN (a; b,C) refers to the complex normal distribution that is a

function of the vector a, with mean b and covariance matrix C.

2.2 Signal Model

In this section, we elaborate on the signal model outlined in Section 2.1, and make

precise our modeling assumptions. Our signal model, as well as our algorithm, will

be presented in the context of complex-valued signals, but can be easily modified to

accommodate real-valued signals.

As noted in Section 2.1, we consider the linear measurement model (2.1), in which

the signal x(t) ∈ CN at timestep t is observed as y(t) ∈ CM through the linear operator

A ∈ CM×N . We assume e(t) ∼ CN (0, σ2
eIM ) is circularly symmetric complex white

Gaussian noise. We use S , {n|x(t)
n 6= 0} to denote the indices of the time-invariant

support of the signal, which is assumed to be suitably sparse, i.e., |S| ≤M .3

Our approach to specifying a prior distribution for the signal, p({x(t)}Tt=1), is

motivated by a desire to separate the support, S, from the amplitudes of the non-

zero, or “active,” coefficients. To accomplish this, we decompose each coefficient x
(t)
n

3If the signal being recovered is not itself sparse, it is assumed that there exists a known basis,
incoherent with the measurement matrix, in which the signal possesses a sparse representation.
Without loss of generality, we will assume the underlying signal is sparse in the canonical basis.
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as the product of two hidden variables:

x(t)
n = sn · θ(t)

n ⇔ p(x(t)
n |sn, θ(t)

n ) =






δ(x
(t)
n − θ(t)

n ), sn = 1,

δ(x
(t)
n ), sn = 0,

(2.4)

where sn ∈ {0, 1} is a binary variable that indicates support set membership, θ
(t)
n ∈ C

is a variable that provides the amplitude of coefficient x
(t)
n , and δ(·) is the Dirac delta

function. When sn = 0, x
(t)
n = 0 and n /∈ S, and when sn = 1, x

(t)
n = θ

(t)
n and n ∈ S.

To model the sparsity of the signal, we treat each sn as a Bernoulli random variable

with Pr{sn = 1} , λn < 1.

In order to model the temporal correlation of signal amplitudes, we treat the

evolution of amplitudes over time as stationary first-order Gauss-Markov random

processes. Specifically, we assume that θ
(t)
n evolves according to the following linear

dynamical system model:

θ(t)
n = (1− α)(θ(t−1)

n − ζ) + αw(t)
n + ζ, (2.5)

where ζ ∈ C is the mean of the amplitude process, w
(t)
n ∼ CN (0, ρ) is a circularly

symmetric white Gaussian perturbation process, and α ∈ [0, 1] is a scalar that con-

trols the correlation of θ
(t)
n across time. At one extreme, α = 0, the random process

is perfectly correlated (θ
(t)
n = θ

(t−1)
n ), while at the other extreme, α = 1, the am-

plitudes evolve independently over time. Note that the binary support vector, s, is

independent of the amplitude random process, {θ(t)}Tt=1, which implies that there are

hidden amplitude “trajectories”, {θ(t)
n }Tt=1, associated with inactive coefficients. Con-

sequently, θ
(t)
n should be thought of as the conditional amplitude of x

(t)
n , conditioned

on sn = 1.
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Under our model, the prior distribution of any signal coefficient, x
(t)
n , is a Bernoulli-

Gaussian or “spike-and-slab” distribution:

p(x(t)
n ) = (1− λn)δ

(
x(t)
n

)
+ λnCN

(
x(t)
n ; ζ, σ2

)
, (2.6)

where σ2 ,
αρ

2−α is the steady-state variance of θ
(t)
n . We note that when λn < 1, (3.4)

is an effective sparsity-promoting prior due to the point mass at x
(t)
n = 0.

2.3 The Support-Aware Kalman Smoother

Prior to describing AMP-MMV in detail, we first motivate the type of inference

we wish to perform. Suppose for a moment that we are interested in obtaining a

minimum mean square error (MMSE) estimate of {x(t)}Tt=1, and that we have access

to an oracle who can provide us with the support, S. With this knowledge, we

can concentrate solely on estimating {θ(t)}Tt=1, since, conditioned on S, an MMSE

estimate of {θ(t)}Tt=1 can provide an MMSE estimate of {x(t)}Tt=1. For the linear

dynamical system of (3.3), the support-aware Kalman smoother (SKS) provides the

appropriate oracle-aided MMSE estimator of {θ(t)}Tt=1 [54]. The state-space model

used by the SKS is:

θ(t) = (1− α)θ(t−1) + αζ1
N

+ αw(t), (2.7)

y(t) = AD(s)θ(t) + e(t), (2.8)

where s is the binary support vector associated with S. If θ̂(t) is the MMSE estimate

returned by the SKS, then an MMSE estimate of x(t) is given by x̂(t) = D(s)θ̂(t).

The state-space model (2.7), (2.8) provides a useful interpretation of our signal

model. In the context of Kalman smoothing, the state vector θ(t) is only partially
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observable (due to the action of D(s) in (2.8)). Since D(s)θ(t) = x(t), noisy linear

measurements of x(t) are used to infer the state θ(t). However, since only those θ
(t)
n

for which n ∈ S are observable, and thus identifiable, they are the only ones whose

posterior distributions will be meaningful.

Since the SKS performs optimal MMSE estimation, given knowledge of the true

signal support, it provides a useful lower bound on the achievable performance of

any support-agnostic Bayesian algorithm that aims to perform MMSE estimation of

{x(t)}Tt=1.

2.4 The AMP-MMV Algorithm

In Section 2.2, we decomposed each signal coefficient, x
(t)
n , as the product of a binary

support variable, sn, and an amplitude variable, θ
(t)
n . We now develop an algorithm

that infers a marginal posterior distribution on each variable, enabling both soft

estimation and soft support detection.

The statistical structure of the signal model from Section 2.2 becomes apparent

from a factorization of the posterior joint pdf of all random variables. Recalling

from (A.1) the definitions of ȳ and x̄, and defining θ̄ similarly, the posterior joint

distribution factors as follows:

p(x̄, θ̄, s|ȳ) ∝
T∏

t=1

(
M∏

m=1

p(y(t)
m |x(t))

N∏

n=1

p(x(t)
n |θ(t)

n , sn)p(θ
(t)
n |θ(t−1)

n )

)
N∏

n=1

p(sn), (2.9)

where ∝ indicates equality up to a normalizing constant, and p(θ
(1)
n |θ(0)

n ) , p(θ
(1)
n ).

A convenient graphical representation of this decomposition is given by a factor

graph [55], which is an undirected bipartite graph that connects the pdf “factors”

of (3.5) with the variables that make up their arguments. The factor graph for the

decomposition of (3.5) is shown in Fig. 2.1. The factor nodes are denoted by filled
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Figure 2.1: Factor graph representation of the p(x̄, θ̄, s|ȳ) decomposition in (3.5).

squares, while the variable nodes are denoted by circles. In the figure, the signal

variable nodes at timestep t, {x(t)
n }Nn=1, are depicted as lying in a plane, or “frame”,

with successive frames stacked one after another. Since during inference the measure-

ments {y(t)
m } are known observations and not random variables, they do not appear

explicitly in the factor graph. The connection between the frames occurs through

the amplitude and support indicator variables, providing a graphical representation

of the temporal correlation in the signal. For visual clarity, these {θ(t)
n }Tt=1 and sn

variable nodes have been removed from the graph for the intermediate index n, but

should in fact be present at every index n = 1, . . . , N .

The factor nodes in Fig. 2.1 have all been assigned alphabetic labels; the corre-

spondence between these labels and the distributions they represent, as well as the

functional form of each distribution, is presented in Table 3.1.

A natural approach to performing statistical inference on a signal model that pos-

sesses a convenient factor graph representation is through a message passing algorithm
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(t)
n ; (1− α)θ

(t−1)
n + αζ, α2ρ

)

Table 2.1: The factors, underlying distributions, and functional forms associated with the signal
model of Section 2.2.

known as belief propagation [56]. In belief propagation, the messages exchanged be-

tween connected nodes of the graph represent probability distributions. In cycle-free

graphs, belief propagation can be viewed as an instance of the sum-product algo-

rithm [55], allowing one to obtain an exact posterior marginal distribution for each

unobserved variable, given a collection of observed variables. When the factor graph

contains cycles, the same rules that define the sum-product algorithm can still be

applied, however convergence is no longer guaranteed [55]. Despite this, there exist

many problems to which loopy belief propagation [28] has been successfully applied,

including inference on Markov random fields [57], LDPC decoding [58], and com-

pressed sensing [25, 27, 29, 53, 59].

We now proceed with a high-level description of AMP-MMV, an algorithm that

follows the sum-product methodology while leveraging recent advances in message

approximation [25]. In what follows, we use νa→b(·) to denote a message that is

passed from node a to a connected node b.

2.4.1 Message Scheduling

Since the factor graph of Fig. 2.1 contains many cycles there are a number of valid

ways to schedule, or sequence, the messages that are exchanged in the graph. We will
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describe two message passing schedules that empirically provide good convergence

behavior and straightforward implementation. We refer to these two schedules as the

parallel message schedule and the serial message schedule. In both cases, messages

are first initialized to agnostic values, and then iteratively exchanged throughout the

graph according to the chosen schedule until either convergence occurs, or a maximum

number of allowable iterations is reached.

Conceptually, both message schedules can be decomposed into four distinct phases,

differing only in which messages are initialized and the order in which the phases

are sequenced. We label each phase using the mnemonics (into), (within), (out),

and (across). In phase (into), messages are passed from the sn and θ
(t)
n variable

nodes into frame t. Loosely speaking, these messages convey current beliefs about

the values of s and θ(t). In phase (within), messages are exchanged within frame

t, producing an estimate of x(t) using the current beliefs about s and θ(t) together

with the available measurements y(t). In phase (out), the estimate of x(t) is used

to refine the beliefs about s and θ(t) by passing messages out of frame t. Finally, in

phase (across), messages are sent from θ
(t)
n to either θ

(t+1)
n or θ

(t−1)
n , thus conveying

information across time about temporal correlation in the signal amplitudes.

The parallel message schedule begins by performing phase (into) in parallel for

each frame t = 1, . . . , T simultaneously. Then, phase (within) is performed simul-

taneously for each frame, followed by phase (out). Next, information about the am-

plitudes is exchanged between the different timesteps by performing phase (across)

in the forward direction, i.e., messages are passed from θ
(1)
n to θ

(2)
n , and then from

θ
(2)
n to θ

(3)
n , proceeding until θ

(T )
n is reached. Finally, phase (across) is performed

in the backward direction, where messages are passed consecutively from θ
(T )
n down

to θ
(1)
n . At this point, a single iteration of AMP-MMV has been completed, and a
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new iteration can commence starting with phase (into). In this way, all of the avail-

able measurements, {y(t)}Tt=1, are used to influence the recovery of the signal at each

timestep.

The serial message schedule is similar to the parallel schedule except that it op-

erates on frames in a sequential fashion, enabling causal processing of MMV signals.

Beginning at the initial timestep, t = 1, the serial schedule first performs phase

(into), followed by phases (within) and (out). Outgoing messages from the initial

frame are then used in phase (across) to pass messages from θ
(1)
n to θ

(2)
n . The mes-

sages arriving at θ
(2)
n , along with updated beliefs about the value of s, are used to

initiate phase (into) at timestep t = 2. Phases (within) and (out) are performed

for frame 2, followed by another round of phase (across), with messages being passed

forward to θ
(3)
n . This procedure continues until phase (out) is completed at frame

T . Until now, only causal information has been used in producing estimates of the

signal. If the application permits smoothing, then message passing continues in a

similar fashion, but with messages now propagating backward in time, i.e., messages

are passed from θ
(T )
n to θ

(T−1)
n , phases (into), (within), and (out) are performed at

frame T − 1, and then messages move from θ
(T−1)
n to θ

(T−2)
n . The process continues

until messages arrive at θ
(1)
n , at which point a single forward/backward pass has been

completed. We complete multiple such passes, resulting in a smoothed estimate of

the signal.

2.4.2 Implementing the Message Passes

Space constraints prohibit us from providing a full derivation of all the messages that

are exchanged through the factor graph of Fig. 2.1. Most messages can be derived by

straightforward application of the rules of the sum-product algorithm. Therefore, in

this sub-section we will restrict our attention to a handful of messages in the (within)
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Figure 2.2: A summary of the four message passing phases, including message notation and form.

and (out) phases whose implementation requires a departure from the sum-product

rules for one reason or another.

To aid our discussion, in Fig. 2.2 we summarize each of the four phases, focusing

primarily on a single coefficient index n at some intermediate frame t. Arrows indicate

the direction that messages are moving, and only those nodes and edges participating

in a particular phase are shown in that phase. For the (across) phase we show

messages being passed forward in time, and omit a graphic for the corresponding

backwards pass. The figure also introduces the notation that we adopt for the different

variables that serve to parameterize the messages. Certain variables, e.g.,
⇀
η(t)
n and

↼
η(t)
n , are accented with directional arrows. This is to distinguish variables associated

with messages moving in one direction from those associated with messages moving

in another. For Bernoulli message pdfs, we show only the nonzero probability, e.g.,

λn = νhn→sn(sn = 1).

Phase (within) entails using the messages transmitted from sn and θ
(t)
n to f

(t)
n
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to compute the messages that pass between x
(t)
n and the {g(t)

m } nodes. Inspection of

Fig. 2.2 reveals a dense interconnection between the {x(t)
n } and {g(t)

m } nodes. As a con-

sequence, applying the standard sum-product rules to compute the ν
g
(t)
m →x

(t)
n

(·) mes-

sages would result in an algorithm that required the evaluation of multi-dimensional

integrals that grew exponentially in number in both N and M . Since we are strongly

motivated to apply AMP-MMV to high-dimensional problems, this approach is clearly

infeasible. Instead, we turn to a recently developed algorithm known as approximate

message passing (AMP).

AMP was originally proposed by Donoho et al. [25] as a message passing al-

gorithm designed to solve the noiseless SMV CS problem known as Basis Pursuit

(min ‖x‖1 s.t. y = Ax), and was subsequently extended [26] to support MMSE esti-

mation under white-Gaussian-noise-corrupted observations and generic signal priors

of the form p(x) =
∏
p(xn) through an approximation of the sum-product algorithm.

In both cases, the associated factor graph looks identical to that of the (within)

segment of Fig. 2.2. Conventional wisdom holds that loopy belief propagation only

works well when the factor graph is locally tree-like. For general, non-sparse A matri-

ces, the (within) graph will clearly not possess this property, due to the many short

cycles between the x
(t)
n and g

(t)
m nodes. Reasoning differently, Donoho et al. showed

that the density of connections could prove beneficial, if properly exploited.

In particular, central limit theorem arguments suggest that the messages propa-

gated from the gm nodes to the xn nodes under the sum-product algorithm can be

well-approximated as Gaussian when the problem dimensionality is sufficiently high.

Moreover, the computation of these Gaussian-approximated messages only requires

knowledge of the mean and variance of the sum-product messages from the xn to

the gm nodes. Finally, when |Amn|2 scales as O(1/M) for all (m,n), the differences

between the variances of the messages emitted by the xn nodes vanish as M grows
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large, as do those of the gm nodes when N grows large, allowing each to be approx-

imated by a single, common variance. Together, these sum-product approximations

yield an iterative thresholding algorithm with a particular first-order correction term

that ensures both Gaussianity and independence in the residual error vector over the

iterations. The complexity of this iterative thresholding algorithm is dominated by a

single multiplication by A and AH per iteration, implying a per-iteration computa-

tional cost of O(MN) flops. Furthermore, the state-evolution equation that governs

the transient behavior of AMP shows that the number of required iterations does not

scale with either M or N , implying that the total complexity is itself O(MN) flops.

For the interested reader, in Appendix A, we provide additional background material

on the AMP algorithm.

AMP’s suitability for the MMV problem stems from several considerations. First,

AMP’s probabilistic construction, coupled with its message passing implementation,

makes it well-suited for incorporation as a subroutine within a larger message pass-

ing algorithm. In the MMV problem it is clear that p(x̄) 6= ∏
p(x

(t)
n ) due to the

joint sparsity and amplitude correlation structure, and therefore AMP does not ap-

pear to be directly applicable. Fortunately, by modeling this structure through the

hidden variables s and θ̄, we can exploit the conditional independence of the signal

coefficients: p(x̄|s, θ̄) =
∏
p(x

(t)
n |sn, θ(t)

n ).

By viewing ν
f
(t)
n →x

(t)
n

(·) as a “local prior”4 for x
(t)
n , we can readily apply an off-

the-shelf AMP algorithm (e.g., [26,27]) as a means of performing the message passes

within the portions of the factor graph enclosed within the frames of Fig. 2.1. The use

of AMP with decoupled local priors within a larger message passing algorithm that

4The AMP algorithm is conventionally run with static, i.i.d. priors for each signal coefficient. When
utilized as a sub-component of a larger message passing algorithm on an expanded factor graph,
the signal priors (from AMP’s perspective) will be changing in response to messages from the rest
of the factor graph. We refer to these changing AMP priors as local priors.
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accounts for statistical dependencies between signal coefficients was first proposed

in [53], and further studied in [15, 16, 32, 60, 61]. Here, we exploit this powerful

“turbo” inference approach to account for the strong temporal dependencies inherent

in the MMV problem.

The local prior on x
(t)
n given the current belief about the hidden variables sn and

θ
(t)
n assumes the Bernoulli-Gaussian form

ν
f
(t)
n →x

(t)
n

(x(t)
n ) = (1− ↼

π(t)
n )δ(x(t)

n ) +
↼
π(t)
n CN (x(t)

n ;
↼

ξ(t)
n ,

↼

ψ(t)
n ). (2.10)

This local prior determines the AMP soft-thresholding functions defined in (D5) -

(D8) of Table 2.2. The derivation of these thresholding functions closely follows those

outlined in [53], which considered the special case of a zero-mean Bernoulli-Gaussian

prior.

Beyond the ease with which AMP is included into the larger message passing

algorithm, a second factor that favors using AMP is the tremendous computational

efficiency it imparts on high-dimensional problems. Using AMP to perform the most

computationally intensive message passes enables AMP-MMV to attain a linear com-

plexity scaling in all problem dimensions. To see why this is the case, note that the

(into), (out), and (across) steps can be executed in O(N) flops/timestep, while

AMP allows the (within) step to be executed in O(MN) flops/timestep (see (A17)

- (A21) of Table 2.2). Since these four steps are executed O(T ) times per AMP-

MMV iteration for both the serial and parallel message schedules, it follows that

AMP-MMV’s overall complexity is O(TMN).5

A third appealing feature of AMP is that it is theoretically well-grounded; a recent

5The primary computational burden of executing AMP-MMV involves performing matrix-vector
products with A and AH, allowing it to be easily applied in problems where the measurement
matrix is never stored explicitly, but rather is implemented implicitly through subroutines. Fast
implicit A operators can provide significant computational savings in high-dimensional problems;
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end

Table 2.2: Message update equations for executing a single forward pass using the serial message
schedule.

analysis [29] shows that, for Gaussian A in the large-system limit (i.e., M , N → ∞

with M/N fixed), the behavior of AMP is governed by a state evolution whose fixed

points, when unique, correspond to MMSE-optimal signal estimates.

implementing a Fourier transform as a fast Fourier transform (FFT) subroutine, for example,
would drop AMP-MMV’s complexity from O(TMN) to O(TN log2N).
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After employing AMP to manage the message passing between the
{
x

(t)
n

}N
n=1

and
{
g

(t)
m

}M
m=1

nodes in step (within), messages must be propagated out of the dashed

AMP box of frame t (step (out)) and either forward or backward in time (step

(across)). While step (across) simply requires a straightforward application of

the sum-product message computation rules, step (out) imposes several difficulties

which we must address. For the remainder of this discussion, we focus on a novel

approximation scheme for specifying the message ν
f
(t)
n →θ

(t)
n

(·). Our objective is to

arrive at a message approximation that introduces negligible error while still leading

to a computationally efficient algorithm. A Gaussian message approximation is a

natural choice, given the marginally Gaussian distribution of θ
(t)
n . As we shall soon

see, it is also a highly justifiable choice.

A routine application of the sum-product rules to the f
(t)
n -to-θ

(t)
n message would

produce the following expression:

νexact

f
(t)
n →θ

(t)
n

(θ(t)
n ) , (1− ↼

π(t)
n )CN (0;φint, c

i
t) +

↼
π(t)
n CN (θ(t)

n ;φint, c
i
t). (2.11)

Unfortunately, the term CN (0;φint, c
i
t) prevents us from normalizing νexact

f
(t)
n →θ

(t)
n

(θ
(t)
n ),

because it is constant with respect to θ
(t)
n . Therefore, the distribution on θ

(t)
n rep-

resented by (C.32) is improper. To provide intuition into why this is the case, it is

helpful to think of ν
f
(t)
n →θ

(t)
n

(θ
(t)
n ) as a message that conveys information about the

value of θ
(t)
n based on the values of x

(t)
n and s

(t)
n . If s

(t)
n = 0, then by (3.2), x

(t)
n = 0,

thus making θ
(t)
n unobservable. The constant term in (C.32) reflects the uncertainty

due to this unobservability through an infinitely broad, uninformative distribution

for θ
(t)
n .

To avoid an improper pdf, we modify how this message is derived by regarding

our assumed signal model, in which s
(t)
n ∈ {0, 1}, as a limiting case of the model with
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s
(t)
n ∈ {ε, 1} as ε → 0. For any fixed positive ε, the resulting message ν

f
(t)
n →θ

(t)
n

(·) is

proper, given by

νmod

f
(t)
n →θ

(t)
n

(θ(t)
n ) = (1− Ω(

↼
π(t)
n )) CN (θ(t)

n ; 1
ε
φint,

1
ε2
cit) + Ω(

↼
π(t)
n ) CN (θ(t)

n ;φint, c
i
t), (2.12)

where

Ω(π) ,
ε2π

(1− π) + ε2π
. (2.13)

The pdf in (2.12) is that of a binary Gaussian mixture. If we consider ε≪ 1, the first

mixture component is extremely broad, while the second is more “informative,” with

mean φin and variance cin. The relative weight assigned to each component Gaussian

is determined by the term Ω(
↼
π

(t)
n ). Notice that the limit of this weighting term is the

simple indicator function

lim
ε→0

Ω(π) =






0 if 0 ≤ π < 1,

1 if π = 1.

(2.14)

Since we cannot set ε = 0, we instead fix a small positive value, e.g., ε = 10−7. In

this case, (2.12) could then be used as the outgoing message. However, this presents

a further difficulty: propagating a binary Gaussian mixture forward in time would

lead to an exponential growth in the number of mixture components at subsequent

timesteps. This difficulty is a familiar one in the context of switched linear dynamical

systems based on conditional Gaussian models, since such models are not closed un-

der marginalization [62]. To avoid the exponential growth in the number of mixture

components, we collapse our binary Gaussian mixture to a single Gaussian compo-

nent, an approach sometimes referred to as a Gaussian sum approximation [63, 64].

This can be justified by the fact that, for ε≪ 1, Ω(·) behaves nearly like the indicator
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function (
⇀

ξ,
⇀

ψ) = taylor approx(
↼
π, φ, c)

% Define useful variables:

a , ε2(1 − Ω(
↼
π)) (T1)

ā , Ω(
↼
π) (T2)

b , ε2

c
|(1 − 1

ε
)φ|2 (T3)

dr , − 2ε2

c
(1 − 1

ε
)Re{φ} (T4)

di , − 2ε2

c
(1 − 1

ε
)Im{φ} (T5)

% Compute outputs:
⇀

ψ = (a2e−b+aā+ā
2eb)c

ε2a2e−b+aā(ε2+1−
1
2
cd2

r
)+ā2eb

(T6)

⇀

ξr = φr − 1
2

⇀

ψ−ae−b
dr

ae−b+ā
(T7)

⇀

ξi = φi − 1
2

⇀

ψ−ae−b
di

ae−b+ā
(T8)

⇀

ξ =
⇀

ξr + j
⇀

ξi (T9)

return (
⇀

ξ,
⇀

ψ)

Table 2.3: Pseudocode function for computing a single-Gaussian approximation of (2.12).

function in (C.35), in which case one of the two Gaussian components will typically

have negligible mass.

To carry out the collapsing, we perform a second-order Taylor series approximation

of − log νmod

f
(t)
n →θ

(t)
n

(θ
(t)
n ) with respect to θ

(t)
n about the point φnt.

6 This provides the

mean,
⇀

ξ
(t)

n , and variance,
⇀

ψ
(t)

n , of the single Gaussian that serves as ν
f
(t)
n →θ

(t)
n

(·). (See

Fig. 2.2.) In Appendix B we summarize the Taylor approximation procedure, and in

Table 2.3 provide the pseudocode function, taylor approx, for computing
⇀

ξ
(t)

n and
⇀

ψ
(t)

n .

With the exception of the messages discussed above, all the remaining messages

can be derived using the standard sum-product algorithm rules [55]. For convenience,

we summarize the results in Table 2.2, where we provide a pseudocode implementation

of a single forward pass of AMP-MMV using the serial message schedule.

6For technical reasons, the Taylor series approximation is performed in R2 instead of C.
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2.5 Estimating the Model Parameters

The signal model of Section 2.2 depends on the sparsity parameters {λn}Nn=1, ampli-

tude parameters ζ , α, and ρ, and noise variance σ2
e . While some of these parameters

may be known accurately from prior information, it is likely that many will require

tuning. To this end, we develop an expectation-maximization (EM) algorithm that

couples with the message passing procedure described in Section 2.4.1 to provide a

means of learning all of the model parameters while simultaneously estimating the

signal x̄ and its support s.

The EM algorithm [65] is an appealing choice for performing parameter estimation

for two primary reasons. First and foremost, the EM algorithm is a well-studied

and principled means of parameter estimation. At every EM iteration, the data

likelihood function is guaranteed to increase until convergence to a local maximum

of the likelihood function occurs [65]. For multimodal likelihood functions, local

maxima will, in general, not coincide with the global maximum likelihood (ML)

estimator, however a judicious initialization can help in ensuring the EM algorithm

reaches the global maximum [66]. Second, the expectation step of the EM algorithm

relies on quantities that have already been computed in the process of executing

AMP-MMV. Ordinarily, this step constitutes the major computational burden of any

EM algorithm, thus the fact that we can perform it essentially for free makes our EM

procedure highly efficient.

We let Γ , {λ, ζ, α, ρ, σ2
e} denote the set of all model parameters, and let Γk

denote the set of parameter estimates at the kth EM iteration. Here we have assumed

that the binary support indicator variables share a common activity probability, λ,

i.e., Pr{sn = 1} = λ ∀n. The objective of the EM procedure is to find parameter

estimates that maximize the data likelihood p(ȳ|Γ). Since it is often computationally

intractable to perform this maximization, the EM algorithm incorporates additional
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“hidden” data and iterates between two steps: (i) evaluating the conditional expec-

tation of the log likelihood of the hidden data given the observed data, ȳ, and the

current estimates of the parameters, Γk, and (ii) maximizing this expected log like-

lihood with respect to the model parameters. For all parameters except σ2
e we use s

and θ̄ as the hidden data, while for σ2
e we use x̄.

For the first iteration of AMP-MMV, the model parameters are initialized based

on either prior signal knowledge, or according to some heuristic criteria. Using these

parameter values, AMP-MMV performs either a single iteration of the parallel mes-

sage schedule, or a single forward/backward pass of the serial message schedule, as

described in Section 2.4.1. Upon completing this first iteration, approximate marginal

posterior distributions are available for each of the underlying random variables, e.g.,

p(x
(t)
n |ȳ), p(sn|ȳ), and p(θ

(t)
n |ȳ). Additionally, belief propagation can provide pairwise

joint posterior distributions, e.g., p(θ
(t)
n , θ

(t−1)
n |ȳ), for any variable nodes connected by

a common factor node [67]. With these marginal, and pairwise joint, posterior dis-

tributions, it is possible to perform the iterative expectation and maximization steps

required to maximize p(ȳ|Γ) in closed-form. We adopt a Gauss-Seidel scheme, per-

forming coordinate-wise maximization, e.g.,

λk+1 = argmax
λ

Es,θ̄|ȳ

[
log p(ȳ, s, θ̄;λ,Γk\{λk})

∣∣∣ȳ,Γk
]
,

where k is the iteration index common to both AMP-MMV and the EM algorithm.

In Table 3.3 we provide the EM parameter update equations for our signal model.

In practice, we found that the robustness and convergence behavior of our EM pro-

cedure were improved if we were selective about which parameters we updated on

a given iteration. For example, the parameters α and ρ are tightly coupled to one

another, since var{θ(t)
n |θ(t−1)

n } = α2ρ. Consequently, if the initial choices of α and ρ
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% Define key quantities obtained from AMP-MMV at iteration k:

E[sn|ȳ] =
λn

Q

T

t=1
⇀
π
(t)
n

λn

Q

T
t=1

⇀
π
(t)
n

+(1−λn)
Q

T
t=1(1−

⇀
π
(t)
n

)
(Q1)

ṽ
(t)
n , var{θ(t)n |ȳ} =

„

1
⇀
κ
(t)
n

+ 1
⇀

ψ
(t)
n

+ 1
↼
κ
(t)
n

«−1

(Q2)

µ̃
(t)
n , E[θ

(t)
n |ȳ] = ṽ

(t)
n ·

„

⇀
η
(t)
n

⇀
κ
(t)
n

+
⇀

ξ
(t)
n

⇀

ψ
(t)
n

+
↼
η
(t)
n

↼
κ
(t)
n

«

(Q3)

v
(t)
n , var

˘

x
(t)
n

˛

˛ȳ
¯

% See (A19) of Table 2.2

µ
(t)
n , E

ˆ

x
(t)
n

˛

˛ȳ
˜

% See (A18) of Table 2.2

% EM update equations:

λk+1 = 1
N

PN
n=1 E[sn|ȳ] (E1)

ζk+1 =
“

N(T−1)

ρk
+ N

(σ2)k

”−1 “

1
(σ2)k

PN
n=1 µ̃

(1)
n

+
PT
t=2

PN
n=1

1
αkρk

`

µ̃
(t)
n − (1 − αk)µ̃

(t−1)
n

´

”

(E2)

αk+1 = 1
4N(T−1)

“

b−
p

b2 + 8N(T − 1)c
”

(E3)

where:

b , 2
ρk

PT
t=2

PN
n=1 Re

˘

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

¯

−Re{(µ̃(t)
n − µ̃

(t−1)
n )∗ζk} − ṽ

(t−1)
n − |µ̃(t−1)

n |2
c , 2

ρk

PT
t=2

PN
n=1 ṽ

(t)
n + |µ̃(t)

n |2 + ṽ
(t−1)
n + |µ̃(t−1)

n |2

−2Re
˘

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

¯

ρk+1 = 1
(αk)2N(T−1)

PT
t=2

PN
n=1 ṽ

(t)
n + |µ̃(t)

n |2

+(αk)2|ζk|2 − 2(1 − αk)Re
˘

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

¯

−2αkRe
˘

µ̃
(t)∗
n ζk

¯

+ 2αk(1 − αk)Re
˘

µ̃
(t−1)∗
n ζk

¯

+(1 − αk)(ṽ
(t−1)
n + |µ̃(t−1)

n |2) (E4)

σ2 k+1
e = 1

TM

“

PT
t=1 ‖y(t) − Aµ(t)‖2 + 1T

N
v(t)

”

(E5)

Table 2.4: EM algorithm update equations for the signal model parameters of Section 2.2.

are too small, it is possible that the EM procedure will overcompensate on the first

iteration by producing revised estimates of both parameters that are too large. This

leads to an oscillatory behavior in the EM updates that can be effectively combated

by avoiding updating both α and ρ on the same iteration.
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2.6 Numerical Study

In this section we describe the results of an extensive numerical study that was con-

ducted to explore the performance characteristics and tradeoffs of AMP-MMV. MAT-

LAB code7 was written to implement both the parallel and serial message schedules

of Section 2.4.1, along with the EM parameter estimation procedure of Section 2.5.

For comparison to AMP-MMV, we tested two other Bayesian algorithms for the

MMV problem, MSBL [13] and T-MSBL8 [14], which have been shown to offer

“best in class” performance on the MMV problem. We also included a recently pro-

posed greedy algorithm designed specifically for highly correlated signals, subspace-

augmented MUSIC9 (SA-MUSIC), which has been shown to outperform MMV basis

pursuit and several correlation-agnostic greedy methods [43]. Finally, we implemented

the support-aware Kalman smoother (SKS), which, as noted in Section 2.3, provides

a lower bound on the achievable MSE of any algorithm. To implement the SKS, we

took advantage of the fact that ȳ, x̄, and θ̄ are jointly Gaussian when conditioned on

the support, s, and thus Fig. 2.1 becomes a Gaussian graphical model. Consequently,

the sum-product algorithm yields closed-form expressions (i.e., no approximations are

required) for each of the messages traversing the graph. Therefore, it is possible to

obtain the desired posterior means (i.e., MMSE estimates of x̄) despite the fact that

the graph is loopy [68, Claim 5].

In all of our experiments, performance was analyzed on synthetically generated

datasets, and averaged over 250 independent trials. Since MSBL and T-MSBL were

derived for real-valued signals, we used a real-valued equivalent of the signal model

7Code available at ece.osu.edu/~schniter/turboAMPmmv.

8Code available at dsp.ucsd.edu/~zhilin/Software.html.

9Code obtained through personal correspondence with authors.
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described in Section 2.2, and ran a real-valued version of AMP-MMV. Our data

generation procedure closely mirrors the one used to characterize T-MSBL in [14].

Unless otherwise stated, the measurement matrices were i.i.d. Gaussian random

matrices with unit-norm columns, T = 4 measurement vectors were generated, the

stationary variance of the amplitude process was set at σ2 ,
αρ

2−α = 1, and the noise

variance σ2
e was set to yield an SNR of 25 dB.

Three performance metrics were considered throughout our tests. The first metric,

which we refer to as the time-averaged normalized MSE (TNMSE), is defined as

TNMSE(x̄, ˆ̄x) ,
1

T

T∑

t=1

‖x(t) − x̂(t)‖22
‖x(t)‖22

,

where x̂(t) is an estimate of x(t). The second metric, intended to gauge the accuracy of

the recovered support, is the normalized support error rate (NSER), which is defined

as the number of indices in which the true and estimated support differ, normalized

by the cardinality of the true support S. The third and final metric is runtime, which

is an important metric given the prevalence of high-dimensional datasets.

The algorithms were configured and executed as follows: to obtain support es-

timates for MSBL, T-MSBL, and AMP-MMV, we adopted the technique utilized

in [14] of identifying the K amplitude trajectories with the largest ℓ2 norms as the

support set, where K , |S|. Note that this is an optimistic means of identifying the

support, as it assumes that an oracle provides the true value of K. For this reason, we

implemented an additional non-oracle-aided support estimate for AMP-MMV that

consisted of those indices n for which p̂(sn|ȳ) > 1
2
. In all simulations, AMP-MMV

was given imperfect knowledge of the signal model parameters, and refined the ini-

tial parameter choices according to the EM update procedure given in Table 3.3. In
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particular, the noise variance was initialized at σ2
e = 1 × 10−3. The remaining pa-

rameters were initialized agnostically using simple heuristics that made use of sample

statistics derived from the available measurements, ȳ. Equation (A22) of Table 2.2

was used to produce x̂(t), which corresponds to an MMSE estimate of x(t) under

AMP-MMV’s estimated posteriors p̂(x
(t)
n |ȳ). In the course of running simulations, we

monitored the residual energy,
∑T

t=1 ‖y(t)−Ax̂(t)‖22, and would automatically switch

the schedule, e.g., from parallel to serial, and/or change the maximum number of

iterations whenever the residual energy exceeded a noise variance-dependent thresh-

old. The SKS was given perfect parameter and support knowledge and was run until

convergence. Both MSBL and T-MSBL were tuned in a manner recommended by

the codes’ authors. SA-MUSIC was given the true value of K, and upon generating

an estimate of the support, Ŝ, a conditional MMSE signal estimate was produced,

e.g., x̂(t) = E[x(t)|Ŝ,y(t)].

2.6.1 Performance Versus Sparsity, M/K

As a first experiment, we studied how performance changes as a function of the

measurements-to-active-coefficients ratio, M/K. For this experiment, N = 5000,

M = 1563, and T = 4. The activity probability, λ, was swept over the range

[0.096, 0.22], implying that the ratio of measurements-to-active-coefficients, M/K,

ranged from 1.42 to 3.26.

In Fig. 2.3, we plot the performance when the temporal correlation of the ampli-

tudes is 1 − α = 0.90. For AMP-MMV, two traces appear on the NSER plot, with

the © marker corresponding to the K-largest-trajectory-norm method of support es-

timation, and the △ marker corresponding to the support estimate obtained from

the posteriors p̂(sn|ȳ). We see that, when M/K ≥ 2, the TNMSE performance of

both AMP-MMV and T-MSBL is almost identical to that of the oracle-aided SKS.
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Figure 2.3: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL, SA-MUSIC,
AMP-MMV, and the SKS versus M/K. Correlation coefficient 1− α = 0.90.

However, when M/K < 2, every algorithm’s support estimation performance (NSER)

degrades, and the TNMSE consequently grows. Indeed, when M/K < 1.50, all of the

algorithms perform poorly compared to the SKS, although T-MSBL performs the best

of the four. We also note the superior NSER performance of AMP-MMV over much

of the range, even when using p(sn|ȳ) to estimate S (and thus not requiring apriori

knowledge of K). From the runtime plot we see the tremendous efficiency of AMP-

MMV. Over the region in which AMP-MMV is performing well (and thus not cycling

through multiple configurations in vain), we see that AMP-MMV’s runtime is more

than one order-of-magnitude faster than SA-MUSIC, and two orders-of-magnitude

faster than either T-MSBL or MSBL.

In Fig. 2.4 we repeat the same experiment, but with increased amplitude corre-

lation 1 − α = 0.99. In this case we see that AMP-MMV and T-MSBL still offer a

TNMSE performance that is comparable to the SKS when M/K ≥ 2.50, whereas the

performance of both MSBL and SA-MUSIC has degraded across-the-board. When

M/K < 2.5, the NSER and TNMSE performance of AMP-MMV and T-MSBL decay

40



1.5 2 2.5 3

10
−1

10
0

α = 0.01  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

N
or

m
al

iz
ed

 S
up

po
rt

 E
rr

or
 R

at
e 

(N
S

E
R

)

 

 

T−MSBL
MSBL
SA−MUSIC
AMP−MMV
AMP−MMV [p(s

n
| y)]

1.5 2 2.5 3

−25

−20

−15

−10

−5

0

α = 0.01  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

T
im

es
te

p−
A

ve
ra

ge
d 

N
or

m
al

iz
ed

 M
S

E
 (

T
N

M
S

E
) 

[d
B

]

 

 
T−MSBL
MSBL
SA−MUSIC
AMP−MMV
SKS

1.5 2 2.5 3

10
1

10
2

10
3

10
4

α = 0.01  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

R
un

tim
e 

[s
]

 

 
T−MSBL
MSBL
SA−MUSIC
AMP−MMV

Figure 2.4: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL, SA-MUSIC,
AMP-MMV, and the SKS versus M/K. Correlation coefficient 1− α = 0.99.

sharply, and all the methods considered perform poorly compared to the SKS. Our

finding that performance is adversely affected by increased temporal correlation is

consistent with the theoretical and empirical findings of [13,14,35,43]. Interestingly,

the performance of the SKS shows a modest improvement compared to Fig. 2.3, re-

flecting the fact that the slower temporal variations of the amplitudes are easier to

track when the support is known.

2.6.2 Performance Versus T

In a second experiment, we studied how performance is affected by the number of

measurement vectors, T , used in the reconstruction. For this experiment, we used

N = 5000, M = N/5, and λ = 0.10 (M/K = 2). Figure 2.5 shows the performance

with a correlation of 1 − α = 0.90. Comparing to Fig. 2.3, we see that MSBL’s

performance is strongly impacted by the reduced value of M . AMP-MMV and T-

MSBL perform more-or-less equivalently across the range of T , although AMP-MMV

does so with an order-of-magnitude reduction in complexity. It is interesting to
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Figure 2.5: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL, SA-MUSIC,
AMP-MMV, and the SKS versus T . Correlation coefficient 1 - α = 0.90.

observe that, in this problem regime, the SKS TNMSE bound is insensitive to the

number of measurement vectors acquired.

2.6.3 Performance Versus SNR

To understand how AMP-MMV performs in low SNR environments, we conducted a

test in which SNR was swept from 5 dB to 25 dB.10 The problem dimensions were

fixed at N = 5000, M = N/5, and T = 4. The sparsity rate, λ, was chosen to

yield M/K = 3 measurements-per-active-coefficient, and the correlation was set at

1− α = 0.95.

Our findings are presented in Fig. 2.6. Both T-MSBL and MSBL operate within 5

- 10 dB of the SKS in TNMSE across the range of SNRs, while AMP-MMV operates

≈ 5 dB from the SKS when the SNR is at or below 10 dB, and approaches the SKS

10In lower SNR regimes, learning rules for the noise variance are known to become less reliable
[13, 14]. Still, for high-dimensional problems, a sub-optimal learning rule may be preferable to
a computationally costly cross-validation procedure. For this reason, we ran all three Bayesian
algorithms with a learning rule for the noise variance enabled.
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Figure 2.6: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL, SA-MUSIC,
AMP-MMV, and the SKS versus SNR. Correlation coefficient 1− α = 0.95.

in performance as the SNR elevates. We also note that using AMP-MMV’s posteri-

ors on sn to estimate the support does not appear to perform much worse than the

K-largest-trajectory-norm method for high SNRs, and shows a slight advantage at

low SNRs. The increase in runtime exhibited by AMP-MMV in this experiment is a

consequence of our decision to configure AMP-MMV identically for all experiments;

our initialization of the noise variance, σ2
e , was more than an order-of-magnitude off

over the majority of the SNR range, and thus AMP-MMV cycled through many dif-

ferent schedules in an effort to obtain an (unrealistic) residual energy. Runtime could

be drastically improved in this experiment by using a more appropriate initialization

of σ2
e .

2.6.4 Performance Versus Undersampling Rate, N/M

As mentioned in Section 2.1, one of the principal aims of CS is to reduce the number

of measurements that must be acquired while still obtaining a good solution. In the

MMV problem, dramatic reductions in the sampling rate are possible. To illustrate

this, in Fig. 2.7 we present the results of an experiment in which the undersampling
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Figure 2.7: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL, SA-MUSIC,
AMP-MMV, and the SKS versus undersampling rate, N/M . Correlation coefficient
1− α = 0.75.

factor, N/M , was varied from 5 to 25 unknowns-per-measurement. Specifically, N

was fixed at 5000, while M was varied. λ was likewise adjusted in order to keep M/K

fixed at 3 measurements-per-active-coefficient. In Fig. 2.7, we see that MSBL quickly

departs from the SKS performance bound, whereas AMP-MMV, T-MSBL, and SA-

MUSIC are able to remain close to the bound when N/M ≤ 20. At N/M = 25,

both AMP-MMV and SA-MUSIC have diverged from the bound, and, while still

offering an impressive TNMSE, they are outperformed by T-MSBL. In conducting

this test, we observed that AMP-MMV’s performance is strongly tied to the number of

smoothing iterations performed. Whereas for other tests, 5 smoothing iterations were

often sufficient, in scenarios with a high degree of undersampling, (e.g., N/M ≥ 15),

50 − 100 smoothing iterations were often required to obtain good signal estimates.

This suggests that messages must be exchanged between neighboring timesteps over

many iterations in order to arrive at consensus in severely underdetermined problems.
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2.6.5 Performance Versus Signal Dimension, N

As we have indicated throughout this paper, a key consideration of our method

was ensuring that it would be suitable for high-dimensional problems. Our com-

plexity analysis indicated that a single iteration of AMP-MMV could be completed

in O(TNM) flops. This linear scaling of the complexity with respect to problem

dimensions gives encouragement that our algorithm should efficiently handle large

problems, but if the number of iterations required to obtain a solution grows too

rapidly with problem size, our technique would be of limited practical utility. To

ensure that this was not the case, we performed an experiment in which the signal

dimension, N , was swept logarithmically over the range [100, 10000]. M was scaled

proportionally such that N/M = 3. The sparsity rate was fixed at λ = 0.15 so that

M/K ≈ 2, and the correlation was set at 1− α = 0.95.

The results of this experiment are provided in Fig. 2.8. Several features of these

plots are of interest. First, we observe that the performance of every algorithm

improves noticeably as problem dimensions grow from N = 100 to N = 1000, with

AMP-MMV and T-MSBL converging in TNMSE performance to the SKS bound. The

second observation that we point out is that AMP-MMV works extremely quickly.

Indeed, a problem with NT = 40000 unknowns can be solved accurately in just under

30 seconds. Finally, we note that at small problem dimensions, AMP-MMV is not

as quick as either MSBL or SA-MUSIC, however AMP-MMV scales with increas-

ing problem dimensions more favorably than the other methods; at N = 10000 we

note that AMP-MMV runs at least two orders-of-magnitude faster than the other

techniques.
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Figure 2.8: A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL, SA-MUSIC,
AMP-MMV, and the SKS versus signal dimension, N . Correlation coefficient 1 − α =
0.95.

2.6.6 Performance With Time-Varying Measurement Matrices

In all of the previous experiments, we considered the standard MMV problem (2.1),

in which all of the measurement vectors were acquired using a single, common mea-

surement matrix. While this setup is appropriate for many tasks, there are a number

of practical applications in which a joint-sparse signal is measured through distinct

measurement matrices.

To better understand what, if any, gains can be obtained from diversity in the

measurement matrices, we designed an experiment that explored how performance is

affected by the rate-of-change of the measurement matrix over time. For simplicity,

we considered a first-order Gauss-Markov random process to describe how a given

measurement matrix changed over time. Specifically, we started with a matrix whose

columns were drawn i.i.d. Gaussian as in previous experiments, which was then

used as the measurement matrix to collect the measurements at timestep t = 1. At
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subsequent timesteps, the matrix evolved according to

A(t) = (1− β)A(t−1) + βU (t), (2.15)

where U (t) was a matrix whose elements were drawn i.i.d. Gaussian, with a variance

chosen such that the column norm of A(t) would (in expectation) equal one.

In the test, β was swept over a range, providing a quantitative measure of the rate-

of-change of the measurement matrix over time. Clearly, β = 0 would correspond to

the standard MMV problem, while β = 1 would represent a collection of statistically

independent measurement matrices.

In Fig. 2.9 we show the performance when N = 5000, N/M = 30, M/K = 2, and

the correlation is 1−α = 0.99. For the standard MMV problem, this configuration is

effectively impossible. Indeed, for β < 0.03, we see that AMP-MMV is entirely failing

at recovering the signal. However, once β ≈ 0.08, we see that the NSER has dropped

dramatically, as has the TNMSE. Once β ≥ 0.10, AMP-MMV is performing almost

to the level of the noise. As this experiment should hopefully convince the reader,

even modest amounts of diversity in the measurement process can enable accurate

reconstruction in operating environments that are otherwise impossible.

2.7 Conclusion

In this chapter we introduced AMP-MMV, a Bayesian message passing algorithm for

solving the MMV problem (2.1) when temporal correlation is present in the ampli-

tudes of the non-zero signal coefficients. Our algorithm, which leverages Donoho,

Maleki, and Montanari’s AMP framework [25], performs rapid inference on high-

dimensional MMV datasets. In order to establish a reference point for the quality of

solutions obtained by AMP-MMV, we described and implemented the oracle-aided
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Figure 2.9: A plot of the TNMSE (in dB), NSER, and runtime of AMP-MMV and the SKS versus
rate-of-change of the measurement matrix, β. Correlation coefficient 1− α = 0.99.

support-aware Kalman smoother (SKS). In numerical experiments, we found a range

of problems over which AMP-MMV performed nearly as well as the SKS, despite

the fact that AMP-MMV was given crude hyperparameter initializations that were

refined from the data using an expectation-maximization algorithm. In comparing

against two alternative Bayesian techniques, and one greedy technique, we found that

AMP-MMV offers an unrivaled performance-complexity tradeoff, particular in high-

dimensional settings. We also demonstrated that substantial gains can be obtained

in the MMV problem by incorporating diversity into the measurement process. Such

diversity is particularly important in settings where the temporal correlation between

coefficient amplitudes is substantial.
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CHAPTER 3

THE DYNAMIC COMPRESSIVE SENSING PROBLEM

“On the contrary, Watson, you can see everything. You fail, however, to

reason from what you see. You are too timid in drawing your

inferences.”

- Sherlock Holmes

In Chapter 2, we studied the MMV CS problem of recovering a temporally cor-

related, sparse time series that possessed a common support. In this chapter,1 we

consider a generalization of the MMV CS problem known as the dynamic compres-

sive sensing (dynamic CS) problem, in which the sparse time series has a slowly

time-varying, rather than time-invariant, support. Such a problem finds application

in, e.g., dynamic MRI [45], high-speed video capture [69], and underwater channel

estimation [9].

3.1 Introduction

Framed mathematically, the objective of the dynamic CS problem is to recover the

time series {x(1), . . . ,x(T )}, where x(t) ∈ CN is the signal at timestep t, from a time

1Work presented in this chapter is largely excerpted from a manuscript co-authored with Philip
Schniter, entitled “Dynamic Compressive Sensing of Time-Varying Signals via Approximate Mes-
sage Passing.” [37]
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series of measurements, {y(1), . . . ,y(T )}. Each y(t) ∈ C
M is obtained from the linear

measurement process,

y(t) = A(t)x(t) + e(t), t = 1, . . . , T, (3.1)

with e(t) representing corrupting noise. The measurement matrix A(t) (which may

be time-varying or time-invariant, i.e., A(t) = A ∀ t) is known in advance, and is

generally wide, leading to an underdetermined system of equations. The problem is

regularized by assuming that x(t) is sparse (or compressible),2 having relatively few

non-zero (or large) entries.

In many real-world scenarios, the underlying time-varying sparse signal exhibits

substantial temporal correlation. This temporal correlation may manifest itself in

two interrelated ways: (i) the support of the signal may change slowly over time

[45,46,69–72], and (ii) the amplitudes of the large coefficients may vary smoothly in

time.

In such scenarios, incorporating an appropriate model of temporal structure into

a recovery technique makes it possible to drastically outperform structure-agnostic

CS algorithms. From an analytical standpoint, Vaswani and Lu demonstrate that the

restricted isometry property (RIP) sufficient conditions for perfect recovery in the dy-

namic CS problem are significantly weaker than those found in the traditional single

measurement vector (SMV) CS problem when accounting for the additional struc-

ture [48]. In this chapter, we take a Bayesian approach to modeling this structure,

which contrasts those dynamic CS algorithms inspired by convex relaxation, such as

2Without loss of generality, we assume x(t) is sparse/compressible in the canonical basis. Other

sparsifying bases can be incorporated into the measurement matrix A(t) without changing our
model.
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the Dynamic LASSO [46] and the Modified-CS algorithm [48]. Our Bayesian frame-

work is also distinct from those hybrid techniques that blend elements of Bayesian

dynamical models like the Kalman filter with more traditional CS approaches of

exploiting sparsity through convex relaxation [45, 47] or greedy methods [73].

In particular, we propose a probabilistic model that treats the time-varying signal

support as a set of independent binary Markov processes and the time-varying co-

efficient amplitudes as a set of independent Gauss-Markov processes. As detailed in

Section 3.2, this model leads to coefficient marginal distributions that are Bernoulli-

Gaussian (i.e., “spike-and-slab”). Later, in Section 3.5, we describe a generaliza-

tion of the aforementioned model that yields Bernoulli-Gaussian-mixture coefficient

marginals with an arbitrary number of mixture components. The models that we

propose thus differ substantially from those used in other Bayesian approaches to

dynamic CS, [20] and [18]. In particular, Sejdinović et al. [20] combine a linear

Gaussian dynamical system model with a sparsity-promoting Gaussian-scale-mixture

prior, while Shahrasbi et al. [18] employ a particular spike-and-slab Markov model

that couples amplitude evolution together with support evolution.

Our inference method also differs from those used in the alternative Bayesian

dynamic CS algorithms [20] and [18]. In [20], Sejdinović et al. perform inference

via a sequential Monte Carlo sampler [74]. Sequential Monte Carlo techniques are

appealing for their applicability to complicated non-linear, non-Gaussian inference

tasks like the Bayesian dynamic CS problem. Nevertheless, there are a number of im-

portant practical issues related to selection of the importance distribution, choice of

the resampling method, and the number of sample points to track, since in principle

one must increase the number of points exponentially over time to combat degen-

eracy [74]. Additionally, Monte Carlo techniques can be computationally expensive

in high-dimensional inference problems. An alternative inference procedure that has

51



recently proven successful in a number of applications is loopy belief propagation

(LBP) [28]. In [18], Shahrasbi et al. extend the conventional LBP method proposed

in [59] for standard CS under a sparse measurement matrix A to the case of dynamic

CS under sparse A(t). Nevertheless, the confinement to sparse measurement matri-

ces is very restrictive, and, without this restriction, the methods of [18, 59] become

computationally intractable.

Our inference procedure is based on the recently proposed framework of approxi-

mate message passing (AMP) [25], and in particular its “turbo” extension [53]. AMP,

an unconventional form of LBP, was originally proposed for standard CS with a dense

measurement matrix [25], and its noteworthy properties include: (i) a rigorous anal-

ysis (as M,N →∞ with M/N fixed, under i.i.d. sub-Gaussian A) establishing that

its solutions are governed by a state-evolution whose fixed points are optimal in sev-

eral respects [29], and (ii) extremely fast runtimes (as a consequence of the fact that

it needs relatively few iterations, each requiring only one multiplication by A and

its transpose). The turbo-AMP framework originally proposed in [53] offers a way

to extend AMP to structured-sparsity problems such as compressive imaging [16],

joint communication channel/symbol estimation [15], and—as we shall see in this

chapter—the dynamic CS problem.

Our work makes several contributions to the existing literature on dynamic CS.

First and foremost, the DCS-AMP algorithm that we develop offers an unrivaled

combination of speed (e.g., its computational complexity grows only linearly in the

problem dimensions M , N , and T ) and reconstruction accuracy, as we demonstrate on

both synthetic and real-world signals. Ours is the first work to exploit the speed and

accuracy of loopy belief propagation (and, in particular, AMP) in the dynamic CS set-

ting, accomplished by embedding AMP within a larger Bayesian inference algorithm.

Second, we propose an expectation-maximization [65] procedure to automatically
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learn the parameters of our statistical model, as described in Section 3.4, avoiding a

potentially complicated “tuning” problem. The ability to automatically calibrate al-

gorithm parameters is especially important when working with real-world data, but is

not provided by many of the existing dynamic CS algorithms (e.g., [20,45–48,73]). In

addition, our learned model parameters provide a convenient and interpretable char-

acterization of time-varying signals in a way that, e.g., Lagrange multipliers do not.

Third, DCS-AMP provides a unified means of performing both filtering, where esti-

mates are obtained sequentially using only past observations, and smoothing, where

each estimate enjoys the knowledge of past, current, and future observations. In con-

trast, the existing dynamic CS schemes can support either filtering, or smoothing,

but not both.

The notation used in the remainder of this chapter adheres to the convention

established in Section 2.1.1.

3.2 Signal Model

We assume that the measurement process can be accurately described by the linear

model of (3.1). We further assume that A(t) ∈ CM×N , t = 1, . . . , T, are measurement

matrices known in advance, whose columns have been scaled to be of unit norm.3 We

model the noise as a stationary, circularly symmetric, additive white Gaussian noise

(AWGN) process, with e(t) ∼ CN (0, σ2
eIM) ∀ t.

As noted in Section 3.1, the sparse time series, {x(t)}Tt=1, often exhibits a high

degree of correlation from one timestep to the next. In what follows, we model

this correlation through a slow time-variation of the signal support, and a smooth

evolution of the amplitudes of the non-zero coefficients. To do so, we introduce two

3Our algorithm can be generalized to support A(t) without equal-norm columns, a time-varying
number of measurements, M (t), and real-valued matrices/signals as well.
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hidden random processes, {s(t)}Tt=1 and {θ(t)}Tt=1. The binary vector s(t) ∈ {0, 1}N

describes the support of x(t), denoted S(t), while the vector θ(t) ∈ CN describes

the amplitudes of the active elements of x(t). Together, s(t) and θ(t) completely

characterize x(t) as follows:

x(t)
n = s(t)

n · θ(t)
n ∀n, t. (3.2)

Therefore, s
(t)
n = 0 sets x

(t)
n = 0 and n /∈ S(t), while s

(t)
n = 1 sets x

(t)
n = θ

(t)
n and

n ∈ S(t).

To model slow changes in the support S(t) over time, we model the nth coeffi-

cient’s support across time, {s(t)
n }Tt=1, as a Markov chain defined by two transition

probabilities: p10 ,Pr{s(t)
n =1|s(t−1)

n =0}, and p01 , Pr{s(t)
n = 0|s(t−1)

n = 1}, and em-

ploy independent chains across n = 1, . . . , N . We further assume that each Markov

chain operates in steady-state, such that Pr{s(t)
n = 1} = λ ∀n, t. This steady-state

assumption implies that these Markov chains are completely specified by the pa-

rameters λ and p01, which together determine the remaining transition probability

p10 = λp01/(1− λ). Depending on how p01 is chosen, the prior distribution can favor

signals that exhibit a nearly static support across time, or it can allow for signal

supports that change substantially from timestep to timestep. For example, it can be

shown that 1/p01 specifies the average run length of a sequence of ones in the Markov

chains.

The second form of temporal structure that we capture in our signal model is

the correlation in active coefficient amplitudes across time. We model this correla-

tion through independent stationary steady-state Gauss-Markov processes for each

n, wherein {θ(t)
n }Tt=1 evolves in time according to

θ(t)
n = (1− α)

(
θ(t−1)
n − ζ

)
+ αw(t)

n + ζ, (3.3)
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where ζ ∈ C is the mean of the process, w
(t)
n ∼ CN (0, ρ) is an i.i.d. circular white

Gaussian perturbation, and α ∈ [0, 1] controls the temporal correlation. At one

extreme, α = 0, the amplitudes are totally correlated, (i.e., θ
(t)
n = θ

(t−1)
n ), while at the

other extreme, α = 1, the amplitudes evolve according to an uncorrelated Gaussian

random process with mean ζ .

At this point, we would like to make a few remarks about our signal model. First,

due to (3.2), it is clear that p
(
x

(t)
n |s(t)

n , θ
(t)
n

)
= δ
(
x

(t)
n − s(t)

n θ
(t)
n

)
, where δ(·) is the Dirac

delta function. By marginalizing out s
(t)
n and θ

(t)
n , one finds that

p(x(t)
n ) = (1− λ)δ(x(t)

n ) + λ CN (x(t)
n ; ζ, σ2), (3.4)

where σ2 ,
αρ

2−α is the steady-state variance of θ
(t)
n . Equation (3.4) is a Bernoulli-

Gaussian or “spike-and-slab” distribution, which is an effective sparsity-promoting

prior due to the point-mass at x
(t)
n = 0. Second, we observe that the amplitude

random process, {θ(t)}Tt=1, evolves independently from the sparsity pattern random

process, {s(t)}Tt=1. As a result of this modeling choice, there can be significant hid-

den amplitudes θ
(t)
n associated with inactive coefficients (those for which s

(t)
n = 0).

Consequently, θ
(t)
n should be viewed as the amplitude of x

(t)
n conditioned on s

(t)
n = 1.

Lastly, we note that higher-order Markov processes and/or more complex coefficient

marginals could be considered within the framework we propose, however, to keep

development simple, we restrict our attention to first-order Markov processes and

Bernoulli-Gaussian marginals until Section 3.5, where we describe an extension of

the above signal model that yields Bernoulli-Gaussian-mixture marginals.
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3.3 The DCS-AMP Algorithm

In this section we will describe the DCS-AMP algorithm, which efficiently and accu-

rately estimates the marginal posterior distributions of {x(t)
n }, {θ(t)

n }, and {s(t)
n } from

the observed measurements {y(t)}Tt=1, thus enabling both soft estimation and soft sup-

port detection. The use of soft support information is particularly advantageous, as

it means that the algorithm need never make a firm (and possibly erroneous) decision

about the support that can propagate errors across many timesteps. As mentioned

in Section 3.1, DCS-AMP can perform either filtering or smoothing.

The algorithm we develop is designed to exploit the statistical structure inherent

in our signal model. By defining ȳ to be the collection of all measurements, {y(t)}Tt=1

(and defining x̄, s̄, and θ̄ similarly), the posterior joint distribution of the signal, sup-

port, and amplitude time series, given the measurement time series, can be expressed

using Bayes’ rule as

p(x̄, s̄, θ̄|ȳ) ∝
T∏

t=1

(
M∏

m=1

p(y(t)
m |x(t))

N∏

n=1

p(x(t)
n |s(t)

n , θ
(t)
n )p(s(t)

n |s(t−1)
n )p(θ(t)

n |θ(t−1)
n )

)
,

(3.5)

where ∝ indicates proportionality up to a constant scale factor, p(s
(1)
n |s(0)

n ) , p(s
(1)
n ),

and p(θ
(1)
n |θ(0)

n ) , p(θ
(1)
n ). By inspecting (3.5), we see that the posterior joint dis-

tribution decomposes into the product of many distributions that only depend on

small subsets of variables. A graphical representation of such decompositions is given

by the factor graph, which is an undirected bipartite graph that connects the pdf

“factors” of (3.5) with the random variables that constitute their arguments [55]. In

Table 3.1, we introduce the notation that we will use for the factors of our signal

model, showing the correspondence between the factor labels and the underlying dis-

tributions they represent, as well as the specific functional form assumed by each

factor. The associated factor graph for the posterior joint distribution of (3.5) is
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Factor Distribution Functional Form
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Table 3.1: The factors, underlying distributions, and functional forms associated with our signal
model
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Figure 3.1: Factor graph representation of the joint posterior distribution of (3.5).

shown in Fig. 3.1, labeled according to Table 3.1. Filled squares represent factors,

while circles represent random variables.

As seen in Fig. 3.1, all of the variables needed at a given timestep can be visualized

as lying in a plane, with successive planes stacked one after another in time. We will
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refer to these planes as “frames”. The temporal correlation of the signal supports

is illustrated by the h
(t)
n factor nodes that connect the s

(t)
n variable nodes between

neighboring frames. Likewise, the temporal correlation of the signal amplitudes is

expressed by the interconnection of d
(t)
n factor nodes and θ

(t)
n variable nodes. For

visual clarity, these factor nodes have been omitted from the middle portion of the

factor graph, appearing only at indices n = 1 and n = N , but should in fact be

present for all indices n = 1, . . . , N . Since the measurements {y(t)
m } are observed

variables, they have been incorporated into the g
(t)
m factor nodes.

The algorithm that we develop can be viewed as an approximate implementation

of belief propagation (BP) [56], a message passing algorithm for performing inference

on factor graphs that describe probabilistic models. When the factor graph is cycle-

free, belief propagation is equivalent to the more general sum-product algorithm [55],

which is a means of computing the marginal functions that result from summing

(or integrating) a multivariate function over all possible input arguments, with one

argument held fixed, (i.e., marginalizing out all but one variable). In the context

of BP, these marginal functions are the marginal distributions of random variables.

Thus, given measurements ȳ and the factorization of the posterior joint distribution

p
(
x̄, s̄, θ̄

∣∣ȳ
)
, DCS-AMP computes (approximate) posterior marginals of x

(t)
n , s

(t)
n , and

θ
(t)
n . In “filtering” mode, our algorithm would therefore return, e.g., p

(
x

(t)
n

∣∣{y(t)}tt=1

)
,

while in “smoothing” mode it would return p
(
x

(t)
n

∣∣{y(t)}Tt=1

)
. From these marginals,

one can compute, e.g., minimum mean-squared error (MMSE) estimates. The factor

graph of Fig. 3.1 contains many short cycles, however, and thus the convergence

of loopy BP cannot be guaranteed [55].4 Despite this, loopy BP has been shown to

4However, it is worth noting that in the past decade much work has been accomplished in identi-
fying specific situations under which loopy BP is guaranteed to converge, e.g., [29, 68, 75–77].
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perform extremely well in a number of different applications, including turbo decoding

[78], computer vision [57], and compressive sensing [16, 19, 25, 26, 32, 53, 59].

3.3.1 Message scheduling

In loopy factor graphs, there are a number of ways to schedule, or sequence, the mes-

sages that are exchanged between nodes. The choice of a schedule can impact not

only the rate of convergence of the algorithm, but also the likelihood of convergence

as well [79]. We propose a schedule (an evolution of the “turbo” schedule proposed

in [53]) for DCS-AMP that is straightforward to implement, suitable for both filter-

ing and smoothing applications, and empirically yields quickly converging estimates

under a variety of diverse operating conditions.

Our proposed schedule can be broken down into four distinct steps, which we will

refer to using the mnemonics (into), (within), (out), and (across). At a particu-

lar timestep t, the (into) step involves passing messages that provide current beliefs

about the state of the relevant support variables, {s(t)
n }Nn=1, and amplitude variables,

{θ(t)
n }Nn=1, laterally into the dashed AMP box within frame t. (Recall Fig. 3.1.) The

(within) step makes use of these incoming messages, together with the observations

available in that frame, {y(t)
m }Mm=1, to exchange messages within the dashed AMP box

of frame t, thus generating estimates of the marginal posteriors of the signal variables

{x(t)
n }Nn=1. Using these posterior estimates, the (out) step propagates messages out

of the dashed AMP box, providing updated beliefs about the state of {s(t)
n }Nn=1 and

{θ(t)
n }Nn=1. Lastly, the (across) step involves transmitting messages across neighbor-

ing frames, using the updated beliefs about {s(t)
n }Nn=1 and {θ(t)

n }Nn=1 to influence the

beliefs about {s(t+1)
n }Nn=1 and {θ(t+1)

n }Nn=1

(
or {s(t−1)

n }Nn=1 and {θ(t−1)
n }Nn=1

)
.

The procedures for filtering and smoothing both start in the same way. At the

initial t = 1 frame, steps (into), (within) and (out) are performed in succession.
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Next, step (across) is performed to pass messages from {s(1)
n }Nn=1 and {θ(1)

n }Nn=1 to

{s(2)
n }Nn=1 and {θ(2)

n }Nn=1. Then at frame t = 2 the same set of steps are executed, con-

cluding with messages propagating to {s(3)
n }Nn=1 and {θ(3)

n }Nn=1. This process continues

until steps (into), (within) and (out) have been completed at the terminal frame,

T . At this point, DCS-AMP has completed what we call a single forward pass. If

the objective was to perform filtering, DCS-AMP terminates at this point, since only

causal measurements have been used to estimate the marginal posteriors. If instead

the objective is to obtain smoothed, non-causal estimates, then information begins

to propagate backwards in time, i.e., step (across) moves messages from {s(T )
n }Nn=1

and {θ(T )
n }Nn=1 to {s(T−1)

n }Nn=1 and {θ(T−1)
n }Nn=1. Steps (into), (within), (out), and

(across) are performed at frame T − 1, with messages bound for frame T − 2. This

continues until the initial frame is reached. At this point DCS-AMP has completed

what we term as a single forward/backward pass. Multiple such passes, indexed by

the variable k, can be carried out until a convergence criterion is met or a maximum

number of passes has been performed.

3.3.2 Implementing the message passes

We now provide some additional details as to how the above four steps are imple-

mented. To aid our discussion, in Fig. 3.2 we summarize the form of the messages

that pass between the various factor graph nodes, focusing primarily on a single co-

efficient index n at an intermediate frame t. Directed edges indicate the direction

that messages are moving. In the (across) phase, we only illustrate the messages

involved in a forward pass for the amplitude variables, and leave out a graphic for the

corresponding backward pass, as well as graphics for the support variable (across)

phase. Note that, to be applicable at frame T , the factor node d
(t+1)
n and its associated

edge should be removed. The figure also introduces the notation that we adopt for
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Figure 3.2: A summary of the four message passing phases, including message notation and form.
See the pseudocode of Table 3.2 for the precise message update computations.

the different variables that serve to parameterize the messages. We use the notation

νa→b(·) to denote a message passing from node a to a connected node b. For Bernoulli

message pdfs, we show only the non-zero probability, e.g.,
⇀

λ
(t)

n = ν
h
(t)
n →s

(t)
n

(s
(t)
n = 1).

To perform step (into), the messages from the factors h
(t)
n and h

(t+1)
n to s

(t)
n are

used to set
↼
π(t)
n , the message from s

(t)
n to f

(t)
n . Likewise, the messages from the factors

d
(t)
n and d

(t+1)
n to θ

(t)
n are used to determine the message from θ

(t)
n to f

(t)
n . When

performing filtering, or the first forward pass of smoothing, no meaningful information

should be conveyed from the h
(t+1)
n and d

(t+1)
n factors. This can be accomplished by

initializing
(↼
λ

(t)

n ,
↼
η(t)
n ,

↼
κ(t)
n

)
with the values (1

2
, 0,∞).

In step (within), messages must be exchanged between the
{
x

(t)
n

}N
n=1

and
{
g

(t)
m

}M
m=1

nodes. When A(t) is not a sparse matrix, this will imply a dense network of con-

nections between these nodes. Recall that in Section 2.4.2, we leveraged an AMP

algorithm in the MMV problem to manage the computationally intensive message

passes in the dense subgraph of Fig. 2.1 consisting of these nodes. Such an approach
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is equally well-suited in the DCS problem. As in Chapter 2, the local prior for the

signal model of Section 3.2 is a Bernoulli-Gaussian, namely

ν
f
(t)
n →x

(t)
n

(x(t)
n ) = (1− ↼

π(t)
n )δ(x(t)

n ) +
↼
π(t)
n CN (x(t)

n ;
↼

ξ(t)
n ,

↼

ψ(t)
n ).

The specific AMP updates for our model are given by (A17)-(A21) in Table 3.2.

Recall also from Section 2.4.2 that we needed to devise an approximation scheme

to manage the f
(t)
n -to-θ

(t)
n message in Fig. 2.1. Such a scheme was necessary both to

prevent the propagation of an improper distribution, and also to prevent an expo-

nential growth in the number of Gaussian terms that would be propagated using a

Gaussian sum approximation. Due to the similarities between the MMV signal model

of Section 2.2 and the DCS model of Section 3.2, such an approximation scheme is

required once more.

To carry out the Gaussian sum approximation, we propose the following two

schemes. The first is to simply choose a threshold τ that is slightly smaller than

1 and, using (C.35) as a guide, threshold
↼
π(t)
n to choose between the two Gaussian

components of (C.33). The resultant message is thus

ν
f
(t)
n →θ

(t)
n

(θ(t)
n ) = CN (θ(t)

n ;
⇀

ξ(t)
n ,

⇀

ψ(t)
n ), (3.6)

with
⇀

ξ
(t)
n and

⇀

ψ
(t)
n chosen according to

(⇀
ξ(t)
n ,

⇀

ψ(t)
n

)
=






(
1
ε
φin,

1
ε2
cin
)
,

↼
π

(t)
n ≤ τ

(
φin, c

i
n

)
,

↼
π

(t)
n > τ

. (3.7)

The second approach is to perform a second-order Taylor series approximation, as

described in Section 2.4.2. The latter approach has the advantage of being parameter-

free. Empirically, we find that this latter approach works well when changes in the
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support occur infrequently, e.g., p01 < 0.025, while the former approach is better

suited to more dynamic environments.

In Table 3.2 we provide a pseudo-code implementation of our proposed DCS-AMP

algorithm that gives the explicit message update equations appropriate for performing

a single forward pass. The interested reader can find an expanded derivation of

the messages in Appendix C. The primary computational burden of DCS-AMP is

computing the messages passing between the {x(t)
n } and {g(t)

m } nodes, a task which

can be performed efficiently using matrix-vector products involving A(t) and A(t)H .

The resulting overall complexity of DCS-AMP is therefore O(TMN) flops (flops-per-

pass) when filtering (smoothing).5 The storage requirements are O(N) and O(TN)

complex numbers when filtering and smoothing, respectively.

3.4 Learning the signal model parameters

The signal model of Section 3.2 is specified by the Markov chain parameters λ, p01, the

Gauss-Markov parameters ζ , α, ρ, and the AWGN variance σ2
e . It is likely that some

or all of these parameters will require tuning in order to best match the unknown sig-

nal. As was the case in Section 2.5, we can use an EM algorithm to learn the relevant

model parameters. The EM procedure is performed after each forward/backward

pass, leading to a convergent sequence of parameter estimates. If operating in fil-

tering mode, the procedure is similar, however the EM procedure is run after each

recovered timestep using only causally available posterior estimates.

In Table 3.3, we provide the EM update equations for each of the parameters of

our signal model, assuming DCS-AMP is operating in smoothing mode. Derivations

for each update can be found in Appendix D.

5As with AMP-MMV, fast implicit operators capable of performing matrix-vector products will
reduce DCS-AMP’s complexity burden.
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% Begin passing messages . . .
for t = 1, . . . , T :
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% Initialize AMP-related variables . . .

∀m : z1mt = y
(t)
m ,∀n : µ1

nt = 0, and c1t = 100 ·
PN
n=1 ψ

(t)
n
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end
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nt ∀n % Store current estimate of x
(t)
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% Execute the (out) phase . . .
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% Execute the (across) phase forward in time . . .
⇀
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end

Table 3.2: DCS-AMP steps for filtering mode, or the forward portion of a single forward/backward
pass in smoothing mode. See Fig. 3.2 to associate quantities with the messages traversing
the factor graph.

3.5 Incorporating Additional Structure

In Sections 3.2 - 3.4 we described a signal model for the dynamic CS problem and

summarized a message passing algorithm for making inferences under this model,
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% Define key quantities obtained from AMP-MMV at iteration k:
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„

1
⇀
κ
(t)
n

+ 1
⇀

ψ
(t)
n

+ 1
↼
κ
(t)
n

«−1

(Q3)

µ̃
(t)
n , E[θ

(t)
n |ȳ] = ṽ
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”

(E9)

where:

b , 2
ρk

PT
t=2

PN
n=1 Re

˘

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

¯

−Re{(µ̃(t)
n − µ̃

(t−1)
n )∗ζk} − ṽ

(t−1)
n − |µ̃(t−1)

n |2
c , 2

ρk

PT
t=2

PN
n=1 ṽ

(t)
n + |µ̃(t)

n |2 + ṽ
(t−1)
n + |µ̃(t−1)

n |2

−2Re
˘

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

¯

ρk+1 = 1
(αk)2N(T−1)

PT
t=2

PN
n=1 ṽ

(t)
n + |µ̃(t)

n |2

+(αk)2|ζk|2 − 2(1 − αk)Re
˘

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

¯

−2αkRe
˘

µ̃
(t)∗
n ζk

¯

+ 2αk(1 − αk)Re
˘

µ̃
(t−1)∗
n ζk

¯

+(1 − αk)(ṽ
(t−1)
n + |µ̃(t−1)

n |2) (E10)

(σ2
e )
k+1 = 1

TM

“

PT
t=1 ‖y(t) − Aµ(t)‖2 + 1TNv(t)

”

(E11)

Table 3.3: EM update equations for the signal model parameters of Section 3.2.
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while iteratively learning the model parameters via EM. We also hinted that the

model could be generalized to incorporate additional, or more complex, forms of

structure. In this section we will elaborate on this idea, and illustrate one such

generalization.

Recall that, in Section 3.2, we introduced hidden variables s̄ and θ̄ in order to

characterize the structure in the signal coefficients. An important consequence of

introducing these hidden variables was that they made each signal coefficient x
(t)
n

conditionally independent of the remaining coefficients in x̄, given s
(t)
n and θ

(t)
n . This

conditional independence served an important algorithmic purpose since it allowed

us to apply the AMP algorithm, which requires independent local priors, within our

larger inference procedure.

One way to incorporate additional structure into the signal model of Section 3.2 is

to generalize our choices of p(s̄) and p(θ̄). As a concrete example, pairing the temporal

support model proposed in this chapter with the Markovian model of wavelet tree

inter-scale correlations described in [16] through a more complex support prior, p(s̄),

could enable even greater undersampling in a dynamic MRI setting. Performing

inference on such models could be accomplished through the general algorithmic

framework proposed in [61]. As another example, suppose that we wish to expand

our Bernoulli-Gaussian signal model to one in which signal coefficients are marginally

distributed according to a Bernoulli-Gaussian-mixture, i.e.,

p(x(t)
n ) = λ

(t)
0 δ(x

(t)
n ) +

D∑

d=1

λ
(t)
d CN (x(t)

n ; ζd, σ
2
d),

where
∑D

d=0 λ
(t)
d = 1. Since we still wish to preserve the slow time-variations in the

support and smooth evolution of non-zero amplitudes, a natural choice of hidden

variables is {s̄, θ̄1, . . . , θ̄D}, where s
(t)
n ∈ {0, 1, . . . , D}, and θ

(t)
d,n ∈ C, d = 1, . . . , D.
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The relationship between x
(t)
n and the hidden variables then generalizes to:

p(x(t)
n |s(t)

n , θ
(t)
1,n, . . . , θ

(t)
D,n) =






δ(x
(t)
n ), s

(t)
n = 0,

δ(x
(t)
n − θ(t)

d,n), s
(t)
n = d 6= 0.

To model the slowly changing support, we specify p(s̄) using a (D + 1)-state

Markov chain defined by the transition probabilities p0d , Pr{s(t)
n = 0|s(t−1)

n = d}

and pd0 , Pr{s(t)
n = d|s(t−1)

n = 0}, d = 1, . . . , D. For simplicity, we assume that

state transitions cannot occur between active mixture components, i.e., Pr(s
(t)
n =

d|s(t−1)
n = e) = 0 when d 6= e 6= 0.6 For each amplitude time-series we again use

independent Gauss-Markov processes to model smooth evolutions in the amplitudes

of active signal coefficients, i.e.,

θ
(t)
d,n = (1− αd)

(
θ

(t−1)
d,n − ζd

)
+ αdw

(t)
d,n + ζd,

where w
(t)
d,n ∼ CN (0, ρd).

As a consequence of this generalized signal model, a number of the message com-

putations of Section 3.3.2 must be modified. For steps (into) and (across), it is

largely straightforward to extend the computations to account for the additional hid-

den variables. For step (within), the modifications will affect the AMP thresholding

equations defined in (D5) - (D8) of Table 3.2. Details on a Bernoulli-Gaussian-

mixture AMP algorithm can be found in [19]. For the (out) step, we will encounter

difficulties applying standard sum-product update rules to compute the messages

{ν
f
(t)
n →θ

(t)
d,n

(·)}Dd=1. As in the Bernoulli-Gaussian case, we consider a modification of

6By relaxing this restriction on active-to-active state transitions, we can model signals whose
coefficients tend to enter the support set at small amplitudes that grow larger over time through
the use of a Gaussian mixture component with a small variance that has a high probability of
transitioning to a higher variance mixture component.
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our assumed signal model that incorporates an ε≪ 1 term, and use Taylor series ap-

proximations of the resultant messages to collapse a (D+1)-ary Gaussian mixture to

a single Gaussian. More information on this procedure can be found in Appendix B.

3.6 Numerical Study

We now describe the results of a numerical study of DCS-AMP.7 The primary per-

formance metric that we used in all of our experiments, which we refer to as the

time-averaged normalized MSE (TNMSE), is defined as

TNMSE(x̄, ˆ̄x) ,
1

T

T∑

t=1

‖x(t) − x̂(t)‖22
‖x(t)‖22

,

where x̂(t) is an estimate of x(t).

Unless otherwise noted, the following settings were used for DCS-AMP in our ex-

periments. First, DCS-AMP was run as a smoother, with a total of 5 forward/backward

passes. The number of inner AMP iterations I for each (within) step was I = 25,

with a possibility for early termination if the change in the estimated signal, µi
t, fell be-

low a predefined threshold from one iteration to the next, i.e., 1
N
‖µi

t−µi−1
t ‖2 < 10−5.

Equation (A22) of Table 3.2 was used to produce x̂(t), which corresponds to an MMSE

estimate of x(t) under DCS-AMP’s estimated posteriors p(x
(t)
n |ȳ). The amplitude ap-

proximation parameter ε from (C.33) was set to ε = 10−7, while the threshold τ from

(C.37) was set to τ = 0.99. In our experiments, we found DCS-AMP’s performance

to be relatively insensitive to the value of ε provided that ε ≪ 1. The choice of τ

should be selected to provide a balance between allowing DCS-AMP to track ampli-

tude evolutions on signals with rapidly varying supports and preventing DCS-AMP

7Code for reproducing our results is available at http://www.ece.osu.edu/~schniter/

turboAMPdcs.
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from prematurely gaining too much confidence in its estimate of the support. We

found that the choice τ = 0.99 works well over a broad range of problems. When

the estimated transition probability p01 < 0.025, DCS-AMP automatically switched

from the threshold method to the Taylor series method of computing (C.36), which

is advantageous because it is parameter-free.

When learning model parameters adaptively from the data using the EM updates

of Table 3.3, it is necessary to first initialize the parameters at reasonable values.

Unless domain-specific knowledge suggests a particular initialization strategy, we ad-

vocate using the following simple heuristics: The initial sparsity rate, λ1, active mean,

ζ1, active variance, (σ2)1, and noise variance, (σ2
e)

1, can be initialized according to

the procedure described in [19, §V].8 The Gauss-Markov correlation parameter, α,

can be initialized as

α1 = 1− 1

T − 1

T−1∑

t=1

|y(t) Hy(t+1)|
λ1(σ2)1| tr{A(t)A(t+1) H}|

. (3.8)

The active-to-inactive transition probability, p01, is difficult to gauge solely from

sample statistics involving the available measurements, ȳ. We used p1
01 = 0.10 as a

generic default choice, based on the premise that it is easier for DCS-AMP to adjust

to more dynamic signals once it has a decent “lock” on the static elements of the

support, than it is for it to estimate relatively static signals under an assumption of

high dynamicity.

8For problems with a high degree of undersampling and relatively non-sparse signals, it may be
necessary to threshold the value for λ1 suggested in [19] so that it does not fall below, e.g., 0.10.
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3.6.1 Performance across the sparsity-undersampling plane

Two factors that have a significant effect on the performance of any CS algorithm are

the sparsity |S(t)| of the underlying signal, and the number of measurements M . Con-

sequently, much can be learned about an algorithm by manipulating these factors and

observing the resulting change in performance. To this end, we studied DCS-AMP’s

performance across the sparsity-undersampling plane [80], which is parameterized by

two quantities, the normalized sparsity ratio, β , E[|S(t)|]/M , and the undersampling

ratio, δ , M/N . For a given (δ, β) pair (with N fixed at 1500), sample realizations of

s̄, θ̄, and ē were drawn from their respective priors, and elements of a time-varying

A(t) were drawn from i.i.d. zero-mean complex circular Gaussians, with all columns

subsequently scaled to have unit ℓ2-norm, thus generating x̄ and ȳ.

As a performance benchmark, we used the support-aware Kalman smoother. In

the case of linear dynamical systems with jointly Gaussian signal and observations, the

Kalman filter (smoother) is known to provide MSE-optimal causal (non-causal) signal

estimates [54]. When the signal is Bernoulli-Gaussian, the Kalman filter/smoother is

no longer optimal. However, a lower bound on the achievable MSE can be obtained

using the support-aware Kalman filter (SKF) or smoother (SKS). Since the classical

state-space formulation of the Kalman filter does not easily yield the support-aware

bound, we turn to an alternative view of Kalman filtering as an instance of message

passing on an appropriate factor graph [81]. For this, it suffices to use the factor graph

of Fig. 3.1 with {s(t)
n } treated as fixed, known quantities. Following the standard sum-

product algorithm rules results in a message passing algorithm in which all messages

are Gaussian, and no message approximations are required. Then, by running loopy

Gaussian belief propagation until convergence, we are guaranteed that the resultant

posterior means constitute the MMSE estimate of x̄ [68, Claim 5].

To quantify the improvement obtained by exploiting temporal correlation, signal
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recovery was also explored using the Bernoulli-Gaussian AMP algorithm (BG-AMP)

independently at each timestep (i.e., ignoring temporal structure in the support

and amplitudes), accomplished by passing messages only within the dashed boxes

of Fig. 3.1 using p
(
x

(t)
n

)
from (3.4) as AMP’s prior.9

In Fig. 3.3, we present four plots from a representative experiment. The TN-

MSE across the (logarithmically scaled) sparsity-undersampling plane is shown for

(working from left to right) the SKS, DCS-AMP, EM-DCS-AMP (DCS-AMP with

EM parameter tuning), and BG-AMP. In order to allow EM-DCS-AMP ample op-

portunity to converge to the correct parameter values, it was allowed up to 300 EM

iterations/smoothing passes, although it would quite often terminate much sooner if

the parameter initializations were reasonably close. The results shown were averaged

over more than 300 independent trials at each (δ, β) pair. For this experiment, signal

model parameters were set at N = 1500, T = 25, p01 = 0.05, ζ = 0, α = 0.01,

σ2 = 1, and a noise variance, σ2
e , chosen to yield a signal-to-noise ratio (SNR) of 25

dB. (M,λ) were set based on specific (δ, β) pairs, and p10 was set so as to keep the ex-

pected number of active coefficients constant across time. It is interesting to observe

that the performance of the SKS and (EM-)DCS-AMP are only weakly dependent on

the undersampling ratio δ. In contrast, the structure-agnostic BG-AMP algorithm

is strongly affected. This is one of the principal benefits of incorporating temporal

structure; it makes it possible to tolerate more substantial amounts of undersampling,

particularly when the underlying signal is less sparse.

9Experiments were also run that compared performance against Basis Pursuit Denoising (BPDN)
[82] with genie-aided parameter tuning (solved using the SPGL1 solver [83]). However, this was
found to yield higher TNMSE than BG-AMP, and at higher computational cost.
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Figure 3.3: A plot of the TNMSE (in dB) of (from left) the SKS, DCS-AMP, EM-DCS-AMP, and
BG-AMP across the sparsity-undersampling plane, for temporal correlation parameters
p01 = 0.05 and α = 0.01.

3.6.2 Performance vs p01 and α

The temporal correlation of our time-varying sparse signal model is largely dictated by

two parameters, the support transition probability p01 and the amplitude forgetting

factor α. Therefore, it is worth investigating how the performance of (EM-)DCS-AMP

is affected by these two parameters. In an experiment similar to that of Fig. 3.3, we

tracked the performance of (EM-)DCS-AMP, the SKS, and BG-AMP across a plane

of (p01, α) pairs. The active-to-inactive transition probability p01 was swept linearly

over the range [0, 0.15], while the Gauss-Markov amplitude forgetting factor α was

swept logarithmically over the range [0.001, 0.95]. To help interpret the meaning of

these parameters, we note that the fraction of the support that is expected to change

from one timestep to the next is given by 2 p01, and that the Pearson correlation

coefficient between temporally adjacent amplitude variables is 1− α.

In Fig. 3.4 we plot the TNMSE (in dB) of the SKS and (EM-)DCS-AMP as a

function of the percentage of the support that changes from one timestep to the next

(i.e., 2p01 × 100) and the logarithmic value of α for a signal model in which δ = 1/5

and β = 0.60, with remaining parameters set as before. Since BG-AMP is agnostic

72



−
29

−
29

−
28

−
28

−
28

−
27

−
27

−
27

−
26

−
26

−
26

−
25

−
25

−
25

−
24

−
24

−
24

−
23

log
10

(α)

%
 S

up
po

rt
 C

ha
ng

e 
 (

2p
01

 ×
 1

00
)

Support−aware Kalman smoother TNMSE [dB]

−3 −2.5 −2 −1.5 −1 −0.5
0

5

10

15

20

25

30

−
29

−
28

−
28

−
27

−27
−26

−
26

−
26

−
25

−
25

−
25

−
24

−
24

−
24

−23

−23

−2
3

−
23

log
10

(α)

%
 S

up
po

rt
 C

ha
ng

e 
 (

2p
01

 ×
 1

00
)

DCS−AMP TNMSE [dB]

−3 −2.5 −2 −1.5 −1 −0.5
0

5

10

15

20

25

30

−23

−2
2

−22
−22

−2
2

−
17

−
17

−1
7

−
14

−
14

−
14

−
11

−
11

−
11

−8

−8
−5

log
10

(α)

%
 S

up
po

rt
 C

ha
ng

e 
 (

2p
01

 ×
 1

00
)

EM−DCS−AMP TNMSE [dB]

−3 −2.5 −2 −1.5 −1 −0.5
0

5

10

15

20

25

30

Figure 3.4: TNMSE (in dB) of (from left) the SKS, DCS-AMP, and EM-DCS-AMP as a function
of the model parameters p01 and α, for undersampling ratio δ = 1/3 and sparsity ratio
β = 0.45. BG-AMP achieved a TNMSE of −5.9 dB across the plane.

to temporal correlation, its performance is insensitive to the values of p01 and α.

Therefore, we do not include a plot of the performance of BG-AMP, but note that it

achieved a TNMSE of −5.9 dB across the plane. For the SKS and (EM-)DCS-AMP,

we see that performance improves with increasing amplitude correlation (moving

leftward). This behavior, although intuitive, is in contrast to the relationship between

performance and correlation found in the MMV problem [14, 32], primarily due to

the fact that the measurement matrix is static for all timesteps in the classical MMV

problem, whereas here it varies with time. Since the SKS has perfect knowledge of

the support, its performance is only weakly dependent on the rate of support change.

DCS-AMP performance shows a modest dependence on the rate of support change,

but nevertheless is capable of managing rapid temporal changes in support, while

EM-DCS-AMP performs very near the level of the noise when α < 0.10.
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3.6.3 Recovery of an MRI image sequence

While the above simulations demonstrate the effectiveness of DCS-AMP in recovering

signals generated according to our signal model, it remains to be seen whether the

signal model itself is suitable for describing practical dynamic CS signals. To address

this question, we tested the performance of DCS-AMP on a dynamic MRI experiment

first performed in [8]. The experiment consists of recovering a sequence of 10 MRI

images of the larynx, each 256× 256 pixels in dimension. (See Fig. 3.5.) The mea-

surement matrices were never stored explicitly due to the prohibitive sizes involves,

but were instead treated as the composition of three linear operations, A = MFW T.

The first operation, W T, was the synthesis of the underlying image from a sparsifying

2-D, 2-level Daubechies-4 wavelet transform representation. The second operation,

F , was a 2-D Fourier transform that yielded the k-space coefficients of the image.

The third operation, M , was a sub-sampling mask that kept only a fraction of the

available k-space data.

Since the image transform coefficients are compressible rather than sparse, the

SKF/SKS no longer serves as an appropriate algorithmic benchmark. Instead, we

compare performance against Modified-CS [48], as well as timestep-independent Basis

Pursuit.10 As reported in [48], Modified-CS demonstrates that substantial improve-

ments can be obtained over temporally agnostic methods.

Since the statistics of wavelet coefficients at different scales are often highly dis-

similar (e.g., the coarsest-scale approximation coefficients are usually much less sparse

than those at finer scales, and are also substantially larger in magnitude), we allowed

our EM procedure to learn different parameters for different wavelet scales. Using

10Modified-CS is available at http://home.engineering.iastate.edu/~luwei/modcs/index.

html. Basis Pursuit was solved using the ℓ1-MAGIC equality-constrained primal-dual solver
(chosen since it is used as a subroutine within Modified-CS), available at http://users.ece.

gatech.edu/~justin/l1magic/.
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G1 to denote the indices of the coarsest-scale “approximation” coefficients, and G2

to denote the finer-scale “wavelet” coefficients, DCS-AMP was initialized with the

following parameter choices: λG1 = 0.99, λG2 = 0.01, p01 = 0.01, ζG1 = ζG2 = 0,

αG1 = αG2 = 0.05, ρG1 = 105, ρG2 = 104, and σ2
e = 0.01, and run in filtering mode

with I = 10 inner AMP iterations.

We note that our initializations were deliberately chosen to be agnostic, but rea-

sonable, values. In particular, observing that the coarsest-scale approximation co-

efficients of a wavelet decomposition are almost surely non-zero, we initialized the

associated group’s sparsity rate at λG1 = 0.99, while the finer scale detail coefficients

were given an arbitrary sparsity-promoting rate of λG2 = 0.01. The choices of α and

ρ were driven by an observation that the variance of coefficients across wavelet scales

often differs by an order-of-magnitude. The noise variance is arguably the most im-

portant parameter to initialize properly, since it balances the conflicting objectives

of fitting the data and adhering to the assumed signal model. Our rule-of-thumb for

initializing this parameter was that it is best to err on the side of fitting the data

(since the SNR in this MRI data collection was high), and thus we initialized the

noise variance with a small value.

In Table 3.4 we summarize the performance of three different estimators: timestep-

independent Basis Pursuit, which performs independent ℓ1 minimizations at each

timestep, Modified-CS, and DCS-AMP (operating in filtering mode). In this experi-

ment, per the setup described in [8], the initial timestep was sampled at 50% of the

Nyquist rate, i.e., M = N/2, while subsequent timesteps were sampled at 16% of

the Nyquist rate. Both Modified-CS and DCS-AMP substantially outperform Basis

Pursuit with respect to TNMSE, with DCS-AMP showing a slight advantage over

Modified-CS. Despite the similar TNMSE performance, note that DCS-AMP runs

in seconds, whereas Modified-CS takes multiple hours. In Fig. 3.5, we plot the true
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Algorithm TNMSE (dB) Runtime
Basis Pursuit -17.22 47 min
Modified-CS -34.30 7.39 hrs

DCS-AMP (Filter) -34.62 8.08 sec

Table 3.4: Performance on dynamic MRI dataset from [8] with increased sampling rate at initial
timestep.

Figure 3.5: Frames 1, 2, 5, and 10 of the dynamic MRI image sequence of (from top to bottom):
the fully sampled dataset, Basis Pursuit, Modified-CS, and DCS-AMP, with increased
sampling rate at initial timestep.

images along with the recoveries for this experiment, which show severe degradation

for Basis Pursuit on all but the initial timestep.

In practice, it may not be possible to acquire an increased number of samples

at the initial timestep. We therefore repeated the experiment while sampling at

16% of the Nyquist rate at every timestep. The results, shown in Table 3.5, show

that DCS-AMP’s performance degrades by about 5 dB, while Modified-CS suffers a
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Algorithm TNMSE (dB) Runtime
Basis Pursuit -16.83 47.61 min
Modified-CS -17.18 7.78 hrs

DCS-AMP (Filter) -29.51 7.27 sec

Table 3.5: Performance on dynamic MRI dataset from [8] with identical sampling rate at every
timestep.

14 dB reduction, illustrating that, when the estimate of the initial support is poor,

Modified-CS struggles to outperform Basis Pursuit.

3.6.4 Recovery of a CS audio sequence

In another experiment using real-world data, we used DCS-AMP to recover an audio

signal from sub-Nyquist samples. In this case, we employ the Bernoulli-Gaussian-

mixture signal model proposed for DCS-AMP in Section 3.5. The audio clip is a 7

second recording of a trumpet solo, and contains a succession of rapid changes in the

trumpet’s pitch. Such a recording presents a challenge for CS methods, since the

signal will be only compressible, and not sparse. The clip, sampled at a rate of 11

kHz, was divided into T = 54 non-overlapping segments of length N = 1500. Using

the discrete cosine transform (DCT) as a sparsifying basis, linear measurements were

obtained using a time-invariant i.i.d. Gaussian sensing matrix.

In Fig. 3.6 we plot the magnitude of the DCT coefficients of the audio signal on a

dB scale. Beyond the temporal correlation evident in the plot, it is also interesting to

observe that there is a non-trivial amount of frequency correlation (correlation across

the index [n]), as well as a large dynamic range. We performed recoveries using four

techniques: BG-AMP, GM-AMP (a temporally agnostic Bernoulli-Gaussian-mixture

AMP algorithm with D = 4 Gaussian mixture components), DCS-(BG)-AMP, and
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Figure 3.6: DCT coefficient magnitudes (in dB) of an audio signal.

DCS-GM-AMP (the Bernoulli-Gaussian-mixture dynamic CS model described in Sec-

tion 3.5, with D = 4). For each algorithm, EM learning of the model parameters was

performed using straightforward variations of the procedure described in Section 3.4,

with model parameters initialized automatically using simple heuristics described

in [19]. Moreover, unique model parameters were learned at each timestep (with the

exception of support transition probabilities). Furthermore, since our model of hid-

den amplitude evolutions was poorly matched to this audio signal, we fixed α = 1.

In Table 3.6 we present the results of applying each algorithm to the audio dataset

for three different undersampling rates, δ. For each algorithm, both the TNMSE

in dB and the runtime in seconds are provided. Overall, we see that performance

improves at each undersampling rate as the signal model becomes more expressive.

While GM-AMP outperforms BG-AMP at all undersampling rates, it is surpassed by

DCS-BG-AMP and DCS-GM-AMP, with DCS-GM-AMP offering the best TNMSE

performance. Indeed, we observe that one can obtain comparable, or even better,
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Undersampling Rate

δ = 1
2

δ = 1
3

δ = 1
5

A
lg

o
ri

th
m

BG-AMP
-16.88 (dB)
09.11 (s)

-11.67 (dB)
08.27 (s)

-08.56 (dB)
06.63 (s)

GM-AMP
(D = 4)

-17.49 (dB)
19.36 (s)

-13.74 (dB)
17.48 (s)

-10.23 (dB)
15.98 (s)

DCS-BG-AMP
-19.84 (dB)
10.20 (s)

-14.33 (dB)
08.39 (s)

-11.40 (dB)
06.71 (s)

DCS-GM-AMP
(D = 4)

-21.33 (dB)
20.34 (s)

-16.78 (dB)
18.63 (s)

-12.49 (dB)
10.13 (s)

Table 3.6: Performance on audio CS dataset (TNMSE (dB) | Runtime (s)) of two temporally inde-
pendent algorithms, BG-AMP and GM-AMP, and two temporally structured algorithms,
DCS-BG-AMP and DCS-GM-AMP.

performance with an undersampling rate δ = 1
5

using DCS-BG-AMP or DCS-GM-

AMP, with that obtained using BG-AMP with an undersampling rate δ = 1
3
.

3.6.5 Frequency Estimation

In a final experiment, we compared the performance of DCS-AMP against techniques

designed to solve the problem of subspace identification and tracking from partial

observations (SITPO) [84, 85], which bears similarities to the dynamic CS problem.

In subspace identification, the goal is to learn the low-dimensional subspace occupied

by multi-timestep data measured in a high ambient dimension, while in subspace

tracking, the goal is to track that subspace as it evolves over time. In the partial

observation setting, the high-dimensional observations are sub-sampled using a mask

that varies with time. The dynamic CS problem can be viewed as a special case of

SITPO, wherein the time-t subspace is spanned by a subset of the columns of an a

priori known matrix A(t). One problem that lies in the intersection of SITPO and

dynamic CS is frequency tracking from partial time-domain observations.

79



For comparison purposes, we replicated the “direction of arrival analysis” experi-

ment described in [85] where the observations at time t take the form

y(t) = Φ(t)V (t)a(t) + e(t), t = 1, 2, . . . , T (3.9)

where Φ(t) ∈ {0, 1}M×N is a selection matrix with non-zero column indices Q(t) ⊂

{1, . . . , N}, V (t) ∈ CN×K is a Vandermonde matrix of sampled complex sinusoids,

i.e.,

V (t) , [v(ω
(t)
1 ), . . . ,v(ω

(t)
K )], (3.10)

with v(ω
(t)
k ) , [1, ej2πω

(t)
k , . . . , ej2πω

(t)
k (N−1)]T and ω

(t)
k ∈ [0, 1). a(t) ∈ RK is a vector

of instantaneous amplitudes, and e(t) ∈ R
N is additive noise with i.i.d. N (0, σ2

e)

elements.11 Here, {Φ(t)}Tt=1 is known, while {ω(t)}Tt=1 and {a(t)}Tt=1 are unknown,

and our goal is to estimate them. To assess performance, we report TNMSE in the

estimation of the “complete” signal {V (t)a(t)}Tt=1.

We compared DCS-AMP’s performance against two online algorithms designed to

solve the SITPO problem: GROUSE [84] and PETRELS [85]. Both GROUSE and

PETRELS return time-varying subspace estimates, which were passed to an ESPRIT

algorithm to generate time-varying frequency estimates (as in [85]). Finally, time-

varying amplitude estimates were computed using least-squares. For DCS-AMP, we

constructed A(t) using a 2× column-oversampled DFT matrix, keeping only those

rows indexed by Q(t). DCS-AMP was run in filtering mode for fair comparison with

the “online” operation of GROUSE and PETRELS, with I = 7 inner AMP iterations.

11Code for replicating the experiment provided by the authors of [85]. Unless otherwise noted,

specific choices regarding {ω(t)
k } and {a(t)} were made by the authors of [85] in a deterministic

fashion, and can be found in the code.
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The results of performing the experiment for three different problem configura-

tions are presented in Table 3.7, with performance averaged over 100 independent

realizations. All three algorithms were given the true value of K. In the first problem

setup considered, we see that GROUSE operates the fastest, although its TNMSE

performance is noticeably inferior to that of both PETRELS and DCS-AMP, which

provide similar TNMSE performance and complexity. In the second problem setup,

we reduce the number of measurements, M , from 30 to 10, leaving all other set-

tings fixed. In this regime, both GROUSE and PETRELS are unable to accurately

estimate {ω(t)
k }, and consequently fail to accurately recover V (t)a(t), in contrast to

DCS-AMP. In the third problem setup, we increased the problem dimensions from

the first problem setup by a factor of 4 to understand how the complexity of each

approach scales with problem size. In order to increase the number of “active” fre-

quencies from K = 5 to K = 20, 15 additional frequencies and amplitudes were added

uniformly at random to the 5 deterministic trajectories of the preceding experiments.

Interestingly, DCS-AMP, which was the slowest at smaller problem dimensions, be-

comes the fastest (and most accurate) in the higher-dimensional setting, scaling much

better than either GROUSE or PETRELS.

3.7 Conclusion

In this chapter we proposed DCS-AMP, a novel approach to dynamic CS. Our tech-

nique merges ideas from the fields of belief propagation and switched linear dynam-

ical systems, together with a computationally efficient inference method known as

AMP. Moreover, we proposed an EM approach that learns all model parameters

automatically from the data. In numerical experiments on synthetic data, DCS-

AMP performed within 3 dB of the support-aware Kalman smoother bound across

the sparsity-undersampling plane. Repeating the dynamic MRI experiment from [8],
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Problem Setup

(N,M,K) =
(256, 30, 5)

(N,M,K) =
(256, 10, 5)

(N,M,K) =
(1024, 120, 20)

A
lg

o
ri

th
m

GROUSE
-4.52 (dB)
6.78 (s)

2.02 (dB)
6.68 (s)

-4.51 (dB)
173.89 (s)

PETRELS
-15.62 (dB)

29.51 (s)

0.50 (dB)

14.93 (s)

-7.98 (dB)
381.10 (s)

DCS-AMP
-15.46 (dB)
34.49 (s)

-10.85 (dB)
28.42 (s)

-12.79 (dB)
138.07 (s)

Table 3.7: Average performance on synthetic frequency estimation experiment (TNMSE (dB) | Run-
time (s)) of GROUSE, PETRELS, and DCS-AMP. In all cases, T = 4000, σ2

e = 10−6.

DCS-AMP slightly outperformed Modified-CS in MSE, but required less than 10

seconds to run, in comparison to more than 7 hours for Modified-CS. For the com-

pressive sensing of audio, we demonstrated significant gains from the exploitation

of temporal structure and Gaussian-mixture learning of the signal prior. Lastly, we

found that DCS-AMP can outperform recent approaches to Subspace Identification

and Tracking from Partial Observations (SITPO) when the underlying problem can

be well-represented through a dynamic CS model.
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CHAPTER 4

BINARY CLASSIFICATION, FEATURE SELECTION,

AND MESSAGE PASSING

“It is a capital mistake to theorize before one has data. Insensibly one

begins to twist facts to suit theories, instead of theories to suit facts.”

- Sherlock Holmes

Chapters 2 and 3 examined particular instances of sparse linear regression prob-

lems. A complementary problem to that of sparse linear regression is the problem

of binary linear classification and feature selection [67], which is the subject of this

chapter.1,2

4.1 Introduction

The objective of binary linear classification is to learn the weight vector w ∈ RN

that best predicts an unknown binary class label y ∈ {−1, 1} associated with a given

1Work presented in this chapter is largely excerpted from a manuscript co-authored with Per
Sederberg and Philip Schniter, entitled “Binary Linear Classification and Feature Selection via
Generalized Approximate Message Passing.” [86]

2A caution to the reader: To conform to the convention adopted in classification literature, in this
chapter we use w to denote the unknown vector we wish to infer (instead of x), and the matrix
X assumes the role of A in Chapters 2 and 3.
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vector of quantifiable features x ∈ R
N from the sign of a linear “score” z , 〈x,w〉.3

The goal of linear feature selection is to identify which subset of the N weights in

w are necessary for accurate prediction of the unknown class label y, since in some

applications (e.g., multi-voxel pattern analysis) this subset itself is of primary concern.

In formulating this linear feature selection problem, we assume that there exists

a K-sparse weight vector w (i.e., ‖w‖0 = K ≪ N) such that y = sgn(〈x,w〉 − e),

where sgn(·) is the signum function and e ∼ pe is a random perturbation accounting

for model inaccuracies. For the purpose of learning w, we assume the availability of

M labeled training examples generated independently according to this model:

ym = sgn(〈xm,w〉 − em), ∀m = 1, . . . ,M, (4.1)

with em ∼ i.i.d pe. It is common to express the relationship between the label ym and

the score zm , 〈xm,w〉 in (4.1) via the conditional pdf pym|zm(ym|zm), known as the

“activation function,” which can be related to the perturbation pdf pe via

pym|zm(1|zm) =

∫ zm

−∞
pe(e) de = 1− pym|zm(−1|zm). (4.2)

We are particularly interested in classification problems in which the number

of potentially discriminatory features N drastically exceeds the number of available

training examples M . Such computationally challenging problems are of great inter-

est in a number of modern applications, including text classification [87], multi-voxel

pattern analysis (MVPA) [88–90], conjoint analysis [91], and microarray gene ex-

pression [92]. In MVPA, for instance, neuroscientists attempt to infer which regions

3We note that one could also compute the score from a fixed non-linear transformation ψ(·) of the
original feature x via z , 〈ψ(x),w〉 as in kernel-based classification. Although the methods we
describe here are directly compatible with this approach, we write z = 〈x,w〉 for simplicity.
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in the human brain are responsible for distinguishing between two cognitive states

by measuring neural activity via fMRI at N ≈ 104 voxels. Due to the expensive

and time-consuming nature of working with human subjects, classifiers are routinely

trained using only M ≈ 102 training examples, and thus N ≫M .

In the N ≫ M regime, the model of (4.1) coincides with that of noisy one-

bit compressed sensing (CS) [93, 94]. In that setting, it is typical to write (4.1) in

matrix-vector form using y , [y1, . . . , yM ]T, e , [e1, . . . , eM ]T, X , [x1, . . . ,xM ]T,

and elementwise sgn(·), yielding

y = sgn(Xw − e), (4.3)

where w embodies the signal-of-interest’s sparse representation, X = ΦΨ is a con-

catenation of a linear measurement operator Φ and a sparsifying signal dictionary

Ψ, and e is additive noise.4 Importantly, in the N ≫ M setting, [94] established

performance guarantees on the estimation of K-sparse w from O(K logN/K) binary

measurements of the form (4.3), under i.i.d Gaussian {xm} and mild conditions on

the perturbation process {em}, even when the entries within xm are correlated. This

result implies that, in large binary linear classification problems, accurate feature se-

lection is indeed possible from M ≪ N training examples, as long as the underlying

weight vector w is sufficiently sparse. Not surprisingly, many techniques have been

proposed to find such weight vectors [24, 95–101].

In addition to theoretical analyses, the CS literature also offers a number of high-

performance algorithms for the inference of w in (4.3), e.g., [93,94,102–105]. Thus, the

question arises as to whether these algorithms also show advantages in the domain

4For example, the common case of additive white Gaussian noise (AWGN) {em} ∼ i.i.d N (0, v)
corresponds to the “probit” activation function, i.e., py

m
|zm

(1|zm) = Φ(zm/v), where Φ(·) is the
standard-normal cdf.
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of binary linear classification and feature selection. In this paper, we answer this

question in the affirmative by focusing on the generalized approximate message passing

(GAMP) algorithm [27], which extends the AMP algorithm [25,26] from the case of

linear, AWGN-corrupted observations (i.e., y = Xw−e for e ∼ N (0, vI)) to the case

of generalized-linear observations, such as (4.3). AMP and GAMP are attractive for

several reasons: (i) For i.i.d sub-Gaussian X in the large-system limit (i.e., M,N →

∞ with fixed ratio δ = M
N

), they are rigorously characterized by a state-evolution

whose fixed points, when unique, are optimal [30]; (ii) Their state-evolutions predict

fast convergence rates and per-iteration complexity of only O(MN); (iii) They are

very flexible with regard to data-modeling assumptions (see, e.g., [61]); (iv) Their

model parameters can be learned online using an expectation-maximization (EM)

approach that has been shown to yield state-of-the-art mean-squared reconstruction

error in CS problems [106].

In this chapter, we develop a GAMP-based approach to binary linear classification

and feature selection that makes the following contributions: 1) in Section 4.2, we

show that GAMP implements a particular approximation to the error-rate minimizing

linear classifier under the assumed model (4.1); 2) in Section 4.3, we show that

GAMP’s state evolution framework can be used to characterize the misclassification

rate in the large-system limit; 3) in Section 4.4, we develop methods to implement

logistic, probit, and hinge-loss-based regression using both max-sum and sum-product

versions of GAMP, and we further develop a method to make these classifiers robust

in the face of corrupted training labels; and 4) in Section 4.5, we present an EM-based

scheme to learn the model parameters online, as an alternative to cross-validation.

The numerical study presented in Section 4.6 then confirms the efficacy, flexibility, and

speed afforded by our GAMP-based approaches to binary classification and feature

selection.
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4.1.1 Notation

Random quantities are typeset in sans-serif (e.g., e) while deterministic quantities are

typeset in serif (e.g., e). The pdf of random variable e under deterministic parameters

θ is written as pe(e; θ), where the subscript and parameterization are sometimes

omitted for brevity. Column vectors are typeset in boldface lower-case (e.g., y or y),

matrices in boldface upper-case (e.g., X or X), and their transpose is denoted by

(·)T. For vector y = [y1, . . . , yN ]T, ym:n refers to the subvector [ym, . . . , yn]
T. Finally,

N (a; b,C) is the multivariate normal distribution as a function of a, with mean b,

and with covariance matrix C, while φ(·) and Φ(·) denote the standard normal pdf

and cdf, respectively.

4.2 Generalized Approximate Message Passing

In this section, we introduce generalized approximate message passing (GAMP) from

the perspective of binary linear classification. In particular, we show that the sum-

product variant of GAMP is a loopy belief propagation (LBP) approximation of the

classification-error-rate minimizing linear classifier and that the max-sum variant of

GAMP is a LBP implementation of the standard regularized-loss-minimization ap-

proach to linear classifier design.

4.2.1 Sum-Product GAMP

Suppose that we are given M labeled training examples {ym,xm}Mm=1, and T test

feature vectors {xt}M+T
t=M+1 associated with unknown test labels {yt}M+T

t=M+1, all obeying

the noisy linear model (4.1) under some known error pdf pe, and thus known pym|zm .
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We then consider the problem of computing the classification-error-rate minimizing

hypotheses {ŷt}M+T
t=M+1,

ŷt = argmax
yt∈{−1,1}

pyt|y1:M

(
yt
∣∣y1:M ; X

)
, (4.4)

with y1:M := [y1, . . . , yM ]T and X := [x1, . . . ,xM+T ]T. Note that we treat the labels

{ym}M+T
m=1 as random but the features {xm}M+T

m=1 as deterministic parameters. The

probabilities in (4.4) can be computed via the marginalization

pyt|y1:M

(
yt
∣∣y1:M ; X

)
= pyt,y1:M

(
yt,y1:M ; X

)
C−1

y (4.5)

= C−1
y

∑

y∈Yt(yt)

∫
py,w(y,w; X) dw (4.6)

with scaling constant Cy := py1:M

(
y1:M ; X

)
, label vector y = [y1, . . . , yM+T ]T, and

constraint set Yt(y) := {ỹ ∈ {−1, 1}M+T s.t. [ỹ]t = y and [ỹ]m = ym ∀m = 1, . . . ,M}

which fixes the tth element of y at the value y and the first M elements of y at the

values of the corresponding training labels. The joint pdf in (4.6) factors as

py,w(y,w; X) =

M+T∏

m=1

pym|zm(ym |xT
mw)

N∏

n=1

pwn(wn) (4.7)

due to the model (4.1) and assuming a separable prior, i.e.,

pw(w) =
N∏

n=1

pwn(wn). (4.8)

The factorization (4.7) is illustrated using the factor graph in Fig. 4.1a, which con-

nects the various random variables to the pdf factors in which they appear. Although

exact computation of the marginal posterior test-label probabilities via (4.6) is com-

putationally intractable due to the high-dimensional summation and integration, the
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Figure 4.1: Factor graph representations of the integrand of (4.7), with white/grey circles denoting
unobserved/observed random variables, and rectangles denoting pdf “factors”.

factor graph in Fig. 4.1a suggests the use of loopy belief propagation (LBP) [28], and

in particular the sum-product algorithm (SPA) [55], as a tractable way to approximate

these marginal probabilities. Although the SPA guarantees exact marginal posteriors

only under non-loopy (i.e., tree-structured graphs), it has proven successful in many

applications with loopy graphs, such as turbo decoding [78], computer vision [57],

and compressive sensing [25–27].

Because a direct application of the SPA to the factor graph in Fig. 4.1a is itself

computationally infeasible in the high-dimensional case of interest, we turn to a re-

cently developed approximation: the sum-product variant of GAMP [27], as specified

in Algorithm 1. The GAMP algorithm is specified in Algorithm 1 for a given instan-

tiation of X, py|z, and {pwn}. There, the expectation and variance in lines 5-6 and

16-17 are taken elementwise w.r.t the GAMP-approximated marginal posterior pdfs
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(with superscript k denoting the iteration)

q(zm | p̂km, τkpm) = pym|zm(ym|zm)N (zm; p̂km, τ
k
pm)C−1

z (4.9)

q(wn | r̂kn, τkrn) = pwn(wn)N (wn; r̂
k
n, τ

k
rn)C

−1
w (4.10)

with appropriate normalizations Cz and Cw, and the vector-vector multiplications

and divisions in lines 3, 9, 11, 12, 14, 13, 20 are performed elementwise. Due to space

limitations, we refer the interested reader to [27] for an overview and derivation of

GAMP, to [30] for rigorous analysis under large i.i.d sub-Gaussian X, and to [107,108]

for fixed-point and local-convergence analysis under arbitrary X .

Applying GAMP to the classification factor graph in Fig. 4.1a and examining

the resulting form of lines 5-6 in Algorithm 1, it becomes evident that the test-label

nodes {yt}M+T
t=M+1 do not affect the GAMP weight estimates (ŵk, τ kw) and thus the

factor graph can effectively be simplified to the form shown in Fig. 4.1b, after which

the (approximated) posterior test-label pdfs are computed via

pyt|y1:M

(
yt|y1:M ; X

)
≈
∫
pyt|zt(yt|zt)N (zt; ẑ

∞
t , τ

∞
z,t) dzt (4.11)

where ẑ∞t and τ∞z,t denote the tth element of the GAMP vectors ẑk and τ k
z , respectively,

at the final iteration “k =∞.”

4.2.2 Max-Sum GAMP

An alternate approach to linear classifier design is through the minimization of a

regularized loss function, e.g.,

ŵ = argmin
w∈RN

M∑

m=1

fzm(x
T
mw) +

N∑

n=1

fwn(wn), (4.12)
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Algorithm 1 Generalized Approximate Message
Passing

Require: Matrix X, priors pwn(·), activa-
tion functions pym|zm(ym|·), and mode ∈
{SumProduct, MaxSum}

Ensure: k ← 0; ŝ−1← 0; S ← |X|2; ŵ0← 0;
τ 0
w←1

1: repeat
2: τ kp ← Sτ kw
3: p̂k ←Xŵk − ŝk−1τ kp
4: if SumProduct then
5: ẑk ← E{z | p̂k, τ kp}
6: τ k

z ← var{z | p̂k, τ kp}
7: else if MaxSum then
8: ẑk ← proxτkpfzm

(p̂k)

9: τ k
z ← τ kp prox′

τkpfzm
(p̂k)

10: end if
11: τ ks ← 1/τ kp − τ kz/(τ

k
p)

2

12: ŝk ← (ẑk − p̂k)/τ kp
13: τ kr ← 1/(STτ ks)
14: r̂k ← ŵk + τ krX

Tŝk

15: if SumProduct then
16: ŵk+1 ← E{w | r̂k, τ kr}
17: τ k+1

w ← var{w | r̂k, τ kr}
18: else if MaxSum then
19: ŵk+1 ← proxτkrfwn

(r̂k)

20: τ k+1
w ← τ k

r prox′
τkrfwn

(r̂k)
21: end if
22: k ← k + 1
23: until Terminated

where fzm(·) are ym-dependent convex loss functions (e.g., logistic, probit, or hinge

based) and where fwn(·) are convex regularization terms (e.g., fwn(w) = λw2 for ℓ2

regularization and fwn(w) = λ|w| for ℓ1 regularization).
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The solution to (4.12) can be recognized as the maximum a posteriori (MAP) es-

timate of random vector w given a separable prior pw(·) and likelihood corresponding

to (4.1), i.e.,

py|w(y|w; X) =
M∏

m=1

pym|zm(ym|xT
mw), (4.13)

when fzm(z) = − log pym|zm(ym|z) and fwn(w) = − log pwn(w). Importantly, this sta-

tistical model is exactly the one yielding the reduced factor graph in Fig. 4.1b.

Similar to how sum-product LBP can be used to compute (approximate) marginal

posteriors in loopy graphs, max-sum LBP can be used to compute the MAP estimate

[109]. Since max-sum LBP is itself intractable for the high-dimensional problems of

interest, we turn to the max-sum variant of GAMP [27], which is also specified in

Algorithm 1. There, lines 8-9 are to be interpreted as

ẑkm = proxτkpmfzm
(p̂km), m = 1, . . . ,M, (4.14)

τkzm = τkpm prox′
τkpmfzm

(p̂km), m = 1, . . . ,M, (4.15)

with (·)′ and (·)′′ denoting first and second derivatives and

proxτf (v) := argmin
u∈R

[
f(u) +

1

2τ
(u− v)2

]
(4.16)

prox′
τf (v) =

(
1 + τf ′′(proxτf (v))

)−1
, (4.17)

and lines 19–20 are to be interpreted similarly. It is known [107] that, for arbitrary

X, the fixed points of GAMP correspond to the critical points of the optimization

objective (4.12).
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4.2.3 GAMP Summary

In summary, the sum-product and max-sum variants of the GAMP algorithm provide

tractable methods of approximating the posterior test-label probabilities

{pyt|y1:M
(yt|y1:M)}M+T

t=T+1 and finding the MAP weight vector ŵ = argmaxw pw|y1:M
(w|y1:M),

respectively, under the label-generation model (4.13) [equivalently, (4.1)] and the sep-

arable weight-vector prior (4.8), assuming that the distributions py|z and {pwn} are

known and facilitate tractable scalar-nonlinear update steps 5-6, 8-9, 16-17, and 19-

20. In Section 4.4, we discuss the implementation of these update steps for several

popular activation functions; and in Section 4.5, we discuss how the parameters of

pym|zm and pwn can be learned online.

4.3 Predicting Misclassification Rate via State Evolution

As mentioned earlier, the behavior of GAMP in the large-system limit (i.e., M,N →

∞ with fixed ratio δ = M
N

) under i.i.d sub-Gaussian X is characterized by a scalar

state evolution [27, 30]. We now describe how this state evolution can be used to

characterize the test-error rate of the linear-classification GAMP algorithms described

in Section 4.2.

The GAMP state evolution characterizes average GAMP performance over an

ensemble of (infinitely sized) problems, each associated with one realization (y,X,w)

of the random triple (y,X,w). Recall that, for a given problem realization (y,X,w),

the GAMP iterations in Algorithm 1 yields the sequence of estimates {ŵk}∞k=1 of

the true weight vector w. Then, according to the state evolution, pw,ŵk(w, ŵ
k) ∼

∏
n pwn,ŵkn

(wn, ŵ
k
n) and the first two moments of the joint pdf pwn,ŵkn

can be computed

using [27, Algorithm 3].

Suppose that the (y,X) above represent training examples associated with a true
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weight vector w, and that (y, x) represents a test pair also associated with the same

w and with x having i.i.d elements distributed identically to those of X (with, say,

variance 1
M

). The true and iteration-k-estimated test scores are then z , xTw and

ẑk , xTŵ
k, respectively. The corresponding test-error rate5 Ek := Pr{y 6= sgn(ẑk)}

can be computed as follows. Letting I{·} denote an indicator function that assumes

the value 1 when its Boolean argument is true and the value 0 otherwise, we have

Ek = E
{
I{y 6=sgn(ẑk)}

}
(4.18)

=
∑

y∈{−1,1}

∫
I{y 6=sgn(ẑk)}

∫
py,ẑk,z(y, ẑ

k, z) dz dẑk (4.19)

=
∑

y∈{−1,1}

∫∫
I{y 6=sgn(ẑk)}py|z(y|z)pz,ẑk(z, ẑ

k) dz dẑk. (4.20)

Furthermore, from the definitions of (z, ẑk) and the bivariate central limit theorem,

we have that 


z

ẑk


 d−→ N (0,Σk

z) = N







0

0


 ,




Σk
11 Σk

12

Σk
21 Σk

22





 , (4.21)

where
d−→ indicates convergence in distribution. In Appendix E.1, it is shown that the

above matrix components are

Σk
11 = τx

N∑

n=1

[var{wn}+ E[wn]
2], Σk

22 = τx

N∑

n=1

[var{ŵk
n}+ E[ŵk

n]
2],

Σk
12 = Σk

21 = E[zẑk] = τx

N∑

n=1

[cov{wn, ŵ
k
n}+ E[wn]E[ŵk

n]]. (4.22)

for label-to-feature ratio δ. As described earlier, the above moments can be computed

using [27, Algorithm 3]. The integral in (4.20) can then be computed (numerically if

5For simplicity we assume a decision rule of the form ŷ
k = sgn(ẑk), although other decision rules

can be accommodated in our analysis.
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Figure 4.2: Test-error rate (a) and weight-vector MSE (b), versus training-to-feature ratio M/N
and discriminative-feature ratio K/N , calculated using empirical averaging (dashed)
and state-evolution prediction (solid), assuming i.i.d Bernoulli-Gaussian weight vectors
and a probit activation function.

needed) for a given activation function py|z, yielding an estimate of GAMP’s test-error

rate at the kth iteration.

To validate the accuracy of the above asymptotic analysis, we conducted a Monte-

Carlo experiment with data synthetically generated in accordance with the assumed

model. In particular, for each of 1000 problem realizations, a true weight vector

w ∈ RN was drawn i.i.d zero-mean Bernoulli-Gaussian and a feature matrix X was

drawn i.i.d Gaussian, yielding true scores z = Xw, from which the true labels y

were randomly drawn using a probit activation function py|z. A GAMP weight-vector

estimate ŵ∞ was then computed using the training data (y1:M ,X1:M), from which the

test-label estimates {ŷ∞t }M+T
t=M+1 with ŷ∞t = sgn(xT

t ŵ
∞) were computed and compared

to the true test-labels in order to calculate the test-error rate for that realization.

Figure 4.2a plots the Monte-Carlo averaged empirical test-error rates (dashed) and

state-evolution predicted rates (solid) as level curves over different combinations of

training ratio M
N

and discriminative-feature ratio K
N

, where K = ‖w‖0 and N = 1024.
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Similarly, Fig. 4.2b plots average empirical mean-squared error (MSE) versus state-

evolution predicted MSE, where MSE = 1
N

E{‖ŵ∞ −w‖22}.

In both Fig. 4.2a and Fig. 4.2b, the training-to-feature ratio M
N

increases from left

to right, and the discriminative-feature ratio K
N

increases from bottom to top. The re-

gion to the upper-left of the dash-dotted black line contains ill-posed problems (where

the number of discriminative features K exceeds the number of training samples M)

for which data was not collected. The remainders of Fig. 4.2a and Fig. 4.2b show

very close agreement between empirical averages and state-evolution predictions.

4.4 GAMP for Classification

Section 4.2 gave a high-level description of how the GAMP iterations in Algorithm 1

can be applied to binary linear classification and feature selection. In this section, we

detail the nonlinear steps used to compute (ẑ, τz) and (x̂, τx) in lines 5-6, 8-9, 16-17,

and 19-20 of Algorithm 1. For sum-product GAMP, we recall that the mean and

variance computations in lines 5-6 and 16-17 are computed based on the pdfs in (4.9)

and (4.10), respectively, and for max-sum GAMP the prox steps in 8-9 are computed

using equations (4.14)-(4.15) and those in 19-20 are computed similarly.

4.4.1 Logistic Classification Model

Arguably the most popular activation function for binary linear classification is the

logistic sigmoid [67, §4.3.2], [110]:

py|z(y|z;α) =
1

1 + exp(−yαz) , y ∈ {−1, 1} (4.23)

where α > 0 controls the steepness of the transition.

For logistic sum-product GAMP, we propose to compute the mean and variance
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(ẑ, τz) of the marginal posterior approximation (4.9) using the variational approach

in Algorithm 2, a derivation of which is provided in Appendix E.2. We note that

Algorithm 2 is reminiscent of the one presented in [67, §10.6], but is more general in

that it handles α 6= 1.

For logistic max-sum GAMP, ẑ from (4.14) solves the scalar minimization problem

(4.16) with f(u) = − log py|z(y|u;α) from (4.23), which is convex. To find this ẑ, we

use bisection search to locate the root of d
du

[f(u) + 1
2τ

(u − v)2]. The max-sum τz

from (4.15) can then be computed in closed form using ẑ and f ′′(·) via (4.17). Note

that, unlike the classical ML-based approach to logistic regression (e.g., [67, §4.3.3]),

GAMP performs only scalar minimizations and thus does not need to construct or

invert a Hessian matrix.

Algorithm 2 A Variational Approach
to Logistic Activation Functions for Sum-
Product GAMP

Require: Class label y ∈ {−1, 1}, logis-
tic scale α, and GAMP-computed pa-
rameters p̂ and τp (see (4.9))

Ensure: ξ ←
√
τp + |p̂|2

1: repeat

2: σ ←
(
1 + exp(−αξ)

)−1

3: λ← α
2ξ

(σ − 1
2
)

4: τz ← τp(1 + 2τpλ)−1

5: ẑ ← τz(p̂/τp + αy/2)

6: ξ ←
√
τz + |ẑ|2

7: until Terminated
8: return ẑ, τz
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Quantity Value

c
p̂√
v + τp

ẑ p̂+
yτpφ(c)

Φ(yc)
√
v + τp

τz τp −
τ 2
pφ(c)

Φ(yc)(v + τp)

(
yc+

φ(c)

Φ(c)

)

Table 4.1: Sum-product GAMP computations for probit activation function.

4.4.2 Probit Classification Model

Another popular activation function is the probit [67, §4.3.5]:

py|z(1|z; v) =

∫ z

−∞
N (τ ; 0, v)dτ = Φ

( z√
v

)
(4.24)

where py|z(−1|z) = 1− py|z(1|z) = Φ(− z√
v
) and where v > 0 controls the steepness of

the sigmoid.

Unlike the logistic case, the probit case leads to closed-form sum-product GAMP

computations. In particular, the density (4.9) corresponds to the posterior pdf of a

random variable z with prior N (p̂, τp) from an observation y = y measured under the

likelihood model (4.24). A derivation in [111, §3.9] provides the necessary expressions

for these moments when y = 1, and a similar exercise tackles the y =−1 case. For

completeness, the sum-product computations are summarized in Table 4.1. Max-sum

GAMP computation of (ẑ, τz) can be performed using a bisection search akin to that

described in Section 4.4.1.
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4.4.3 Hinge Loss Classification Model

In addition to the two preceding generalized linear models, another commonly used

choice for binary classification is a maximum-margin classifier—a classifier that (in

the linearly separable case) seeks a hyperplane that maximizes the perpendicular

distance to the closest point from either class (i.e., the margin). The popular support

vector machine (SVM) [112,113] is one such classifier.

As described in [67, §7.1], the SVM solves the following optimization problem:

min
w,b

M∑

m=1

ΘH(ym, zm) + λ‖w‖22,

s.t. zm = xT
mw + b ∀m, (4.25)

where ΘH(y, z) is the hinge loss function,

ΘH(y, z) , max(0, 1− yz). (4.26)

The hinge loss function (4.26) can be interpreted as the (negative) log-likelihood

corresponding to the following (improper) pdf:

py|z(y|z) ∝
1

exp(max(0, 1− yz)) . (4.27)

Despite being an improper likelihood, (4.27) can be paired with a variety of prior

distributions, p(w), in order to yield different flavors of maximum-margin classifiers

(e.g., a Gaussian prior with variance 1/2λ yields the SVM). As with both logistic and

probit regression, the max-sum GAMP updates can be efficiently computed using sim-

ple numerical optimization techniques. MMSE estimation via sum-product GAMP

can be accomplished in closed-form via an update procedure which is described in

Appendix E.3.
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4.4.4 A Method to Robustify Activation Functions

In some applications, a fraction γ ∈ (0, 1) of the training labels are known6 to be

corrupted, or at least highly atypical under a given activation model p∗y|z(y|z). As a

robust alternative to p∗y|z(y|z), Opper and Winther [114] proposed to use

py|z(y|z; γ) = (1− γ)p∗y|z(y|z) + γp∗y|z(−y|z) (4.28)

= γ + (1− 2γ)p∗y|z(y|z). (4.29)

We now describe how the GAMP nonlinear steps for an arbitrary p∗y|z can be used to

compute the GAMP nonlinear steps for a robust py|z of the form in (4.29).

In the sum-product case, knowledge of the non-robust quantities

ẑ∗ , 1
C∗
y

∫
z
z p∗y|z(y|z)N (z; p̂, τp), τ

∗
z , 1

C∗
y

∫
z
(z − ẑ∗)2 p∗y|z(y|z)N (z; p̂, τp), and C∗

y ,

∫
z
p∗y|z(y|z)N (z; p̂, τp) is sufficient for computing the robust sum-product quantities

(ẑ, τz), as summarized in Table 4.2. (See Appendix E.4 for details.)

In the max-sum case, computing ẑ in (4.14) involves solving the scalar minimiza-

tion problem in (4.16) with f(u) = − log py|z(y|u; γ) = − log[γ + (1 − 2γ)p∗y|z(y|u)].

As before, we use a bisection search to find ẑ and then we use f ′′(ẑ) to compute τz

via (4.17).

4.4.5 Weight Vector Priors

We now discuss the nonlinear steps used to compute (ŵ, τw), i.e., lines 16-17 and 19-

20 of Algorithm 1. These steps are, in fact, identical to those used to compute (ẑ, τz)

except that the prior pwn(·) is used in place of the activation function pym|zm(ym|·).

For linear classification and feature selection in the N ≫ M regime, it is customary

6A method to learn an unknown γ will be proposed in Section 4.5.
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Quantity Value

Cy
γ

γ + (1− 2γ)C∗
y

ẑ Cyp̂ + (1− Cy)ẑ∗

τz Cy(τp + p̂2) + (1− Cy)(τ ∗z + (ẑ∗)2)− ẑ2

Table 4.2: Sum-product GAMP computations for a robustified activation function. See text for
definitions of C∗

y , ẑ∗, and τ∗z .

to choose a prior pwn(·) that leads to sparse (or approximately sparse) weight vectors

w, as discussed below.

For sum-product GAMP, this can be accomplished by choosing a Bernoulli-p̃ prior,

i.e.,

pwn(w) = (1− πn)δ(w) + πnp̃wn(w), (4.30)

where δ(·) is the Dirac delta function, πn ∈ [0, 1] is the prior7 probability that wn=0,

and p̃wn(·) is the pdf of a non-zero wn. While Bernoulli-Gaussian [53] and Bernoulli-

Gaussian-mixture [106] are common choices, Section 4.6 suggests that Bernoulli-

Laplacian also performs well.

In the max-sum case, the GAMP nonlinear outputs (ŵ, τw) are computed via

ŵ = proxτrfwn
(r̂) (4.31)

τw = τr prox′
τrfwn

(r̂) (4.32)

for a suitably chosen regularizer fwn(w). Common examples include fwn(w) = λ1|w|

for ℓ1 regularization [25], fwn(w) = λ2w
2 for ℓ2 regularization [27], and fwn(w) =

λ1|w|+ λ2w
2 for the “elastic net” [62]. As described in Section 4.2.2, any regularizer

7In Section 4.5 we describe how a common π = πn ∀n can be learned.
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Quantity Value

S
P

G ŵ
(
¯
C

¯
µ+ C̄µ̄

)
/
(
¯
C + C̄

)

τw
(
¯
C(

¯
v +

¯
µ2) + C̄(v̄ + µ̄2)

)
/
(
¯
C+C̄

)
− ŵ2

M
S
G ŵ sgn(σr̈) max(|σr̈| − λ1σ

2, 0)

τw σ2 · I{ŵ 6=0}

Table 4.3: Sum-product GAMP (SPG) and max-sum GAMP (MSG) computations for the elastic-
net regularizer fwn

(w) = λ1|w| + λ2w
2, which includes ℓ1 or Laplacian-prior (via λ2 =0)

and ℓ2 or Gaussian-prior (via λ1 =0) as special cases. See Table 4.4 for definitions of C,
C̄, µ, µ̄, etc.

σ ,
√
τr/(2λ2τr + 1) r̈ , r̂/(σ(2λ2τr + 1))

¯
r , r̈ + λ1σ r̄ , r̈ − λ1σ

¯
C , λ1

2
exp

(
¯
r2−r̈2

2

)
Φ(–

¯
r) C̄ , λ1

2
exp

(
r̄2−r̈2

2

)
Φ(r̄)

¯
µ , σ

¯
r − σφ(–

¯
r)/Φ(–

¯
r) µ̄ , σr̄ + σφ(r̄)/Φ(r̄)

¯
v , σ2

[
1− φ(

¯
r)

Φ(
¯
r)

(
φ(

¯
r)

Φ(
¯
r)
−

¯
r
)]

v̄ , σ2
[
1− φ(r̄)

Φ(r̄)

(
φ(r̄)
Φ(r̄)

+r̄
)]

Table 4.4: Definitions of elastic-net quantities used in Table 4.3.

fwn can be interpreted as a (possibly improper) prior pdf pwn(w) ∝ exp(−fwn(w)).

Thus, ℓ1 regularization corresponds to a Laplacian prior, ℓ2 to a Gaussian prior, and

the elastic net to a product of Laplacian and Gaussian pdfs.

In Table 4.6, we give the sum-product and max-sum computations for the prior

corresponding to the elastic net, which includes both Laplacian (i.e., ℓ1) and Gaussian

(i.e., ℓ2) as special cases; a full derivation can be found in Appendix F.2. For the

Bernoulli-Laplacian case, these results can be combined with the Bernoulli-p̃ extension

in Table 4.6.
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Name py|z(y|z) Description Sum- Max-
Product Sum

Logistic ∝ (1 + exp(−αyz))−1 VI RF
Probit Φ

(
yz
v

)
CF RF

Hinge Loss ∝ exp(−max(0, 1− yz)) CF RF
Robust-p∗ γ + (1− 2γ)p∗y|z(y|z) CF RF

Table 4.5: Activity-functions and their GAMPmatlab sum-product and max-sum implementation
method: CF = closed form, VI = variational inference, RF = root-finding.

Name pwn(w) Description Sum- Max-
Product Sum

Gaussian N (w;µ, σ2) CF CF
GM

∑
l ωlN (w;µl, σ

2
l ) CF NI

Laplacian ∝ exp(−λ|w|) CF CF
Elastic Net ∝ exp(−λ1|w| − λ2w

2) CF CF
Bernoulli-p̃ (1− πn)δ(w) + πnp̃wn(w) CF NA

Table 4.6: Weight-coefficient priors and their GAMPmatlab sum-product and max-sum implemen-
tation method: CF = closed form, NI = not implemented, NA = not applicable.

4.4.6 The GAMP Software Suite

The GAMP iterations from Algorithm 1, including the nonlinear steps discussed in

this section, have been implemented in the open-source “GAMPmatlab” software

suite.8 For convenience, the existing activation-function implementations are sum-

marized in Table 4.5 and relevant weight-prior implementations appear in Table 4.6.

4.5 Automatic Parameter Tuning

The activation functions and weight-vector priors described in Section 4.4 depend

on modeling parameters that, in practice, must be tuned. For example, the logistic

8The latest source code can be obtained through the GAMPmatlab SourceForge Subversion repos-
itory at http://sourceforge.net/projects/gampmatlab/.
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sigmoid (4.23) depends on α; the probit depends on v; ℓ1 regularization depends on

λ; and the Bernoulli-Gaussian-mixture prior depends on π and {ωl, µl, σ2
l }Ll=1, where

ωl parameterizes the weight, µl the mean, and σ2
l the variance of the lth mixture

component. Although cross-validation (CV) is the customary approach to tuning

parameters such as these, it suffers from two major drawbacks: First, it can be very

computationally costly, since each parameter must be tested over a grid of hypothe-

sized values and over multiple data folds. For example, K-fold cross-validation tuning

of P parameters using G hypothesized values of each requires the training and evalua-

tion of KGP classifiers. Second, leaving out a portion of the training data for CV can

degrade classification performance, especially in the example-starved regime where

M ≪ N (see, e.g., [115]).

As an alternative to CV, we consider online learning of the unknown model pa-

rameters θ, employing two complementary strategies. The first strategy relies on a

traditional expectation-maximization (EM) approach [65] to parameter tuning, while

the second strategy leverages an alternative interpretation of sum-product GAMP as

a Bethe free entropy minimization algorithm [107].

4.5.1 Traditional EM Parameter Tuning

Our first approach to online learning employs a methodology described in [106, 116].

Here, the goal is to compute the maximum-likelihood estimate θ̂ML = argmaxθ py(y; θ),

where our data model implies a likelihood function of the form

py(y; θ) =

∫

w

∏

m

pym|zm(ym|xTw; θ)
∏

n

pwn(wn; θ). (4.33)

Because it is computationally infeasible to evaluate and/or maximize (4.33) directly,

we apply the expectation-maximization (EM) algorithm [65]. For EM, we treat w as
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the “hidden” data, giving the iteration-j EM update

θj = argmax
θ

Ew|y
{

log py,w(y,w; θ)
∣∣y; θj−1

}
(4.34)

= argmax
θ

∑

m

Ezm|y
{

log pym|zm(ym|zm; θ)
∣∣y; θj−1

}

+
∑

n

Ewn|y
{

log pwn(wn; θ)
∣∣y; θj−1

}
. (4.35)

Furthermore, to evaluate the conditional expectations in (4.35), GAMP’s posterior

approximations from (4.9)-(4.10) are used. It was shown in [117] that, in the large-

system limit, the estimates generated by this procedure are asymptotically consistent

(as j → ∞ and under certain identifiability conditions). Moreover, it was shown

in [106,116] that, for various priors and likelihoods of interest in compressive sensing

(e.g., AWGN likelihood, Bernoulli-Gaussian-Mixture priors, ℓ1 regularization), the

quantities needed from the expectation in (4.35) are implicitly computed by GAMP,

making this approach computationally attractive. However, because this EM proce-

dure runs GAMP several times, once for each EM iteration (although not necessarily

to convergence), the total runtime may be increased relative to that of GAMP without

EM.

In this chapter, we propose EM-based learning of the activation-function param-

eters, i.e., α in the logistic model (4.23), v in the probit model (4.24), and γ in the

robust model (4.29). Starting with α, we find that a closed-form expression for the

value maximizing (4.35) remains out of reach, due to the form of the logistic model

(4.23). So, we apply the same variational lower bound used for Algorithm 2, and find

that the lower-bound maximizing value of α obeys (see Appendix E.6)

0 =
∑

m

1
2
(ẑmym − ξm) +

ξm
1 + exp(αξm)

, (4.36)
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where ξm is the variational parameter being used to optimize the lower-bound and

ẑm , Ezm|y is computed in Algorithm 2. We then solve for α using Newton’s method.

To tune the probit parameter, v, we zero the derivative of (4.35) w.r.t v to obtain

0 =
∑

m

Ezm|y
{
∂
∂v

log pym|zm(ym|zm; v)
∣∣y; vj−1

}
(4.37)

=
∑

m

Ezm|y
{−c̈m(v)

v
φ(c̈m(v))Φ(c̈m(v))

−1
∣∣y; vj−1

}
, (4.38)

where c̈m(v) , (ymzm)/v. Since (4.38) is not easily solved in closed-form for v, we

numerically evaluate the expectation, and apply an iterative root-finding procedure

to locate the zero-crossing.

To learn γ, we include the corruption indicators β∈{0, 1}M in the EM-algorithm’s

hidden data (i.e., βm=0 indicates that ym was corrupt and βm=1 that it was not),

where an i.i.d assumption on the corruption mechanism implies the prior p(β; γ) =

∏M
m=1 γ

1−βm(1 − γ)βm. In this case, it is shown in Appendix E.5 that the update of

the γ parameter reduces to

γj = argmax
γ∈[0,1]

M∑

m=1

Eβm|y
[
log p(βm; γ)

∣∣y; θj−1
]

(4.39)

=
1

M

M∑

m=1

p(βm=0 |y; θj−1), (4.40)

where (4.40) leveraged E[βm|y; θj−1] = 1 − p(βm = 0|y; θj−1). Moreover, p(βm =

0|y; θj−1) is easily computed using quantities returned by sum-product GAMP.

4.5.2 Tuning via Bethe Free Entropy Minimization

While the EM learning strategy proposed above is oftentimes effective, in certain low

SNR regimes it can be outperformed by an alternative strategy that leverages a unique

interpretation of the sum-product GAMP algorithm, distinct from the interpretation

106



presented in Section 4.2.1. As proven in [107] and later intrepreted in the context

of Bethe free entropy in [118], the fixed points of the sum-product GAMP algorithm

coincide with critical points of the optimization problem

(fw, fz) = argmin
bw,bz

J(bw, bz) such that E[w|bw] = XE[z|bz] (4.41)

for the cost function

J(bw, bz) , D
(
bw‖pw

)
+D

(
bz‖py|zZ

−1
)

+Hgauss

(
bz, |X|2var{w|bw}

)
, (4.42)

where the optimization quantities bw and bz are separable pdfs over w and z respec-

tively, Z−1 =
∫

z
py|z(y|z) is the scaling factor that renders py|z(y|z)Z−1 a valid pdf

in z, D(·‖·) denotes Kullback-Leibler divergence,

Hgauss

(
bz, τ p

)
,

1

2

M∑

m=1

(
var{zm|bzm}

τpm
+ ln 2πτpm

)
(4.43)

is an upper bound on the entropy H(bz) that becomes tight when bz is separable

Gaussian with variances in τ p, and |X|2 is a matrix whose entries are elementwise

magnitude squared.

Recalling (4.9) and (4.10), the posterior approximations provided by GAMP have

the form

fw(w) =
N∏

n=1

q(wn | r̂kn, τkrn) (4.44)

fz(z) =

M∏

m=1

q(zm | p̂km, τkpm), (4.45)

for iteration k-dependent quantities r̂kn, τ
k
rn , p̂

k
m, τ

k
pm. When the latter quantities have
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converged, the resulting fw and fz are critical points of the optimization problem

(4.41).

Our alternative approach to parameter tuning of output channel (py|z-related)

parameters (discussed in [119] in the context of the simpler AMP algorithm) leverages

the fact that, in the large-system limit, the log-likelihood ln p(y; θ) equals the Bethe

free entropy J(fw, fz) for convergent (fw, fz). It can be shown that the latter manifests

as,

J(fw, fz) = D
(
fw‖pw

)
−

M∑

m=1

(
lnCz +

(ẑm − p̂m)2

2τpm

)
, (4.46)

wherein only the Cz term depends on θ, suggesting the tuning procedure

argmax
θ

M∑

m=1

log

∫

zm

N (zm; p̂m, τpm) pym|zm(ym|zm; θ). (4.47)

Note that (4.47) differs from (4.35) in that the logarithm has moved outside the

integral and the distribution over zm has changed.9

Armed with (4.47), we now turn our attention to tuning the probit variance

parameter, v. Substituting (4.24) into (4.47), we find

vk+1 = argmax
v

M∑

m=1

log

∫

zm

N (zm; p̂m, τpm) Φ

(
ymzm√

v

)
(4.48)

= argmax
v

M∑

m=1

log Φ

(
ymp̂m√
v + τpm)

)
, (4.49)

where in going from (4.48) to (4.49), we leveraged the same derivations used to

compute the sum-product GAMP updates given in Section 4.4.2. Differentiating

9The terms of the secondary summand in (4.35) are dropped since we are assuming that only
output channel parameters are being tuned.
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(4.49) w.r.t. v and setting equal to zero, we find that

0 =
M∑

m=1

−c(vk+1)ym(ẑm(vk+1)− p̂m)

2τpm(vk+1 + τpm)
, (4.50)

with c(v) and ẑm(v) defined in Table 4.1. Since further optimization of (4.50) is

difficult, we resort to Newton’s method to iteratively locate vk+1.

A Bethe free entropy-based update of the logistic scale parameter is somewhat

more involved; the interested reader can refer to Appendix E.7.

4.6 Numerical Study

In this section we describe several real and synthetic classification problems to which

GAMP was applied. Experiments were conducted on a workstation running Red Hat

Enterprise Linux (r2.4), with an Intel Core i7-2600 CPU (3.4 GHz, 8MB cache) and

8GB DDR3 RAM.

4.6.1 Text Classification and Adaptive Learning

As a first experiment, we considered a text classification problem drawn from the

Reuter’s Corpus Volume I (RCV1) dataset [120]. The dataset consists of manually

categorized Reuters newswire articles, organized into hierarchical topic codes. We

used a version of the dataset tailored to a binary classification problem,10 in which

topic codes CCAT and ECAT constituted the positive class, and GCAT and MCAT con-

stituted the negative class; each training example consists of a cosine-normalized

log transformation of a TF-IDF (term frequency-inverse document frequency) fea-

ture vector. The training dataset consists of 20,242 balanced training examples of

10Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
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N = 47,236 features, with 677,399 examples reserved for testing, however, following

the convention of [101, 121], we swapped training and testing sets in order to test

GAMP’s computational efficiency on a large training dataset (i.e., M = 677,399).

An interesting feature of the dataset is its sparsity; only 0.16% of the entries in X

are non-zero. Given the assumption of a dense, sub-Gaussian X used in deriving the

GAMP algorithm, it is not at all obvious that GAMP should even work on a problem

of such extreme sparsity. Remarkably, the sparsity does not appear to be problematic,

suggesting that the range of problems to which GAMP can be successfully applied

may be broader than previously believed.

In Table 4.7 we summarize the performance of several different types of GAMP

classifiers, as well as several other popular large-scale linear classifiers. Since linear

classifiers are known to perform well in text classification problems [121], and since

it is computationally advantageous to exploit the sparsity of X , we do not consider

kernel-based classifiers.

In the leftmost column of the table, we list the particular pairing of weight vector

prior and likelihood used for classification, with the message passing mode (sum-

product or max-sum) indicated in parentheses. The next column indicates whether

EM learning (with 5 EM iterations), or two-fold cross-validation (over a logarithmi-

cally spaced grid of 10 parameter values), was used to set the model parameter(s).

The test set accuracy is reported in the next column, followed by runtime, for which

we report two numbers. The first number is the total runtime needed to train the

classifier, including the EM learning or cross-validation parameter selection process.

The second number represents the time needed to train the classifier using the opti-

mal parameter values, as determined via EM or cross-validation. We remark that this

latter number is the one most often reported in the literature, but emphasize that it

paints an incomplete picture of the true computational cost of training a classifier.
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Classifier EM/x-val Accuracy (%) Runtime (s) Density (%)
Bernoulli-Gaussian + Probit (SP) EM 97.6 317 / 57 11.1
Bernoulli-Gaussian + Hinge (SP) EM 97.7 468 / 93 8.0

Laplacian + Logistic (MS) EMa 97.6 684 / 123 9.8
Laplacian + Logistic (MS) x-val 97.6 3068 / 278 19.6

CDN [101] x-val 97.7 1298 / 112 10.9
TRON [122] x-val 97.7 1682 / 133 10.8

TFOCS (Laplacian + Logistic) [123] x-val 97.6 1086 / 94 19.2

aAn approximate EM scheme is used when running GAMP in max-sum mode.

Table 4.7: A comparison of different classifiers (SP: sum-product; MS: max-sum), their parameter
tuning approach, test set accuracy, total/optimal runtime, and final model density on the
RCV1 binary dataset (w/ training/testing sets flipped).

The final column reports the model density (i.e., the fraction of features selected by

the classifier) of the estimated weight vector.11

The RCV1 dataset is popular for testing large-scale linear classifiers (see, e.g.,

[101,121]), and we note that our EM and cross-validation procedures yield accuracies

that are competitive with those of other state-of-the-art large-scale linear classifiers,

e.g., CDN. We also caution that runtime comparisons between the GAMP classifiers,

CDN, and TRON are not apples-to-apples; CDN and TRON are implemented in

C++, while GAMP is implemented in MATLAB. Furthermore, while all algorithms

used a stopping tolerance of ε = 1×10−3, their stopping conditions are all slightly

different.

4.6.2 Robust Classification

In Section 4.4.4, we proposed an approach by which GAMP can be made robust to

labels that are corrupted or otherwise highly atypical under a given activation model

11In sum-product mode (which corresponds to MMSE estimation) the estimated weight vec-
tor will, in general, have many small, but non-zero, entries. In order to identify the impor-
tant/discriminative features, we calculate posteriors of the form π̂n , p(wn 6= 0|y), and include
only those features for which π̂n > 1/2 in our final model density estimate.
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p∗y|z. We now evaluate the performance of this robustification method. To do so, we

first generated examples12 (ym,xm) with balanced classes such that the Bayes-optimal

classification boundary is a hyperplane with a desired Bayes error rate of εB. Then,

we flipped a fraction γ of the training labels (but not the test labels), trained several

different varieties of GAMP classifiers, and measured their classification accuracy on

the test data.

The first classifier we considered paired a genie-aided “standard logistic” activa-

tion function, (4.23), with an i.i.d. zero-mean, unit-variance Gaussian weight vector

prior. Note that under a class-conditional Gaussian generative distribution with bal-

anced classes, the corresponding activation function is logistic with scale parameter

α = 2Mµ [110]. Therefore, the genie-aided logistic classifier was provided the true

value of µ, which was used to specify the logistic scale α. The second classifier we

considered paired a genie-aided robust logistic activation function, which possessed

perfect knowledge of both µ and the mislabeling probability γ, with the aforemen-

tioned Gaussian weight vector prior. To understand how performance is impacted

by the parameter tuning scheme of Section 4.5, we also trained EM variants of the

preceding classifiers. The EM-enabled standard logistic classifier was provided a fixed

logistic scale of α = 100, and was allowed to tune the variance of the weight vector

prior. The EM-enabled robust logistic classifier was similarly configured, and in ad-

dition was given an initial mislabeling probability of γ0 = 0.01, which was updated

according to (4.40).

In Fig. 4.3, we plot the test error rate for each of the four GAMP classifiers as a

function of the mislabeling probability γ. For this experiment, µ was set so as to yield

12Data was generated according to a class-conditional Gaussian distribution with N discriminatory
features. Specifically, given the label y ∈ {−1, 1} a feature vector x was generated as follows:
entries of x were drawn i.i.d N (yµ,M−1) for some µ > 0. Under this model, with balanced
classes, the Bayes error rate can be shown to be εB = Φ(−

√
NMµ). The parameter µ can then

be chosen to achieve a desired εB.
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Figure 4.3: Test error rate of genie-aided (solid curves) and EM-tuned (dashed curves) instances
of standard logistic (2) and robust logistic (◦) classifiers, as a function of mislabeling
probability γ, with M = 8192, N = 512, and Bayes error rate εB = 0.05.

a Bayes error rate of εB = 0.05. M = 8192 training examples of N = 512 training

features were generated independently, with the test set error rate evaluated based on

1024 unseen (and uncorrupted) examples. Examining the figure, we can see that EM

parameter tuning is beneficial for both the standard and robust logistic classifiers,

although the benefit is more pronounced for the standard classifier. Remarkably,

both the genie-aided and EM-tuned robust logistic classifiers are able to cope with

an extreme amount of mislabeling while still achieving the Bayes error rate, thanks

in part to the abundance of training data.

4.6.3 Multi-Voxel Pattern Analysis

Multi-voxel pattern analysis (MVPA) has become an important tool for analyzing

functional MRI (fMRI) data [88,124,125]. Cognitive neuroscientists, who study how

the human brain functions at a physical level, employ MVPA not to infer a subject’s
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cognitive state but to gather information about how the brain itself distinguishes

between cognitive states. In particular, by identifying which brain regions are most

important in discriminating between cognitive states, they hope to learn the underly-

ing processes by which the brain operates. In this sense, the goal of MVPA is feature

selection, not classification.

To investigate the performance of GAMP for MVPA, we conducted an experiment

using the well-known Haxby dataset [88]. The Haxby dataset consists of fMRI data

collected from 6 subjects with 12 “runs” per subject. In each run, the subject pas-

sively viewed 9 greyscale images from each of 8 object categories (i.e., faces, houses,

cats, bottles, scissors, shoes, chairs, and nonsense patterns), during which full-brain

fMRI data was recorded over N = 31 398 voxels.

In our experiment, we designed classifiers that predict binary object category

(e.g., cat vs. scissors) from M examples of N -voxel fMRI data collected from a single

subject. For comparison, we tried three algorithms: i) ℓ1-penalized logistic regression

(L1-LR) as implemented using cross-validation-tuned TFOCS [123], ii) L1-LR as

implemented using EM-tuned max-sum GAMP, and iii) sum-product GAMP under

a Bernoulli-Laplace prior and logistic activation function (BL-LR).

Algorithm performance (i.e., error-rate, sparsity, consistency) was assessed using

12-fold leave-one-out cross-validation. In other words, for each algorithm, 12 separate

classifiers were trained, each for a different combination of 1 testing fold (used to

evaluate error-rate) and 11 training folds. The reported performance then represents

an average over the 12 classifiers. Each fold comprised one of the runs described

above, and thus contained 18 examples (i.e., 9 images from each of the 2 object

categories constituting the pair), yielding a total of M = 11 × 18 = 198 training

examples. Since N = 31 398, the underlying problem is firmly in the N ≫M regime.

To tune each TFOCS classifier (i.e., select its ℓ1 regularization weight λ), we used
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Error Rate (%) Sparsity (%)
Comparison TFOCS L1-LR BL-LR TFOCS L1-LR BL-LR

Cat vs. Scissors 9.7 11.1 14.8 0.1 0.07 0.03
Cat vs. Shoe 6.1 6.1 20.8 0.14 0.07 0.03
Cat vs. House 0.4 0.0 0.9 0.04 0.02 0.03
Bottle vs. Shoe 29.6 30.5 33.3 0.2 0.1 0.04
Bottle vs. Chair 13.9 13.9 13.4 0.1 0.07 0.03
Face vs. Chair 0.9 0.9 5.1 0.09 0.045 0.03

Consistency (%) Runtime (s)
Comparison TFOCS L1-LR BL-LR TFOCS L1-LR BL-LR

Cat vs. Scissors 38 43 23 1318 137 158
Cat vs. Shoe 34 47 15 1347 191 154
Cat vs. House 53 87 52 1364 144 125
Bottle vs. Shoe 23 31 7 1417 166 186
Bottle vs. Chair 30 45 37 1355 150 171
Face vs. Chair 43 67 25 1362 125 164

Table 4.8: Performance of L1-LR TFOCS (“TFOCS”), L1-LR EM-GAMP (“L1-LR”), and BL-LR
EM-GAMP (“BL-LR”) classifiers on various Haxby pairwise comparisons.

a second level of leave-one-out cross-validation. For this, we first chose a fixed G=10-

element grid of logarithmically spaced λ hypotheses. Then, for each hypothesis, we

designed 11 TFOCS classifiers, each of which used 10 of the 11 available folds for

training and the remaining fold for error-rate evaluation. Finally, we chose the λ hy-

pothesis that minimized the error-rate averaged over these 11 TFOCS classifiers. For

EM-tuned GAMP, there was no need to perform the second level of cross-validation:

we simply applied the EM tuning strategy described in Section 4.5 to the 11-fold

training data.

Table 4.8 reports the results of the above-described experiment for six pairwise

comparisons. There, sparsity refers to the average percentage of non-zero13 elements

13The weight vectors learned by sum-product GAMP contained many entries that were very small
but not exactly zero-valued. Thus, the sparsity reported in Table 4.8 is the percentage of weight-
vector entries that contained 99% of the weight-vector energy.
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in the learned weight vectors. Consistency refers to the average Jaccard index between

weight-vector supports, i.e.,

consistency :=
1

12

12∑

i=1

1

11

∑

j 6=i

|Si ∩ Sj|
|Si ∪ Sj|

(4.51)

where Si denotes the support of the weight vector learned when holding out the ith

fold. Runtime refers to the total time used to complete the 12-fold cross-validation

procedure.

Ideally, we would like an algorithm that computes weight vectors with low cross-

validated error rate, that are very sparse, that are consistent across folds, and that

are computed very quickly. Although Table 4.8 reveals no clear winner, it does reveal

some interesting trends. Comparing the results for TFOCS and EM-GAMP (which

share the L1-LR objective but differ in minimization strategy and tuning), we see

similar error rates. However, EM-GAMP produced classifiers that were uniformly

more sparse, more consistent, and did so with runtimes that were almost an order-

of-magnitude faster. We attribute the faster runtimes to the tuning strategy, since

cross-validation-tuning required the design of 11 TFOCS classifiers for every EM-

GAMP classifier. In comparing BL-LR to the other two algorithms, we see that its

error rates are not as good in most cases, but that the resulting classifiers were usually

much sparser. The runtime of BL-LR is similar to that of L1-LR GAMP, which is

not surprising since both use the same EM-based tuning scheme.

4.7 Conclusion

In this chapter, we presented the first comprehensive study of the generalized ap-

proximate message passing (GAMP) algorithm [27] in the context of linear binary
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classification. We established that a number of popular discriminative models, in-

cluding logistic and probit regression, and support vector machines, can be imple-

mented in an efficient manner using the GAMP algorithmic framework, and that

GAMP’s state evolution formalism can be used in certain instances to predict the

misclassification rate of these models. In addition, we demonstrated that a number

of sparsity-promoting weight vector priors can be paired with these activation func-

tions to encourage feature selection. Importantly, GAMP’s message passing frame-

work enables us to learn the hyperparameters that govern our probabilistic models

adaptively from the data using expectation-maximization (EM), a trait which can be

advantageous when cross-validation proves infeasible. The flexibility imparted by the

GAMP framework allowed us to consider several modifications to the basic discrim-

inative models, such as robust classification, which can be effectively implemented

using existing non-robust modules. Moreover, by embedding GAMP within a larger

probabilistic graphical model, it is possible to consider a wide variety of structured

priors on the weight vector, e.g., priors that encourage spatial clustering of important

features.

In a numerical study, we confirmed the efficacy of our approach on both real

and synthetic classification problems. For example, we found that the proposed

EM parameter tuning can be both computationally efficient and accurate in the

applications of text classification and multi-voxel pattern analysis. We also observed

on synthetic data that the robust classification extension can substantially outperform

a non-robust counterpart.
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reconstruction in compressed sensing: algorithms, phase diagrams, and thresh-
old achieving matrices,” J. Stat. Mechanics, vol. 2012, no. 08, p. P08009, 2012.

[120] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new benchmark collec-
tion for text categorization research,” J. Mach. Learn. Res., vol. 5, pp. 361–397,
2004.

[121] C. Lin, R. C. Weng, and S. S. Keerthi, “Trust region Newton methods for large-
scale logistic regression,” in Proc. 24th Int’l Conf. Mach. Learn., (Corvallis,
OR), pp. 561–568, 2007.
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Appendix A

THE BASICS OF BELIEF PROPAGATION AND (G)AMP

In this appendix, we provide a brief primer on belief propagation, the approximate

message passing (AMP) algorithmic framework proposed by Donoho, Maleki, and

Montanari [25,26], and the generalized AMP (GAMP) framework developed by Ran-

gan [27, 126].1 To begin with, we consider the task of estimating a signal vector

x ∈ CN from linearly compressed and AWGN-corrupted measurements:

y = Ax + e ∈ C
M . (A.1)

AMP can be derived from the perspective of loopy belief propagation (LBP)

[28, 55], a Bayesian inference strategy that is based on a factorization of the signal

posterior pdf, p(x|y), into a product of simpler pdfs that, together, reveal the prob-

abilistic structure in the problem. Concretely, if the signal coefficients, x, and noise

samples, e, in (A.1) are jointly independent such that px(x) =
∏N

n=1 px(xn) and

py|z(y|z) =
∏M

m=1 py|z(ym|zm) =
∏M

m=1 CN (ym; zm, σ
2
e), where zm , aT

mx, then the

posterior pdf factors as

p(x|y) ∝
M∏

m=1

CN (ym; aT
mx, σ2

e)

N∏

n=1

px(xn), (A.2)

1Portions of this primer are courtesy of material first published in [127].
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CN (ym; aTx, σ2
e) xn p(xn)

Figure A.1: The factor graph representation of the decomposition of (A.2).

yielding the factor graph in Fig. A.1.

In belief propagation [56], messages representing beliefs about the unknown vari-

ables are exchanged amongst the nodes of the factor graph until convergence to a

stable fixed point occurs. The set of beliefs passed into a given variable node are

then used to infer statistical properties of the associated random variable, e.g., the

posterior mode, or a complete posterior distribution. The sum-product algorithm [55]

is perhaps the most well-known approach to belief propagation, wherein the messages

take the form of probability distributions, and exact posteriors are guaranteed when-

ever the graph does not have cycles (“loops”). For graphs with cycles, exact inference

is known to be NP-hard, and so LBP is not guaranteed to produce correct posteri-

ors. Still, it has shown state-of-the-art performance on a wide array of challenging

inference problems, as noted in Section 3.3.2.

The conventional wisdom surrounding LBP says that accurate inference is possible

only when the factor graph is locally tree-like, i.e., the girth of any cycle is relatively

large. With (A.1), this would require that A is an appropriately constructed sparse

matrix, which precludes some of the most interesting CS problems. Surprisingly, in

recent work, it was established that LBP-inspired compressive sensing, via AMP, is

both feasible [25,26] for dense A matrices, and provably accurate [29]. In particular,
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Figure A.2: The GAMP system model.

in the large-system limit (i.e., as M,N →∞ with M/N fixed) and under i.i.d. sub-

Gaussian A, the iterations of AMP are governed by a state-evolution whose fixed

point—when unique—yields the true posterior means. Interestingly, not only can

AMP solve the compressive sensing problem (A.1), but it can do so much faster, and

more accurately, than other state-of-the-art methods, whether optimization-based,

greedy, or Bayesian. To accomplish this feat, [25, 26] proposed a specific set of ap-

proximations that become accurate in the limit of large, dense A matrices, yielding

algorithms that give accurate results using only ≈ 2MN flops-per-iteration, and rel-

atively few iterations (e.g., tens).

Generalized AMP (GAMP) extends the AMP framework to settings in which

the relationship between ym and zm is (possibly) nonlinear. The system model for

GAMP is illustrated in Fig. A.2. The difference between this system model, and that

of AMP, is that GAMP allows for arbitrary separable “output channels,” py|z(ym|zm).

This is advantageous when considering categorical output variables, {ym}, as in the

classification problem described in Chapter 4.

The specific implementation of any (G)AMP algorithm will depend on the partic-

ular choices of likelihood, py|z(y|z), and prior, px(x), but ultimately amounts to an

iterative, scalar soft-thresholding procedure with a carefully chosen adaptive thresh-

olding strategy. Deriving the appropriate thresholding functions for a particular
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signal model can be accomplished by computing scalar sum-product, or max-sum,

updates of a simple form (see, e.g., Algorithm 1 of Section 4.2 for the generic GAMP

algorithm).
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Appendix B

TAYLOR SERIES APPROXIMATION OF νMOD

F
(t)
n →θ(t)n

In this appendix we summarize the procedure used to collapse the binary Gaussian

mixture of (2.12) to a single Gaussian. For simplicity, we drop the n and (t) sub- and

superscripts.

Let θr , Re{θ}, let θi , Im{θ}, and let φr and φi be defined similarly. Define

g̃(θr, θi) , νmod
f→θ(θr + jθi),

= (1− Ω(
↼
π)) CN (θr + jθi;

1
ε
φ, 1

ε2
c) + Ω(

↼
π) CN (θr + jθi;φ, c)

f̃(θr, θi) , − log g̃(θr, θi).

Our objective is to approximate f̃(θr, θi) using a two-dimensional second-order Taylor

series expansion, f̆(θr, θi), about the point φ:

f̆(θr, θi) = f̃(φr, φi) + (θr − φr)
∂f̃

∂θr
+ (θi − φi)

∂f̃

∂θi

+
1

2

[
(θr − φr)2∂

2f̃

∂θ2
r

+ (θr − φr)(θi − φi)
∂2f̃

∂θr∂θi
+ (θi − φi)2∂

2f̃

∂θ2
i

]
,

with all partial derivatives evaluated at φ. It can be shown that, for Taylor series

expansions about the point φ, ∂2f
∂θr∂θi

= O(ε2) and
∣∣∣∂

2f
∂θ2r
− ∂2f

∂θ2i

∣∣∣ = O(ε2). Since ε≪ 1,

it is reasonable to therefore adopt a further approximation and assume ∂2f̃
∂θr∂θi

= 0 and
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∂2f̃
∂θ2r

= ∂2f̃
∂θ2i

. With this approximation, note that

exp(−f̆(θr, θi)) ∝ CN (θr + jθi;
⇀

ξ,
⇀

ψ),

with

⇀

ψ , 2
∂2f̃

∂θ2
r

−1

, (B.1)

⇀

ξ , φr + jφi −
⇀

ψ

2

(
∂f̃

∂θr
+ j

∂f̃

∂θi

)
. (B.2)

The pseudocode function, taylor approx, that computes (B.1), (B.2) given the param-

eters of νmod
f→θ(·) is provided in Table 2.3.
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Appendix C

DCS-AMP MESSAGE DERIVATIONS

In this appendix, we provide derivations of the various messages needed to implement

the DCS-AMP algorithm, as summarized in the pseudocode of Table 3.2. To aid our

derivations, in Fig. C.1 we reproduce the message summary figure from Section 3.3.2.

Directed edges indicate the direction that messages are moving. In the (across)

phase, we only illustrate the messages involved in a forward pass for the amplitude

variables, and leave out a graphic for the corresponding backward pass, as well as

graphics for the support variable (across) phase. Note that, to be applicable at

frame T , the factor node d
(t+1)
n and its associated edge should be removed. The figure

also introduces the notation that we adopt for the different variables that serve to

parameterize the messages. For Bernoulli message pdfs, we show only the non-zero

probability, e.g.,
⇀

λ
(t)

n = ν
h
(t)
n →s

(t)
n

(s
(t)
n = 1).

In the following subsections we will define the quantities that are shown in Fig. C.1,

and illustrate how one can obtain estimates of {x(t)}Tt=0. We use k to denote a DCS-

AMP algorithmic iteration index. We primarily restrict our attention to the forward

portion of the forward/backward pass, noting that most of the quantities can be

straightforwardly obtained in the backward portion by a simple substitution of certain

indices, (e.g., replacing
↼

λk−1
nt with

↼

λknt). The notation kf and kb is used to distinguish

between the kth message on the forward portion of the forward/backward pass and

the kth message (if smoothing) on the backward portion of the pass. The reader may
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Figure C.1: A summary of the four message passing phases, including message notation and form.

find the following relation useful for the subsequent derivations:
∏

q CN (x;µq, vq) ∝

CN
(
x;

P

q µq/vq
P

q 1/vq
, 1

P

q 1/vq

)
.

C.1 Derivation of (into) Messages

We begin by looking at the messages that are moving into a frame. First, we derive

ν
kf

s
(t)
n →f

(t)
n

(s
(t)
n ), which will define the message passing quantity

↼
π
kf
nt . For the case 0 ≤

t ≤ T − 1, obeying the sum-product update rules [55] gives

ν
kf

s
(t)
n →f

(t)
n

(s(t)
n ) ∝ νk

h
(t)
n →s

(t)
n

(s(t)
n ) · νk−1

h
(t+1)
n →s

(t)
n

(s(t)
n )

=
⇀

λknt ·
↼

λk−1
nt .
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After appropriate scaling in order to yield a valid pmf, we obtain

ν
kf

s
(t)
n →f

(t)
n

(s(t)
n ) =

⇀

λknt ·
↼

λk−1
nt

(1−
⇀

λknt) · (1−
↼

λk−1
nt ) +

⇀

λknt ·
↼

λk−1
nt︸ ︷︷ ︸

,
↼
π
kf
nt

. (C.1)

For the case t = T , ν
kf

s
(T )
n →f

(T )
n

(s
(T )
n ) = νk

h
(T )
n →s

(T )
n

(s
(T )
n ) =

⇀

λknT ,
↼
π
kf
nT .

Next, we derive ν
kf

θ
(t)
n →f

(t)
n

(θ
(t)
n ), which will define the quantities

↼

ξ
kf
nt and

↼

ψ
kf
nt . For

the case 0 ≤ t ≤ T − 1,

ν
kf

θ
(t)
n →f

(t)
n

(θ(t)
n ) ∝ νk

d
(t)
n →θ

(t)
n

(θ(t)
n ) · νk−1

d
(t+1)
n →θ

(t)
n

(θ(t)
n )

= CN
(
θ(t)
n ;

⇀
ηknt,

⇀
κknt
)
· CN

(
θ(t)
n ;

↼
ηk−1
nt ,

↼
κk−1
nt

)

∝ CN
(
θ(t)
n ;

( ⇀
κknt ·

↼
κk−1
nt

⇀
κknt +

↼
κk−1
nt

)(⇀
ηknt
⇀
κknt

+
↼
ηk−1
nt

↼
κk−1
nt

)
,

( ⇀
κknt ·

↼
κk−1
nt

⇀
κknt +

↼
κk−1
nt

))

= CN
(
θ(t)
n ;

↼

ξ
kf
nt ,

↼

ψ
kf
nt

)
, (C.2)

where

↼

ψ
kf
nt ,

⇀
κknt ·

↼
κk−1
nt

⇀
κknt +

↼
κk−1
nt

, (C.3)

↼

ξ
kf
nt ,

↼

ψ
kf
nt ·
(⇀
ηknt
⇀
κknt

+
↼
ηk−1
nt

↼
κk−1
nt

)
. (C.4)

For the case t = T , ν
kf

θ
(T )
n →f

(T )
n

(θ
(T )
n ) = CN (θ

(T )
n ;

↼

ξ
kf
nT ,

↼

ψ
kf
nT ), where

↼

ξ
kf
nT ,

⇀
ηknT , and

↼

ψ
kf
nT ,

⇀
κknT .

Lastly, we derive the message ν
kf

f
(t)
n →x

(t)
n

(x
(t)
n ), which sets the “local prior” for the
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next execution of the AMP algorithm. Following the sum-product message compu-

tation rules,

ν
kf

f
(t)
n →x

(t)
n

(x(t)
n ) ∝

∑

s
(t)
n ={0,1}

∫

θ
(t)
n

f (t)
n (x(t)

n , s
(t)
n , θ

(t)
n ) · νkf

s
(t)
n →f

(t)
n

(s(t)
n ) · νkf

θ
(t)
n →f

(t)
n

(θ(t)
n )

= ν
kf

s
(t)
n →f

(t)
n

(0)

∫

θ
(t)
n

δ(x(t)
n ) · νkf

θ
(t)
n →f

(t)
n

(θ(t)
n )dθ(t)

n

+ ν
kf

s
(t)
n →f

(t)
n

(1)

∫

θ
(t)
n

δ(x(t)
n − θ(t)

n ) · νkf
θ
(t)
n →f

(t)
n

(θ(t)
n )dθ(t)

n

= (1− ↼
π
kf
nt )

∫

u

δ(x(t)
n ) · CN (θ(t)

n ;
↼

ξ
kf
nt ,

↼

ψ
kf
nt )dθ

(t)
n

+
↼
π
kf
nt

∫

θ
(t)
n

δ(x(t)
n − θ(t)

n ) · CN (θ(t)
n ;

↼

ξ
kf
nt ,

↼

ψ
kf
nt )dθ

(t)
n

= (1− ↼
π
kf
nt )δ(x

(t)
n ) +

↼
π
kf
nt CN (x(t)

n ;
↼

ξ
kf
nt ,

↼

ψ
kf
nt ) (C.5)

C.2 Derivation of (within) Messages

Since we are now focusing our attention only on messages passing within a single

frame, and since these messages only depend on quantities that have been defined

within that frame, in this subsection we will drop both the timestep indexing, t, and

the forward/backward pass iteration indexing, kf (or kb), in order to simplify notation.

Thus
↼
π
kf
nt ,

↼

ξ
kf
nt , and

↼

ψ
kf
nt become

↼
πn,

↼

ξn, and
↼

ψn respectively. Likewise, f
(t)
n , x

(t)
n , g

(t)
m ,

y
(t)
m , and A(t) become fn, xn, gm, ym, and A, respectively. New variables defined in

this section also retain an implicit dependence on both t and kf/kb. Additionally, we

introduce a new index, i, which will serve to keep track of the multiple iterations of

messages that pass back and forth between the {x(t)
n } and {g(t)

m } nodes within a frame

during a single forward/backward pass.

Exact evaluation of νixn→gm(xn) and νigm→xn(xn) according to the rules of the stan-

dard sum-product algorithm would require the evaluation of many multi-dimensional
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non-Gaussian integrals, which, for any appreciable size problem, quickly becomes in-

tractable. Prior to introducing the AMP formalism, we first derive approximate belief

propagation (BP) messages. These approximate BP messages are motivated by an ob-

servation that, for a sufficiently dense factor graph, the many non-Gaussian messages

that arrive at a given gm node yield, upon marginalizing according to the sum-product

update rules, a message that can be well-approximated by a Gaussian (by appealing

to central limit theorem arguments). It turns out that, if νigm→xn(xn) is approximately

Gaussian, we do not need to know the precise form of νixn→gm(xn). Rather, it suffices to

know just the mean and variance of the distribution. Let µimn ,
∫
xn
xnν

i
xn→gm(xn)dxn

denote the mean, and vimn ,
∫
xn
|xn− µimn|2νixn→gm(xn)dxn denote the variance. Un-

der the assumption of Gaussianity for νigm→xn(xn), it can be shown (see, e.g., [53])

that the sum-product update rules imply that

νigm→xn(xn) = CN
(
xn;

zimn
Amn

,
cimn
|Amn|2

)
, (C.6)

zimn , ym −
∑

q 6=n
Amqµ

i
mq, (C.7)

cimn , σ2
e +

∑

q 6=n
|Amq|2vimq, (C.8)

where Amn refers to the (m,n)th element of A. In order to compute µi+1
mn and vi+1

mn ,

that is, the mean and variance of the message νi+1
xn→gm(xn), we must determine the

mean and variance of the right-hand-side of the equation

νi+1
xn→gm(xn) ∝ νfn→xn(xn)

∏

l 6=m
νigl→xn(xn). (C.9)
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Inserting (C.5) and (C.6) into (C.9) yields

νi+1
xn→gm(xn) ∝

[
(1− ↼

πn) δ(xn) +
↼
πn CN (xn;

↼

ξn,
↼

ψn)
]

×CN
(
xn;

∑
l 6=mA

∗
lnz

i
ln/c

i
ln∑

l 6=m |Aln|2/ciln
,

1∑
l 6=m |Aln|2/ciln

)
. (C.10)

In the large-system limit (M,N → ∞ with M/N fixed), ciln ≈ cin , 1
M

∑M
m=1 c

i
mn,

and, since the columns of A are of unit-norm,
∑

l 6=m |Aln|2 ≈ 1. Consequently, (C.10)

simplifies to

νi+1
xn→gm(xn) ∝

[
(1− ↼

πn) δ(xn) +
↼
πn CN (xn;

↼

ξn,
↼

ψn)
]

×CN
(
xn;
∑

l 6=mA
∗
lnz

i
ln, c

i
n

)
. (C.11)

Now, if we define

φimn ,
∑

l 6=m
A∗
lnz

i
ln, (C.12)

γimn ,
(1− ↼

πn) CN
(
0;φimn, c

i
n

)

↼
πn CN

(
0;φimn −

↼

ξn, cin +
↼

ψn
) , (C.13)

v̄in ,
cin

↼

ψn

cin +
↼

ψn
, (C.14)

µ̄imn , v̄in

(
φimn
cin

+

↼

ξn
↼

ψn

)
, (C.15)

then (C.11) can be rewritten (after appropriate normalization to yield a valid pdf) as

νi+1
xn→gm(xn) =

(
γimn

1 + γimn

)
δ(xn) +

(
1

1 + γimn

)
CN (xn; µ̄

i
mn, v̄

i
n). (C.16)

Equation (C.16) represents a Bernoulli-Gaussian pdf. The mean, µi+1
mn , and variance,

vi+1
mn , are therefore the mean and variance of a random variable distributed according
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to (C.16), namely

µi+1
mn =

µ̄imn
1 + γimn

(C.17)

vi+1
mn =

v̄in
1 + γimn

+ γimn|µi+1
mn |2. (C.18)

C.3 Derivation of Signal MMSE Estimates

Once again, we drop the t and kf (or kb) indices in what follows.

A minimum mean squared error (MMSE) estimate of a coefficient xn is given

by the mean of its posterior distribution, p(xn|y). Additionally, the variance of the

posterior distribution characterizes the MSE. In the BP framework, the posterior

distribution of any variable (represented by a variable node in the factor graph) is

given by the product of all incoming messages to the variable node. This implies that

p(xn|y) is approximated at iteration i+ 1 by

p̂i+1(xn|y) ∝ νfn→xn(xn)

M∏

m=1

νigm→xn(xn). (C.19)

Careful examination of (C.19) reveals that it only differs from (C.9) by the inclusion

of the mth product term. Accounting for this additional term in a manner similar to

that of Section C.2 results in the following MMSE expressions:

µi+1
n , Êi+1[xn|y] =

µ̄in
1 + γin

(C.20)

vi+1
n , v̂ari+1{xn|y} =

v̄in
1 + γin

+ γin|µi+1
n |2, (C.21)

where γin and µ̄in are obtained straightforwardly by replacing φimn in (C.13), and

(C.15) by φin ,
∑M

m=1A
∗
mnz

i
mn.
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C.4 Derivation of AMP update equations

Here also we drop the t and kf (or kb) indices.

In many large-scale problems, it may be infeasible to track the O(MN) variables

necessary to implement the message passes of Section C.2. In such cases, the approxi-

mate message passing (AMP) technique proposed by Donoho, Maleki, and Montanari

offers an attractive alternative. AMP, like BP, is not a single algorithm, but rather a

framework for constructing algorithms tailored to specific problem setups. By making

a few key assumptions about the nature of the BP messages, the validity of which

can be checked empirically, AMP is able to reduce the number of messages that must

be tracked to O(N), resulting in algorithms which offer both high performance and

computational efficiency. In this subsection we provide the update equations neces-

sary to implement an AMP algorithm that serves as a substitute for the loopy BP

method of Section C.2 and Section C.3.

Common to any AMP algorithm are the generic update equations [26] given by

φin =

M∑

m=1

A∗
mnz

i
m + µin, (C.22)

µi+1
n = Fn(φ

i
n; c

i), (C.23)

vi+1
n = Gn(φ

i
n; c

i), (C.24)

ci+1 = σ2
e + 1

M

N∑

n=1

vi+1
n , (C.25)

zi+1
m = ym −

N∑

n=1

Amnµ
i+1
n + zim

M

N∑

n=1

F′
n(φ

i
n; c

i). (C.26)

The functions Fn(φ; c), Gn(φ; c), and F′
n(φ; c) that appear in (C.23), (C.24), and

(C.26) are unique to the particular “local prior” under which we are operating AMP

(see [26, §5] for definitions of F and G). Recalling the Bernoulli-Gaussian form of this
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prior from (C.5), it can be shown that these functions are given by

Fn(φ; c) , (1 + γn(φ; c))−1
( ↼

ψnφ+
↼

ξnc
↼

ψn + c

)
, (C.27)

Gn(φ; c) , (1 + γn(φ; c))−1
( ↼

ψnc
↼

ψn + c

)
+ γn(φ; c)|Fn(φ; c)|2, (C.28)

F′
n(φ; c) , ∂

∂φ
Fn(φ, c) = 1

c
Gn(φ; c), (C.29)

where

γn(φ; c) ,

(1− ↼
πn

↼
πn

)( ↼

ψn + c

c

)
exp

(
−
[ ↼

ψn|φ|2 +
↼

ξ∗ncφ+
↼

ξncφ
∗ − c|

↼

ξn|2
c(

↼

ψn + c)

])
. (C.30)

Note the strong similarity between (C.27) and (C.17), and between (C.28) and (C.18).

C.5 Derivation of (out) Messages

After passing a certain number of messages, (call that number I), between the {x(t)
n }

and {g(t)
m } nodes, it becomes time to start passing messages back out of frame t. We

now transition back to making use of the t and kf (or kb) indices again, which will

require that we re-express φin and ci, (for i = I), as φ
kf
nt and c

kf
nt , in order to make

explicit their dependence on the timestep and forward/backward pass iteration.

The outgoing message from f
(t)
n to s

(t)
n is obtained as

ν
kf

f
(t)
n →s

(t)
n

(s(t)
n ) ∝

∫

x
(t)
n

∫

θ
(t)
n

f (t)
n (x(t)

n , s
(t)
n , θ

(t)
n ) · νkf

x
(t)
n →f

(t)
n

(x(t)
n ) · νk

θ
(t)
n →f

(t)
n

(θ(t)
n ),

=

∫

x
(t)
n

∫

θ
(t)
n

δ(x(t)
n − s(t)

n θ
(t)
n ) · CN (x(t)

n ;φ
kf
nt , c

kf
nt ) · CN (θ(t)

n ;
↼

ξknt,
↼

ψknt).
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Performing the integration yields

ν
kf

f
(t)
n →s

(t)
n

(0) ∝ CN (0;φ
kf
nt , c

kf
t ),

ν
kf

f
(t)
n →s

(t)
n

(1) ∝ CN (0;φ
kf
nt −

↼

ξknt, c
kf
t +

↼

ψknt).

After normalizing to obtain a valid pdf, we find

ν
kf

f
(t)
n →s

(t)
n

(1) =
CN (0;φ

kf
nt −

↼

ξknt, c
kf
t +

↼

ψknt)

CN (0;φ
kf
nt , c

kf
t ) + CN (0;φ

kf
nt −

↼

ξknt, c
kf
t +

↼

ψknt)

=

(
1 +

( ↼
π(t)
n

1− ↼
π(t)
n

)
γnt(φ

kf
nt , c

kf
t )

)−1

︸ ︷︷ ︸
,
⇀
π
kf
nt

. (C.31)

The outgoing message from f
(t)
n to θ

(t)
n is found by evaluating

ν
kf , exact

f
(t)
n →θ

(t)
n

(θ(t)
n ) ∝

∑

s
(t)
n ={0,1}

∫

x
(t)
n

f (t)
n (x(t)

n , s
(t)
n , θ

(t)
n ) · νkf

s
(t)
n →f

(t)
n

(s(t)
n ) · νkf

x
(t)
n →f

(t)
n

(x(t)
n )

=
∑

s
(t)
n ={0,1}

∫

x
(t)
n

δ(x(t)
n − s(t)

n θ
(t)
n ) · νkf

s
(t)
n →f

(t)
n

(s(t)
n ) · CN (x(t)

n ;φ
kf
nt , c

kf
nt ),

= (1− ↼
π(t)
n )CN (0;φ

kf
nt , c

kf
t ) +

↼
π(t)
n CN (θ(t)

n ;φ
kf
nt , c

kf
t ). (C.32)

Unfortunately, the term CN (0;φint, c
i
t) prevents us from normalizing νexact

f
(t)
n →θ

(t)
n

(θ
(t)
n ),

as the former is constant with respect to θ
(t)
n . Therefore, the distribution on θ

(t)
n

represented by (C.32) is improper. To avoid an improper pdf, we modify how this

message is derived by regarding our assumed signal model, in which s
(t)
n ∈ {0, 1}, as

a limiting case of the model with s
(t)
n ∈ {ε, 1} as ε→ 0. For any fixed positive ε, the

resulting message ν
f
(t)
n →θ

(t)
n

(·) is proper, given by

ν
kf ,mod

f
(t)
n →θ

(t)
n

(θ(t)
n ) = (1−Ω(

↼
π(t)
n )) CN (θ(t)

n ; 1
ε
φ
kf
nt ,

1
ε2
c
kf
t )+Ω(

↼
π(t)
n ) CN (θ(t)

n ;φ
kf
nt , c

kf
t ), (C.33)
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where

Ω(π) ,
ε2π

(1− π) + ε2π
. (C.34)

The pdf in (C.33) is that of a binary Gaussian mixture. If we consider ε ≪ 1, the

first mixture component is extremely broad, while the second is more “informative,”

with mean φ
kf
nt and variance c

kf
t . The relative weight assigned to each component

Gaussian is determined by the term Ω(
↼
π

(t)
n ). Notice that the limit of this weighting

term is the simple indicator function

lim
ε→0

Ω(π) =






0 if 0 ≤ π < 1,

1 if π = 1.

(C.35)

Since we cannot set ε = 0, we instead fix a small positive value, e.g., ε = 10−7. In

this case, (C.33) could then be used as the outgoing message. However, this presents

a further difficulty: propagating a binary Gaussian mixture forward in time would

lead to an exponenial growth in the number of mixture components at subsequent

timesteps. To avoid the exponential growth in the number of mixture components, we

collapse our binary Gaussian mixture to a single Gaussian component. This can be

justified by the fact that, for ε ≪ 1, Ω(·) behaves nearly like the indicator function

in (C.35), in which case one of the two Gaussian components will typically have

negligible mass.

To carry out the Gaussian sum approximation, we propose choosing a threshold

τ that is slightly smaller than 1 and, using (C.35) as a guide, threshold
↼
π(t)
n to choose

between the two Gaussian components of (C.33). The resultant message is thus

ν
kf

f
(t)
n →θ

(t)
n

(θ(t)
n ) = CN (θ(t)

n ;
⇀

ξ(t)
n ,

⇀

ψ(t)
n ), (C.36)

145



with
⇀

ξ
(t)
n and

⇀

ψ
(t)
n chosen according to

(⇀
ξ(t)
n ,

⇀

ψ(t)
n

)
=






(
1
ε
φ
kf
nt ,

1
ε2
c
kf
t

)
,

↼
π

(t)
n ≤ τ

(
φ
kf
nt , c

kf
t

)
,

↼
π

(t)
n > τ

. (C.37)

C.6 Derivation of Forward-Propagating (across) Messages

We now consider forward-propagating inter-frame messages, i.e. those messages that

move out of the frame of the current timestep and into the frame of the subse-

quent timestep. These messages are transmitted only during the forward portion of

a forward/backward pass. First, we consider νk
h
(t+1)
n →s

(t+1)
n

(s
(t+1)
n ), the message that

updates the prior on the signal support at the next timestep. For t = 0, . . . , T − 1,

this message depends on outgoing messages from frame t. Specifically,

νk
h
(t+1)
n →s

(t+1)
n

(s(t+1)
n ) ∝

∑

s
(t)
n ={0,1}

h(t+1)
n (s(t+1)

n , s(t)
n ) · νk

s
(t)
n →h

(t+1)
n

(s(t)
n )

∝
∑

s
(t)
n ={0,1}

p(s(t+1)
n |s(t)

n ) · νk
h
(t)
n →s

(t)
n

(s(t)
n ) · νk

f
(t)
n →s

(t)
n

(s(t)
n ).

Using the fact that νk
h
(t)
n →s

(t)
n

(1) =
⇀

λknt and νk
f
(t)
n →s

(t)
n

(1) =
⇀
π
kf
nt , it can be shown that

νk
h
(t+1)
n →s

(t+1)
n

(1) =
p10(1−

⇀

λknt)(1−
⇀
π
kf
nt ) + (1− p01)

⇀

λknt
⇀
π
kf
nt

(1−
⇀

λknt)(1− ⇀
π
kf
nt ) +

⇀

λknt
⇀
π
kf
nt︸ ︷︷ ︸

,
⇀
λkn,t+1

. (C.38)

Note that
⇀

λkn0 =
⇀

λn0 for all k. In other words, νk
h
(0)
n →s

(0)
n

(1) =
⇀

λn0 for each for-

ward/backward pass, where
⇀

λn0 is the prior at timestep t = 0, i.e.,
⇀

λn0 = λ.

The other forward-propagating inter-frame message we need to characterize is

νk
d
(t+1)
n →θ

(t+1)
n

(θ
(t+1)
n ), the message that updates the prior on active coefficient ampli-

tudes at the next timestep. For t = 0, . . . , T − 1, BP update rules indicate that this
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message is given as

νk
d
(t+1)
n →θ

(t+1)
n

(θ(t+1)
n ) ∝

∫

θ
(t)
n

d(t+1)
n (θ(t+1)

n , θ(t)
n ) · νk

θ
(t)
n →d

(t+1)
n

(θ(t)
n )

=

∫

θ
(t)
n

p(θ(t+1)
n |θ(t)

n ) · νk
d
(t)
n →θ

(t)
n

(θ(t)
n ) · νkf

f
(t)
n →θ

(t)
n

(θ(t)
n )

=

∫

θ
(t)
n

CN (θ(t+1)
n ; (1− α)θ(t)

n + αζ, α2ρ) · CN (θ(t)
n ;

⇀
ηknt,

⇀
κknt) ·

CN (θ(t)
n ;

⇀

ξ
kf
nt ,

⇀

ψ
kf
nt ).

Performing this integration, one finds

νk
d
(t+1)
n →θ

(t+1)
n

(θ(t+1)
n ) = CN (θ(t+1)

n ;
⇀
ηknt,

⇀
κknt), (C.39)

where

⇀
ηknt , (1− α)

(
⇀
κknt

⇀

ψ
kf
nt

⇀
κknt +

⇀

ψ
kf
nt

)(
⇀
ηknt
⇀
κknt

+

⇀

ξ
kf
nt
⇀

ψ
kf
nt

)
+ αζ, (C.40)

⇀
κknt , (1− α)2

(
⇀
κknt

⇀

ψ
kf
nt

⇀
κknt +

⇀

ψ
kf
nt

)
+ α2ρ. (C.41)

For the special case t = 1, νk
d
(1)
n →θ

(1)
n

(θ
(1)
n ) = p(θ

(1)
n ) = CN (θ

(1)
n ; ζ, σ2), thus

⇀
ηkn1 = ζ and

⇀
κkn1 = σ2 for all k.

C.7 Derivation of Backward-Propagating (across) Messages

The final messages that we need to characterize are the backward-propagating inter-

frame messages. These are the messages that, at the current timestep, are used to

update the priors for the earlier timestep. Using analysis similar to that of Sec-

tion C.6, one can verify that, for t = 2, . . . , T − 1, the appropriate message updates
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are given by

νk
h
(t)
n →s

(t−1)
n

(1) =
↼

λkn,t−1, (C.42)

νk
d
(t)
n →θ

(t−1)
n

(θ(t−1)
n ) = CN (θ(t−1)

n ;
↼
ηknt,

↼
κknt), (C.43)

where

↼

λkn,t−1 ,
p01(1−

↼

λknt)(1−
⇀
πkbnt) + (1− p01)

↼

λknt
⇀
πkbnt

(1− p10 + p01)(1−
↼

λknt)(1− ⇀
πkbnt) + (1− p01 + p10)

↼

λknt
⇀
πkbnt

, (C.44)

↼
ηkn,t−1 ,

1

(1− α)

(
↼
κknt

⇀

ψkbnt
↼
κknt +

⇀

ψkbnt

)(
↼
ηknt
↼
κknt

+

⇀

ξkbnt
⇀

ψkbnt

)
− αζ, (C.45)

↼
κkn,t−1 ,

1

(1− α)2

[(
↼
κknt

⇀

ψkbnt
↼
κknt +

⇀

ψkbnt

)
+ α2ρ

]
. (C.46)

For the special case t = T , the quantities
↼

λkn,T−1,
↼
ηkn,T−1, and

↼
κkn,T−1 can be obtained

using (C.44)-(C.46) with the substitutions
↼

λknT = 1
2
,
↼
ηknT = 0, and

↼
κknT =∞.
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Appendix D

DCS-AMP EM UPDATE DERIVATIONS

In this appendix, we provide derivations of the expectation-maximization (EM) learn-

ing update expressions that are used to automatically tune the model parameters of

the DCS-AMP signal model described in Section 3.2. We assume some familiarity

with the EM algorithm [65]. Those looking for a helpful tutorial on the basics of the

EM algorithm may find [128] beneficial.

Let Γ , {λ, p01, ζ, α, ρ, σ
2
e} denote the set of all model parameters, and let Γk

denote the set of parameter estimates at the kth EM iteration. The objective of

the EM procedure is to find parameter estimates that maximize the data likelihood

p(ȳ|Γ). Since it is often computationally intractable to perform this maximization,

the EM algorithm incorporates additional “hidden” data and iterates between two

steps: (i) evaluating the conditional expectation of the log likelihood of the hidden

data given the observed data, ȳ, and the current estimates of the parameters, Γk, and

(ii) maximizing this expected log likelihood with respect to the model parameters.

For all parameters except σ2
e we use s and θ̄ as the hidden data, while for σ2

e we use

x̄.

Recall that the sum-product incarnation of belief propagation provides marginal,

and pairwise joint, posterior distributions for all random variables in the factor

graph [67]. Therefore, in the following derivations, we will leave the final updates

expressed in terms of relevant moments of these distributions. In what follows, we
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Distribution Functional Form

p
(
y

(t)
m |x(t)

)
CN
(
y

(t)
m ; a

(t) T
m x(t), σ2

e

)

p
(
x

(t)
n |s(t)

n , θ
(t)
n

)
δ
(
x

(t)
n − s(t)

n θ
(t)
n

)

p
(
s
(1)
n

) (
1− λ

)1−s(1)n λs(1)n

p
(
s
(t)
n |s(t−1)

n

)
{

(1− p10)
1−s(t)n p s

(t)
n

10 , s
(t−1)
n = 0

p 1−s(t)n
01 (1− p01)

s
(t)
n , s

(t−1)
n = 1

p
(
θ

(1)
n

)
CN
(
θ

(1)
n ; ζ, σ2

)

p
(
θ

(t)
n |θ(t−1)

n

)
CN
(
θ

(t)
n ; (1− α)θ

(t−1)
n + αζ, α2ρ

)

Table D.1: The underlying distributions, and functional forms associated with the DCS-AMP signal
model

define QH(β; Γk) as the conditional (on hidden data, H) likelihood that is evaluated

by the EM algorithm under parameter estimates Γk, as a function of β, a parameter

being optimized, e.g.,

Qs̄,θ̄|ȳ(β; Γk) , Es̄,θ̄|ȳ
[
log p

(
ȳ, s̄, θ̄;λ,Γk \ {βk}

)∣∣ȳ; Γk
]
. (D.1)

For convenience, in Table D.1, we summarize relevant distributions from the signal

model of Section 3.2 that will be useful in computing the necessary EM updates.

D.1 Sparsity Rate Update: λk+1

Beginning with the EM algorithm objective, we have that

λk+1 = argmax
λ

Qs̄,θ̄|ȳ(λ; Γk). (D.2)
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To solve (D.2), we first differentiate Qs̄,θ̄|ȳ(λ; Γk) with respect to λ:

∂Q

∂λ
=

∂

∂λ
Es̄,θ̄|ȳ

[
log p

(
ȳ, s̄, θ̄;λ,Γk \ {λk}

)∣∣ȳ; Γk
]
,

=
∂

∂λ

N∑

n=1

E
s
(1)
n |ȳ
[
log p

(
s(1)
n

)∣∣ȳ
]
,

=

N∑

n=1

E

[
∂

∂λ
log p

(
s(1)
n

)∣∣∣∣ȳ
]
,

=

N∑

n=1

E

[
∂

∂λ
(1− s(1)

n ) log(1− λ) + s(1)
n log λ

∣∣∣∣ȳ
]
,

=
N∑

n=1

E

[
s
(1)
n

λ
− 1− s(1)

n

1− λ

∣∣∣∣ȳ
]
,

=

N∑

n=1

1

λ
E
[
s(1)
n

∣∣ȳ
]
− 1

1− λ
(
1− E

[
s(1)
n

∣∣ȳ
])
. (D.3)

Setting (D.3) equal to zero and solving for λ yields the desired EM update for the

sparsity rate:

λk+1 =
1

N

N∑

n=1

E
[
s(1)
n

∣∣ȳ
]
. (D.4)

D.2 Markov Transition Probability Update: pk+1
01

Proceeding in a fashion similar to that of Appendix D.1, the active-to-inactive Markov

transition probability EM update is given by

pk+1
01 = argmax

p01

Qs̄,θ̄|ȳ(p01; Γ
k). (D.5)

Differentiating Qs̄,θ̄|ȳ(p01; Γ
k) w.r.t. p01 gives

∂Q

∂p01
=

T∑

t=2

N∑

n=1

E
s
(t)
n ,s

(t−1)
n |ȳ

[
∂

∂p01
log p

(
s(t)
n , s

(t−1)
n

)∣∣∣∣ȳ
]
,
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=

T∑

t=2

N∑

n=1

E

[
p−1

01 (1− s(t)
n )s(t−1)

n − (1− p01)
−1s(t)

n s
(t−1)
n

∣∣∣∣ȳ
]
,

=

T∑

t=2

N∑

n=1

p−1
01

(
E
[
s(t−1)
n

∣∣ȳ
]
− E

[
s(t)
n s

(t−1)
n

∣∣ȳ
])
−

(1− p01)
−1E

[
s(t)
n s

(t−1)
n

∣∣ȳ
]
. (D.6)

Setting (D.6) equal to zero and solving for p01 yields the desired EM update:

pk+1
01 =

∑T
t=2

∑N
n=1 E

[
s
(t−1)
n

∣∣ȳ
]
− E

[
s
(t)
n s

(t−1)
n

∣∣ȳ
]

∑T
t=2

∑N
n=1 E

[
s
(t−1)
n

∣∣ȳ
] . (D.7)

D.3 Amplitude Mean Update: ζk+1

The mean of the Gauss-Markov amplitude evolution process can be updated via EM

according to

ζk+1 = argmax
ζ

Qs̄,θ̄|ȳ(ζ ; Γk). (D.8)

Differentiating Qs̄,θ̄|ȳ(ζ ; Γk) w.r.t. ζ gives

∂Q

∂ζ
=

T∑

t=2

N∑

n=1

E
θ
(t)
n ,θ

(t−1)
n |ȳ

[
∂

∂ζ
log p

(
θ(t)
n , θ

(t−1)
n

)∣∣∣∣ȳ
]

+
N∑

n=1

E
θ
(1)
n |ȳ

[
∂

∂ζ
log p(θ(1)

n )

∣∣∣∣ȳ
]
,

=

T∑

t=2

N∑

n=1

E

[
1

αkρk

(
θ(t)
n − (1− αk)θ(t−1)

n

)
− 1

ρk
ζ

∣∣∣∣ȳ
]

+

N∑

n=1

E

[
1

(σ2)k

(
θ(1)
n − ζ

)∣∣∣∣ȳ
]
,

=
T∑

t=2

N∑

n=1

1
αkρk

(
µ̄(t)
n − (1− αk)µ̄(t−1)

)
− 1

ρk
ζ +

N∑

n=1

1
(σ2)k

(
µ̄(1)
n − ζ

)
, (D.9)

where µ̄
(t)
n , E

θ
(t)
n |y[θ

(t)
n |y]. Setting (D.9) equal to zero and solving for ζ gives a final

update expression of

ζk+1 =

∑T
t=2

∑N
n=1

1
αkρk

(µ̄
(t)
n − (1− αk)µ̄(t−1)

n ) +
∑N

n=1 µ̄
(1)
n /(σ2)k

N((T − 1)/ρk + 1/(σ2)k)
. (D.10)
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D.4 Amplitude Correlation Update: αk+1

The Gauss-Markov amplitude evolution process is controlled in part by correlation

parameter α. Proceeding straightforwardly as before, the EM update is given by

αk+1 = argmax
α

Qs̄,θ̄|ȳ(α; Γk). (D.11)

Differentiating Qs̄,θ̄|ȳ(α; Γk) w.r.t. α gives

∂Q

∂α
=

T∑

t=2

N∑

n=1

E
θ
(t)
n ,θ

(t−1)
n |ȳ

[
∂

∂α
log p

(
θ(t)
n , θ

(t−1)
n

)∣∣∣∣ȳ
]

=

T∑

t=2

N∑

n=1

E

[
∂

∂α
log CN

(
θ(t)
n ; (1− α)θ(t−1)

n + αζk, α2ρk
)∣∣∣∣ȳ
]

=

T∑

t=2

N∑

n=1

E

[
∂

∂α

{
− log(α2ρk)− 1

α2ρk
∣∣θ(t)
n − (1− α)θ(t−1)

n − αζk
∣∣2
}∣∣∣∣ȳ

]

=
T∑

t=2

N∑

n=1

E

[
∂

∂α

{
− 2

α
+

2

α3ρk

∣∣θ(t)
n − (1− α)θ(t−1)

n − αζk
∣∣2 −

1

α2ρk

(
2 Re{θ(t)

n θ
(t−1)∗

n } − 2 Re{ζkθ(t)∗

n }+ 2(α− 1)
∣∣θ(t−1)
n

∣∣2 +

2(1− 2α) Re{ζkθ(t−1)∗

n }+ 2α
∣∣ζk
∣∣2
)}∣∣∣∣ȳ

]
. (D.12)

Setting (D.12) equal to zero, and multiplying both sides by α3 yields

0 = −aα2 + bα + c, (D.13)

where a , 2N(T − 1), b , 2
ρk

∑T
t=2

∑N
n=1 Re

{
E[θ

(t)
n

∗
θ

(t−1)
n |ȳ] − (µ̄

(t)
n − µ̄(t−1)

n )∗ζk
}
−

v̄
(t−1)
n −|µ̄(t−1)

n |2, and c , 2
ρk

∑T
t=2

∑N
n=1 v̄

(t)
n +|µ̄(t)

n |2+v̄(t−1)
n +|µ̄(t−1)

n |2−2 Re
{
E[θ

(t)
n

∗
θ

(t−1)
n |ȳ]

}
,

for µ̄
(t)
n defined as in Appendix D.3, and v̄

(t)
n , var{θ(t)

n |ȳ}. Equation (D.13) can be

recognized as a quadratic equation, the positive, real root of which gives the desired
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update for α, namely,

αk+1 = 1
2a

(
b−
√

b2 + 4ac

)
. (D.14)

D.5 Perturbation Variance Update: ρk+1

The EM update of the Gauss-Markov amplitude perturbation variance, ρ, is given by

ρk+1 = argmax
ρ

Qs̄,θ̄|ȳ(ρ; Γk). (D.15)

Differentiating Qs̄,θ̄|ȳ(ρ; Γk) w.r.t. ρ gives

∂Q

∂ρ
=

T∑

t=2

N∑

n=1

E
θ
(t)
n ,θ

(t−1)
n |ȳ

[
∂

∂ρ
log p

(
θ(t)
n , θ

(t−1)
n

)∣∣∣∣ȳ
]

=

T∑

t=2

N∑

n=1

E

[
∂

∂ρ
log CN

(
θ(t)
n ; (1− αk)θ(t−1)

n + αkζk, (αk)2ρ
)∣∣∣∣ȳ
]

= −N(T−1)
ρ

+ 1
(αk)2ρ2

T∑

t=2

N∑

n=1

E

[∣∣θ(t)
n − (1− αk)θ(t−1)

n − αkζk
∣∣2
∣∣∣∣ȳ
]
. (D.16)

Setting (D.16) equal to zero, and multiplying both sides of the resultant equality by

ρ2 gives a final update of

ρk+1 = 1
N(T−1)(αk)2

T∑

t=2

N∑

n=1

v̄(t)
n + |µ̄(t)

n |2 + (αk)2|ζk|2 − 2αk Re
{
µ̄(t)∗
n ζk

}
−

2(1− αk) Re
{
E[θ(t)

n

∗
θ(t−1)
n |ȳ]

}
+ 2αk(1− αk)×

Re
{
µ̄(t−1)∗
n ζk

}
+ (1− αk)(v̄(t−1)

n + |µ̄(t−1)
n |2). (D.17)
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D.6 Noise Variance Update: (σ2
e)
k+1

The final parameter that we must update is the noise variance, σ2
e . Using x̄ as the

hidden data, we solve

(σ2
e)
k+1 = argmax

σ2
e

Qx̄|ȳ(σ2
e ; Γ

k). (D.18)

Differentiating Qx̄|ȳ(σ2
e ; Γ

k) w.r.t. σ2
e gives

∂Q

∂σ2
e

=
T∑

t=1

M∑

m=1

Ex̄|ȳ

[
∂

∂σ2
e

log p(y(t)
m |x(t))

∣∣∣∣ȳ
]

=
−MT

σ2
e

+
1

(σ2
e)

2

T∑

t=1

M∑

m=1

Ex̄|ȳ

[∣∣∣y(t)
m −

N∑

n=1

a(t)
mnx

(t)
n

∣∣∣
2
∣∣∣∣ȳ
]

(D.19)

=
−MT

σ2
e

+
1

(σ2
e)

2

T∑

t=1

‖y(t) −A(t)µ(t)‖22 + 1Tv(t), (D.20)

where µ
(t)
n , E[x

(t)
n |ȳ] and v

(t)
n , var{x(t)

n |ȳ}. In moving from (D.19) to (D.20),

we must assume pairwise posterior independence of the coefficients of x(t), that

is, p(x
(t)
n , x

(t)
q |ȳ) ≈ p(x

(t)
n |ȳ)p(x

(t)
q |ȳ), which is a reasonable assumption for high-

dimensional problems. Setting (D.20) equal to zero and solving for (σ2
e)
k+1 gives

(σ2
e)
k+1 =

1

MT

T∑

t=1

‖y(t) −A(t)µ(t)‖22 + 1Tv(t), (D.21)

completing the DCS-AMP EM update derivations.
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Appendix E

GAMP CLASSIFICATION DERIVATIONS

In this appendix, we provide derivations of a state evolution covariance matrix Σk
z , as

well as GAMP message update equations for several likelihoods/activation functions

described in Section 4.4, and EM parameter update procedures for the logistic and

probit activation functions.

E.1 Derivation of Σk
z

Recall from Section 4.3 that




z

ẑk


 d−→ N (0,Σk

z) = N







0

0


 ,




Σk
11 Σk

12

Σk
21 Σk

22





 . (E.1)

In this section, we derive expressions for the components of Σk
z in terms of quantities

that are tracked as part of GAMP’s state evolution formalism [27], namely E[wn],

E[ŵk
n]], var{wn}, var{ŵk

n}, and cov{wn, ŵ
k
n}.

Beginning with Σk
11, from the definition of z, and the fact that Exn[xn] = 0 and

var{xn} = 1/M , we find that

Σk
11 , var{z}

= Ez[z
2]
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= Ex,w

[(∑

n

xnwn

)2]

= Ex,w

[∑

n

x2
nw

2
n

]
+ 2

∑

n

∑

q<n

Ex,w

[
xnxqwnwq

]

=
∑

n

Exn[x
2
n]Ewn[w

2
n]

=
∑

n

var{xn}
(
var{wn}+ E[wn]

2
)

= δ−1
(
var{wn}+ E[wn]

2
)
, (E.2)

where δ , M/N . By an analogous argument, it follows that

Σk
22 = δ−1

(
var{ŵk

n}+ E[ŵk
n]

2
)
. (E.3)

Finally,

Σk
12 = Σk

21 = cov{z, ẑk}

= Ez,ẑk[z, ẑ
k]

= Ex,w,ŵk

[(∑

n

xnwn

)(∑

q

xqŵ
k
q

)]

=
∑

n

∑

q

Ex,wn,ŵkn
[xnxqwnŵ

k
q ]

=
∑

n

Exn,wn,ŵkn
[x2
nwnŵ

k
n]

=
∑

n

var{xn}Ewn,ŵkn
[wnŵ

k
n]

=
∑

n

var{xn}
(
cov{wn, ŵ

k
n}+ E[wn]E[ŵk

n]
)

= δ−1
(
cov{wn, ŵ

k
n}+ E[wn]E[ŵk

n]
)
. (E.4)
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E.2 Sum-Product GAMP Updates for a Logistic Likelihood

In this section, we describe a variational inference technique for approximating the

sum-product GAMP updates for the logistic regression model of Section 4.4.1. For

notational convenience, we redefine the binary class labeling convention, adopting a

{0, 1} labeling scheme, instead of the {−1, 1} scheme used in the remainder of this

dissertation. Thus, in this section, y ∈ {0, 1} represents a discrete class label, and

z ∈ R denotes the score of a particular linear classification example, x ∈ RN , i.e.,

z = 〈x,w〉 for some separating hyperplane defined by the normal vector w. The

logistic likelihood of (4.23) therefore becomes

p(y|z) =
exp(αyz)(

1 + exp(αz)
) . (E.5)

In order to compute the sum-product GAMP updates, we must be able to evaluate

the posterior mean and variance of a random variable, z ∼ N (p, τp), under the

likelihood (E.5). Unfortunately, evaluating the necessary integrals is analytically

intractable under the logistic likelihood. Instead, we will approximate the posterior

mean, E[z|y], and variance, var{z|y}, using a variational approximation technique

closely related to that described by Bishop [67, §10.6].

Our goal in variational inference is to iteratively maximize a lower bound on the

marginal likelihood

p(y) =

∫

z

p(y|z)p(z)dz. (E.6)

In order to do so, we will make use of a variational lower bound on the logistic sigmoid,

σ(z) ,
(
1 + exp(−αz)

)−1
, namely

σ(z) ≥ σ(ξ) exp
(
α
2
(z − ξ)− λ(ξ)(z2 − ξ2)

)
, (E.7)
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where ξ represents the variational parameter that we will optimize in order to maxi-

mize the lower bound, and λ(ξ) , α
2ξ

(
σ(ξ)− 1

2

)
. The derivation of this lower bound

closely mirrors a similar derivation in [67, §10.5], which considered the case of a fixed

sigmoid scaling of unity, i.e., α = 1. It is a tedious, but straightforward, bookkeeping

exercise to generalize to an arbitrary scale α.

Armed with the variational lower bound of (E.7), we begin by noting that the

likelihood of (E.5) can be rewritten as p(y|z) = eαyzσ(−z). Applying the variational

lower bound, it follows that

p(y|z) = eαyzσ(−z) ≥ eαyzσ(ξ) exp
(−α

2
(z + ξ)− λ(ξ)(z2 − ξ2)

)
. (E.8)

This leads to the following bound on the joint distribution, p(y, z):

p(y, z) = p(y|z)p(z) ≥ h(z, ξ)p(z), (E.9)

where h(z, ξ) , σ(ξ) exp
(
αyz − α

2
(z + ξ)− λ(ξ)(z2 − ξ2)

)
.

Due to the monotonicity of the logarithm, (E.9) implies that

log p(y, z) ≥ log h(z, ξ) + log p(z), (E.10)

= αyz − α
2
(z + ξ)− λ(ξ)(z2 − ξ2) + log p(z) + const. (E.11)

Replacing p(z) in (E.11) with its Gaussian kernel yields the following bound for the

joint distribution:

log p(y, z) ≥ αyz − α
2
(z + ξ)− λ(ξ)(z2 − ξ2)− 1

2τp
(z − p)2 + const. (E.12)
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From Bayes’ rule, we can conclude that

log p(z|y) + log p(y) ≥ αyz − α
2
(z + ξ)− λ(ξ)(z2 − ξ2)− 1

2τp
(z − p)2 + const. (E.13)

Collecting those terms in (E.13) which are a function of z, it follows that

log p(z|y) ≥ −
(

1
2τp

+ λ(ξ)
)
z2 +

(
p
τp

+ α(y − 1
2
)
)
z + const. (E.14)

This quadratic form in z suggests an appropriate variational posterior, pv(z|y), is a

Gaussian, namely:

pv(z|y) = N (ẑ, τz), (E.15)

with

ẑ , τz
(
p/τp + α(y − 1

2
)
)
, (E.16)

τz , τp
(
1 + 2τpλ(ξ)

)−1
. (E.17)

Under the variational approximation of the posterior, (E.15), the GAMP sum-

product updates become trivial to compute: E[z|y] ∼= ẑ, and var{z|y} ∼= τz. All

that remains is for us to optimize the variational bound of (E.14) by maximizing

with respect to the variational parameter, ξ. This can be accomplished efficiently,

and in few iterations, via an expectation-maximization (EM) algorithm, as described

in [67, §10.6].

At the ith EM iteration, we plug an existing ξi into (E.16) and (E.17) in order to

compute ẑi and τ iz. Then, letting Qi(ξ) , EZ|Y
[
log h(z, ξ)p(z)

∣∣y; ξi
]

denote the EM
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cost function at the ith iteration, we update ξ as

ξi+1 , argmax
ξ
Qi(ξ) (E.18)

= argmax
ξ

EZ|Y
[
log h(z, ξ)

∣∣y; ξi
]

(E.19)

= argmax
ξ

EZ|Y
[
log σ(ξ)− α

2
ξ − λ(ξ)(z2 − ξ2)

∣∣y; ξi
]

(E.20)

= argmax
ξ

log σ(ξ)− α
2
ξ − λ(ξ)

(
EZ|Y [z2|y; ξi]− ξ2

)
(E.21)

= argmax
ξ

log σ(ξ)− α
2
ξ − λ(ξ)

(
τ iz + |ẑi|2 − ξ2

)
. (E.22)

Upon computing the first-order optimality conditions for (E.22) and solving for ξ, we

find that

ξi+1 =
√
τ iz + |ẑi|2. (E.23)

Motivated by (E.23), a reasonable initialization of ξ is given by ξ0 =
√
τp + |p|2.

In summary, an accurate and efficient approximation to the sum-product GAMP

updates of the logistic regression model can be found by completing a handful of

iterative computations of (E.16), (E.17), and (E.23), until convergence is achieved

(see the pseudocode of Algorithm 2).

E.3 Sum-Product GAMP Updates for a Hinge Likelihood

In this section, we describe the steps needed to implement the sum-product GAMP

message updates for the hinge loss classification model of Section 4.4.3. To begin

with, we first observe that ΘH(y, z) in (4.26) can be interpreted as the (negative)

log-likelihood of the following likelihood distribution:

p̃(y|z) =
1

exp(max(0, 1− yz)) . (E.24)

161



Note that (E.24) is improper because it cannot be normalized to integrate to unity.

Nevertheless, we shall see that in the GAMP framework, this is not a problem.

Prior to computing E[z|y] and var{z|y}, we first express the posterior distribution,

p(z|y), as

p(z|y) =
1

Cy
p̃(y|z)p(z), (E.25)

where constant Cy is chosen to ensure that p(z|y) integrates to unity. Since y is a

binary label, we must consider two cases. First,

C1 ,

∫

z

p̃(z|y = 1)p(z)dz

=

∫ 1

−∞
exp(z − 1)N (z; p, τp)dz +

∫ ∞

1

N (z; p, τp)dz (E.26)

= exp(p+ 1
2
τp − 1)

∫ 1

−∞
N (z; p+ τp, τp)dz +

∫ ∞

1

N (z; p, τp)dz (E.27)

= exp(p+ 1
2
τp − 1)Φ

(1− (p+ τp)√
τp

)
+
[
1− Φ

(1− p
√
τp

)]
,

= exp(p+ 1
2
τp − 1)Φ

(1− (p+ τp)√
τp

)
+ Φ

(p− 1
√
τp

)
(E.28)

where Φ(·) is the CDF of the standard normal distribution. In moving from (E.26) to

(E.27), we re-expressed the product of an exponential and Gaussian as the product of

a constant and a Gaussian by completing the square. Following the same procedure,

we arrive at an expression for C−1:

C−1 ,

∫

z

p̃(z|y = −1)p(z)dz

= exp(−p+ 1
2
τp − 1)Φ

(p− τp + 1
√
τp

)
+ Φ

(−p− 1
√
τp

)
(E.29)

Now that we have computed the normalizing constant, we turn to evaluating the

posterior mean. First considering the y = 1 case, the posterior mean can be evaluated
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as:

E[z|y = 1] =

∫

z

zp(z|y = 1)dz

=
1

C1

∫

z

z p̃(y = 1|z)p(z)dz

=
1

C1

[∫ 1

−∞
z exp(z − 1)N (z; p, τp)dz +

∫ ∞

1

zN (z; p, τp)dz

]

=
1

C1

[
exp(p+ 1

2
τp − 1)

∫ 1

−∞
zN (z; p + τp, τp)dz

+

∫ ∞

1

zN (z; p, τp)dz

]

=
1

C1



exp(p+ 1
2
τp − 1)Φ

(1− p− τp√
τp

)∫ 1

−∞
z
N (z; p+ τp, τp)

Φ
(

1−p−τp√
τp

) dz

+
(
1− Φ

(1− p
√
τp

))∫ ∞

1

z
N (z; p, τp)(

1− Φ
(

1−p√
τp

))dz



 . (E.30)

Examining the integrals in (E.30), we see that each integral represents the first

moment of a truncated normal random variable, a quantity which can be computed

in closed form. Denote by T N (z;µ, σ2, a, b) the truncated normal distribution with

(non-truncated) mean µ, variance σ2, and support (a, b). Then, with a slight abuse

of notation, (E.30) can be re-expressed as

E[z|y = 1] =
1

C1

[
exp(p+ 1

2
τp − 1)Φ(α1)E[T N (z; p + τp, τp,−∞, 1)]

+Φ(−β1)E[T N (z; p, τp, 1,∞)]] , (E.31)

where α1 ,
1−p−τp√

τp
, and β1 ,

1−p√
τp

. The closed-form expressions for the first moments

of the relevant truncated normal random variables are given by [129]

E[T N (z; p + τp, τp,−∞, 1)] = p+ τp −
√
τp
φ(α1)

Φ(α1)
, (E.32)
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E[T N (z; p, τp, 1,∞)] = p+
√
τp

φ(β1)

1− Φ(β1)
,

= p+
√
τp
φ(−β1)

Φ(−β1)
(E.33)

where φ(·) is the standard normal pdf. In a similar fashion, the posterior mean in

the y = −1 case is given by:

E[z|y = −1] =
1

C−1

[
exp(−p+ 1

2
τp − 1)Φ(−α−1)E[T N (z; p− τp, τp,−1,∞)]

+Φ(β−1)E[T N (z; p, τp,−∞,−1)]] , (E.34)

where α−1 ,
−1−p+τp√

τp
, and β−1 ,

−1−p√
τp

. The relevant truncated normal means are

E[T N (z; p− τp, τp,−1,∞)] = p− τp +
√
τp
φ(−α−1)

Φ(−α−1)
, (E.35)

E[T N (z; p, τp,−∞,−1)] = p−√τp
φ(β−1)

Φ(β−1)
. (E.36)

Next, to compute var{z|y}, we take advantage of the relationship var{z|y} =

E[z2|y]−E[z|y]2 and opt to evaluate E[z2|y]. Following the same line of reasoning by

which we arrived at (E.30), we find

E[z2|y = 1] =
1

C1

[
exp(p+ 1

2
τp − 1)Φ(α1)

∫ 1

−∞
z2N (z; p+ τp, τp)

Φ(α1)
dz

+Φ(−β1)

∫ ∞

1

z2N (z; p, τp)

Φ(−β1)
dz

]
. (E.37)

Again, we recognize each integral in (E.37) as the second moment of a truncated

normal random variable, which can be computed in closed-form from knowledge of

the random variable’s mean and variance. From the preceding discussion, we have
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expressions for the truncated means. The corresponding variances are given by [129]

var{T N (z; p + τp, τp,−∞, 1)} = τp

[
1− φ(α1)

Φ(α1)

(
φ(α1)

Φ(α1)
+ α1

)]
, (E.38)

var{T N (z; p, τp, 1,∞)} = τp

[
1− φ(−β1)

Φ(−β1)

(
φ(−β1)

Φ(−β1)
− β1

)]
. (E.39)

Now we need simply replace each integral in (E.37) with the appropriate closed-form

computations involving the truncated normal mean and variance, e.g., the first inte-

gral would be substituted with var{T N (z; p+τp, τp,−∞, 1)}+E[T N (z; p + τp, τp,−∞, 1)]2.

Likewise,

E[z2|y = −1] =
1

C−1

[
exp(−p+ 1

2
τp − 1)Φ(−α−1)

∫ ∞

−1

z2N (z; p− τp, τp)
Φ(−α−1)

dz

+Φ(β−1)

∫ 1

−∞
z2N (z; p, τp)

Φ(β1)
dz

]
, (E.40)

with

var{T N (z; p− τp, τp,−1,∞)}= τp

[
1− φ(−α−1)

Φ(−α−1)

(
φ(−α−1)

Φ(−α−1)
− α−1

)]
, (E.41)

var{T N (z; p, τp,−∞, 1)} = τp

[
1− φ(β−1)

Φ(β−1)

(
φ(β−1)

Φ(β−1)
+ β−1

)]
. (E.42)

Finally, for the purpose of adaptive step-sizing within GAMP, we must be able

to compute Ez|y[log p(y|z)] when z|y ∼ N (ẑ, τz). Note that it is sufficient for our

purposes to know this expectation up to a ẑ- and τz-independent additive constant;

we use the relation ∼= to indicate equality up to such a constant. Proceeding from

the definition of expectation, in the y = 1 case:

Ez|y[log p(y = 1|z)] ,

∫

z

log p(y = 1|z)N (z; ẑ, τz)dz

∼=
∫

z

log p̃(y = 1|z)N (z; ẑ, τz)dz
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= −
∫

z

max(0, 1− z)N (z; ẑ, τz)dz

= −
∫ 1

−∞
(1− z)N (z; ẑ, τz)dz

= −
∫ 1

−∞
N (z; ẑ, τz)dz +

∫ 1

−∞
zN (z; ẑ, τz)dz

= Φ
(1− ẑ√

τz

)(
− 1 + E[T N (z; ẑ, τz ,−∞, 1)]

)
. (E.43)

A similar derivation in the y = −1 case yields

Ez|y[log p(y = −1|z)] ∼= −Φ
(1 + ẑ√

τz

)(
1 + E[T N (z; ẑ, τz ,−1,∞)]

)
, (E.44)

completing the sum-product GAMP updates for a hinge loss model.

E.4 Sum-Product GAMP Updates for a Robust-p∗ Likeli-

hood

In this section, we derive a method for computing the sum-product GAMP updates for

a robust activation function of the form (4.29). Our goal throughout this derivation

is to make use of quantities that are already available as part of the standard max-

sum GAMP updates for the non-robust likelihood, p∗(y|z). Similar to Section E.3,

we must compute the quantities Cy, E[z|y], and var{z|y} under the robust likelihood

(4.29), and a prior p(z) = N (p, τp).

Beginning with the definition of Cy,

Cy ,

∫
p(y|z)p(z)dz

= γ + (1− 2γ)

∫
p∗(y|z)p(z)dz

= γ + (1− 2γ)C∗
y . (E.45)
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The posterior mean is then found by evaluating

E[z|y] =
1

Cy

∫
zp(y|z)p(z)dz

=
γ

Cy

∫
zp(z)dz +

1− 2γ

Cy

∫
zp∗(y|z)p(z)dz

=
γ

Cy
p+

1− 2γ

Cy
C∗
y E∗[z|y]. (E.46)

Lastly, knowledge of E[z2|y] is sufficient for computing var{z|y}. It is easily verified

that

E[z2|y] =
1

Cy

∫
z2p(y|z)p(z)dz

=
γ

Cy

∫
z2p(z)dz +

1− 2γ

Cy

∫
z2p∗(y|z)p(z)dz

=
γ

Cy
(τp + p2) +

1− 2γ

Cy
C∗
y (var∗{z|y}+ E∗[z|y]2). (E.47)

E.5 EM Learning of Robust-p∗ Label Corruption Probability

In this section, we describe an EM learning procedure to adaptively tune the la-

bel corruption probability, γ, of the Robust-p∗ likelihood of (4.29) based on avail-

able training data, {ym}Mm=1. Recall from Section 4.5 we introduced hidden indi-

cator variables, {βm}, that assume the value 1 if ym was correctly labeled, and 0

otherwise. Since label corruption occurs according to a Bernoulli distribution with

success probability γ, it follows that p(β) =
∏M

m=1 γ
1−βm(1 − γ)βm. In addition,

the likelihood of label ym, given zm and βm, can be written as p(ym|zm, βm) =

p∗ym|zm(ym|zm)βm p∗ym|zm(−ym|zm)1−βm.

The EM update at the kth iteration proceeds as follows:

γk+1 = argmax
γ

Ez,β|y
[
log p(y, z,β; γ)

∣∣y; γk
]
,
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p(ym|zm, βm)βm zmp(βm) p(zm|w)

Figure E.1: A factor graph representation of the Robust-p∗ hidden data, with circles denoting un-
observed random variables, and rectangles denoting pdf “factors”.

= argmax
γ

M∑

m=1

Ezm,βm|y
[
log p(ym|zm, βm; γ)p(βm; γ)

∣∣y; γk
]
, (E.48)

= argmax
γ

M∑

m=1

Ezm,βm|y
[
log γ1−βm(1− γ)βm

∣∣y; γk
]
, (E.49)

= argmax
γ

M∑

m=1

log(γ)Eβm|y
[
1− βm

∣∣y; γk
]
+ log(1− γ)Eβm|y

[
βm
∣∣y; γk

]
,

= argmax
γ

M∑

m=1

log(γ)
(
1−p(βm=1|y; γk)

)
+ log(1−γ)p(βm=1|y; γk),(E.50)

where in going from (E.48) to (E.49) we kept only those terms that are a function of

γ. Differentiating (E.50) w.r.t. γ and setting equal to zero results in the following

expression for γk+1:

γk+1 = 1− 1

M

M∑

m=1

p(βm = 1|y). (E.51)

In order to compute p(βm = 1|y; γk), we may take advantage of GAMP’s factor

graph representation. Incorporating the hidden variable βm into the factor graph,

and making zm explicit, results in the factor graph of Fig. E.1. Let νa→b(·) denote a

sum-product message (i.e., a distribution) moving from node a to a connected node b.

Then, νp(βm)→βm(βm) = (γk)1−βm(1−γk)βm, and νzm→p(ym|zm,βm)(zm) = N (zm; pm, τ
p
m),

which is provided by GAMP. Obeying the rules of the sum-product algorithm, we

have that

p(βm|y; γk) ∝ νp(βm)→βm(βm)νp(ym|zm,βm)→βm(βm),

168



= νp(βm)→βm(βm)

∫

zm

p(ym|zm, βm)νzm→p(ym|zm,βm)(zm)dzm. (E.52)

Evaluating (E.52) for βm = 1 gives

p(βm = 1|y; γk) ∝ (1− γk)
∫

zm

p∗y|z(ym|zm)N (zm; pm, τ
p
m)dzm

︸ ︷︷ ︸
=C∗

ym

, (E.53)

where C∗
ym is a quantity that is computed as a part of the non-robust sum-product

GAMP updates for activation function p∗y|z(y|z). Likewise,

p(βm = 0|y; γk) ∝ γk(1− C∗
ym) (E.54)

With (E.53) and (E.54), everything necessary to evaluate (E.51) is available.

E.6 EM Update of Logistic Scale, α

Recall from (E.5) that the logistic activation function is parameterized by the scalar

α, which controls the steepness of the logistic sigmoid. In this section, we describe

an approximate EM procedure for automatically tuning α based on the available

training data. Note that in what follows, adopting the convention of Section E.2,

y ∈ {0, 1}. In the course of deriving our EM update procedure, we will make use of

{zm}Mm=1 as the “hidden data”. In addition, we will make use of GAMP’s estimate of

the posterior mean and variance of zm, i.e., ẑm , Ez|y[z|y] and z̃m , varz|y{z|y}.

At the kth EM iteration, αk+1 is given as the solution to the following optimization

problem:

αk+1 = argmax
α

Ez|y
[
log p(y, z;α)

∣∣y;αk
]

(E.55)
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= argmax
α

M∑

m=1

Ezm|y
[
log p(ym|zm;α)

∣∣y;αk
]

(E.56)

= argmax
α

M∑

m=1

Ezm|y
[
log
(
eαymzmσ(−zm)

)∣∣y;αk
]
, (E.57)

where σ(z) , (1 + exp(−αz))−1. Unfortunately, optimizing (E.57) further is in-

tractable. Instead, we resort to the variational lower-bound approximation of p(y|z)

introduced in (E.8), i.e.,

αk+1 = argmax
α

M∑

m=1

Ezm|y
[
log
(
eαymzmσ(ξm) exp(−α

2
(zm + ξm)− λ(ξm)(z2

m − ξ2
m))
)∣∣y;αk

]

= argmax
α

M∑

m=1

αymEzm|y[zm|y;αk] + log σ(ξm)− α
2

(
Ezm|y[zm|y;αk] + ξm

)
−

λ(ξm)
(
Ezm|y[z

2
m|y;αk]− ξ2

m

)
(E.58)

= argmax
α

M∑

m=1

αymẑm + log σ(ξm)− α
2
(ẑm + ξm)− λ(ξm)(z̃m + ẑ2

m − ξ2
m)︸ ︷︷ ︸

,Q′
m(α;ξm)

. (E.59)

Note that the objective function in (E.59) is a function of the variational param-

eter ξm. Using (E.23) as a guide, we specify ξm as ξm =
√
z̃m + ẑ2

m. Making the

substitution in (E.59) results in a simplified expression for Q′
m(α; ξm):

Q′
m(α;

√
z̃m + ẑ2

m) = αymẑm + log σ
(√

z̃m + ẑ2
m

)
− α

2

(
ẑm +

√
z̃m + ẑ2

m

)
. (E.60)

Furthermore, the derivative w.r.t. α of Q′
m(α; ξm) is

∂

∂α
Q′
m(α;

√
z̃m + ẑ2

m) = ymẑm +

√
z̃m + ẑ2

m

1 + eα
√
z̃m+ẑ2m

− 1
2
(ẑm +

√
z̃m + ẑ2

m). (E.61)

While a closed-form update of α as the solution of (E.59) is not readily available,
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(E.60) and (E.61) can be used in a simple gradient descent optimization strategy to

numerically solve for αk+1.

E.7 Bethe Free Entropy-based Update of Logistic Scale, α

Recall from Section 4.5.2 that sum-product GAMP has an interpretation as a Bethe

free entropy minimization algorithm. When learning output channel model parame-

ters, one can leverage the relationship between the log-likelihood ln p(y; θ) and the

Bethe free entropy J(fw, fz) for convergent (fw, fz), which suggests the parameter

tuning strategy (4.47). For the logistic activation function (E.5), the required inte-

gral in (4.47) remains intractable, thus we again resort to a variational approximation

thereof.

Proceeding similar to Appendix E.6, we update α as

αk+1 = argmax
α

M∑

m=1

log Ezm|y
[(
eαymzmσ(ξm) exp(−α

2
(zm+ξm)−λ(ξm)(z2

m−ξ2
m))
)∣∣y;αk

]
,

(E.62)

where the expectation is now with respect to zm|y ∼ N (p̂m, τpm). Recognizing the

quadratic form in zm in (E.62), we complete the square to produce a Gaussian kernel

that can be integrated in closed-form. Upon completing this bookkeeping exercise,

we find that

αk+1 = argmax
α

M∑

m=1

log σ(ξm;α)− 1
2
log(1 + 2τpmλ(ξm;α)) + δ(α)/β(α), (E.63)

where

δ(α) , α2τpm(1− 2ym)2 − 4α
(
2ξmλ(ξm;α)τpm + ξm + p̂m(1− 2ym)

)

+8λ(ξm;α)
(
ξ2
m

(
2λ(ξm;α)τpm + 1

)
− p̂2

m

)
, (E.64)
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β(α) , 8 + 16λ(ξm;α)τpm, (E.65)

and we have made the dependence of σ and λ (see (E.8)) on α explicit. Equa-

tion (E.63) is a difficult expression to further optimize, thus one can resort to an

iterative maximization scheme to locate αk+1.

E.8 EM Update of Probit Variance, v2

In Section 4.4.2 we introduced the probit activation function, (4.24), whose hyper-

parameter v2 controls the steepness of the probit sigmoid function. EM learning of

the probit standard deviation, v, can be accomplished in a manner similar to that of

Section E.6. In particular, vk+1 is given as the solution of the following optimization:

vk+1 = argmax
v

M∑

m=1

Ezm|y
[
log p(ym|zm)

∣∣y; vk
]

︸ ︷︷ ︸
,Qm(v)

. (E.66)

Unfortunately, a closed-form expression for vk+1 cannot be obtained due to the

difficulty in further simplifying (E.66). Instead, differentiating Qm(v) w.r.t. v results

in

∂

∂v
Qm(v) = Ezm|y

[(−ymzm
v2

)
φ
(−ymzm

v

)/
Φ
(−ymzm

v

)∣∣∣y; vk
]
. (E.67)

The expectation in (E.67) cannot be evaluated in closed-form. Instead, we evaluate

the integral numerically, and use a root-finding bisection search to locate the value

of v that sets
∑

∂
∂v
Qm(v) equal to zero.
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Appendix F

MISCELLANEOUS GAMP/TURBOGAMP

DERIVATIONS

In this appendix, we provide several useful GAMP/turboGAMP derivations that do

not appear in other published work.

F.1 EM Learning of Rate Parameter for a Laplacian Prior

In this section, we derive the EM update of a Laplacian rate parameter from an

observation vector, y. We assume an i.i.d. signal prior of the form p(x) =
∏N

n=1 p(xn),

with

p(xn) = L(xn;λ), (F.1)

where L(xn;λ) , λ
2

exp(−λ|xn|) is a Laplacian distribution with rate λ.

The standard EM update of λ is given as the solution to the following optimization

problem:

λk+1 = argmax
λ

Ex|y
[
log p(x;λ)

∣∣y;λk
]

= argmax
λ

N∑

n=1

Exn|y
[
log p(xn;λ)

∣∣y;λk
]

= argmax
λ

N log λ− λ
N∑

n=1

Exn|y
[
|xn|

∣∣y;λk
]

︸ ︷︷ ︸
,F k(λ)

(F.2)
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Setting the derivative of F k(λ) w.r.t. λ in (F.2) equal to zero, and solving for λ,

yields the desired EM update expression:

λk+1 = N

( N∑

n=1

Exn|y
[
|xn|

∣∣y;λk
])−1

. (F.3)

Inspection of (F.3) reveals that we must be able to evaluate the posterior ex-

pectation of |xn|. To do so, we will make use of GAMP’s (approximate) marginal

posterior, p(xn|y), which is the product of a Gaussian “extrinsic information” mes-

sage, N (xn; r̂n; τ
r
n), and the prior, i.e.,

p(xn|y;λk) = 1
Ckn
N (xn; r̂n; τ

r
n)L(xn;λ

k), (F.4)

where Ck
n is a normalization constant defined as

Ck
n ,

∫

xn

N (xn; r̂n; τ
r
n)L(xn;λ

k)dxn. (F.5)

Splitting apart the integral in (F.23) gives

∫

xn

N (xn; r̂n; τ
r
n)L(xn;λ

k)dxn =

∫ 0

−∞

λk

2
N (xn; r̂n, τ

r
n) exp(λkx)dxn

︸ ︷︷ ︸
,

¯
Ckn

+

∫ ∞

0

λk

2
N (xn; r̂n, τ

r
n) exp(−λkx)dxn

︸ ︷︷ ︸
,C̄kn

. (F.6)

To evaluate
¯
Ck
n and C̄k

n, we first complete the square to re-express the multiplica-

tion of a Gaussian pdf and a Laplacian pdf as the multiplication of a Gaussian pdf
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by a constant, that is,

¯
Ck
n =

λk

2
exp

(
¯
µ2
n − r̂2

n

2τ rn

)∫ 0

−∞
N (xn;

¯
µn, τ

r
n)dxn, (F.7)

C̄k
n =

λk

2
exp

(
µ̄2
n − r̂2

n

2τ rn

)∫ ∞

0

N (xn; µ̄n, τ
r
n)dxn, (F.8)

where
¯
µn , r̂n + λkτ rn and µ̄n , r̂n − λkτ rn. Evaluating the integrals in (F.25) and

(F.26) gives

¯
Ck
n =

λk

2
exp

(
¯
µ2
n − r̂2

n

2τ rn

)
Φ

(−
¯
µn√
τ rn

)
, (F.9)

C̄k
n =

λk

2
exp

(
µ̄2
n − r̂2

n

2τ rn

)[
1− Φ

(−µ̄n√
τ rn

)]

=
λk

2
exp

(
µ̄2
n − r̂2

n

2τ rn

)
Φ

(
µ̄n√
τ rn

)
. (F.10)

Now that we have computed the normalizing constant, we turn to evaluating the

required posterior expectation:

Exn|y
[
|xn|

∣∣y;λk
]

=

∫

xn

|xn| p(xn|y;λk)dxn,

=
1

Ck
n

∫

xn

|xn| N (xn; r̂n, τ
r
n)L(xn;λ

k)dxn

=
1

¯
Ck
n + C̄k

n

(
λk

2

∫ ∞

0

xnN (xn; r̂n, τ
r
n) exp(−λkxn)dxn

−λ
k

2

∫ 0

−∞
xnN (xn; r̂n, τ

r
n) exp(λkxn)dxn

)
,

=
1

¯
Ck
n + C̄k

n

(
λ

2
exp

(
µ̄2
n − r̂2

n

2τ rn

)∫ ∞

0

xnN (xn; µ̄n, τ
r
n)dxn

−λ
k

2
exp

(
¯
µ2
n − r̂2

n

2τ rn

)∫ 0

−∞
xnN (xn;

¯
µn, τ

r
n)dxn

)
. (F.11)

In order to evaluate the integrals in (F.34), we first multiply each integral by an
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appropriate Gaussian CDF, and its reciprocal:

Exn|y
[
|xn|

∣∣y;λk
]

=
1

¯
Ck
n + C̄k

n

(
C̄k
n

∫ ∞

0

xnN (xn; µ̄n, τ
r
n)
/

Φ
( µ̄n√

τ rn

)
dxn

−
¯
Ck
n

∫ 0

−∞
xnN (xn;

¯
µn, τ

r
n)
/

Φ
(−

¯
µn√
τ rn

)
dxn

)
. (F.12)

Observing the integrals in (F.35), we see that each integral represents the first moment

of a truncated normal distribution, a quantity which can be computed in closed

form. Denote by T N (x;µ, σ2, a, b) a truncated normal random variable with (non-

truncated) mean µ, variance σ2, and support (a, b). Then, with an abuse of notation,

γ̄n , E[T N (xn; µ̄n, τ
r
n, 0,∞)] = µ̄n +

√
τ rnφ
( µ̄n√

τ rn

)/
Φ
( µ̄n√

τ rn

)
, (F.13)

¯
γn , E[T N (xn;

¯
µn, τ

r
n,−∞, 0)] =

¯
µn −

√
τ rnφ
(−

¯
µn√
τ rn

)/
Φ
(−

¯
µn√
τ rn

)
, (F.14)

where φ(·) is the standard normal pdf [129]. Applying these facts to (F.35) yields our

desired posterior mean:

Exn|y
[
|xn|

∣∣y;λk
]
=

1

¯
Ck
n + C̄k

n

(
C̄k
n · γ̄n − ¯

Ck
n ·

¯
γn

)
. (F.15)

F.2 Sum-Product GAMP Equations for an Elastic Net Prior

The ElasticNetEstimIn class supports penalized regression problems where the

penalty function, f(x), in the MAP estimation context, is given by

f(x) , λ1‖x‖1 + λ2‖x‖22. (F.16)

In this section, we describe the steps needed to implement the sum-product message

updates within the GAMP framework, enabling MMSE estimation. To begin with,
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we first observe that f(x) in (F.16) can be interpreted as the log-prior of a separable

prior distribution, p(x) =
∏

n p(xn), in which

p(xn) = 1
α
p̃(x) (F.17)

= 1
α
N (xn; 0, (2λ2)

−1)L(xn;λ1), (F.18)

where p̃(x) is an unnormalized distribution, α is the associated normalizing constant,

and L(xn;λ1) , λ1

2
exp(−λ1|xn|) is a Laplacian distribution with rate λ1.

The sum-product GAMP message updates are given as the posterior mean and

variance of a random variable, x, under the prior distribution (F.18), given an ob-

served quantity, r̂, obtained as

r̂ = x+ n, (F.19)

with n ∼ N (0, τ r).

Prior to computing E[x|r̂] and var{x|r̂}, we first express the posterior distribution,

p(x|r̂), as

p(x|r̂) =
1

C
p(r̂|x)p̃(x), (F.20)

where constant C is chosen to ensure that p(x|r̂) integrates to unity. Thus,

C ,

∫

x

p(r̂|x)p̃(x)dx (F.21)

=

∫

x

N (x; r̂, τ r)N (x; 0, (2λ2)
−1)L(x;λ1)dx (F.22)

= N (0; r̂, τ r + (2λ2)
−1)

∫

x

N
(
x;

r̂

2λ2τ r + 1︸ ︷︷ ︸
,µ

,
τ r

2λ2τ r + 1︸ ︷︷ ︸
,σ2

)
L(x;λ1)dx. (F.23)
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Splitting apart the integral in (F.23) gives

∫

x

N (x;µ, σ2)L(x;λ1) =

∫ 0

−∞

λ1

2
N (x;µ, σ2) exp(λ1x)dx

︸ ︷︷ ︸
,

¯
C

+

∫ ∞

0

λ1

2
N (x;µ, σ2) exp(−λ1x)dx

︸ ︷︷ ︸
,C̄

. (F.24)

To evaluate
¯
C and C̄, we first complete the square to re-express the multiplication

of a Gaussian pdf and a Laplacian pdf as the multiplication of a Gaussian pdf by a

constant, that is,

¯
C =

λ1

2
exp

(
¯
µ2 − µ2

2σ2

)∫ 0

−∞
N (x;

¯
µ, σ2)dx, (F.25)

C̄ =
λ1

2
exp

( µ̄2 − µ2

2σ2

)∫ ∞

0

N (x; µ̄, σ2)dx, (F.26)

where
¯
µ , µ+ λ1σ

2 and µ̄ , µ− λ1σ
2. Evaluating the integrals in (F.25) and (F.26)

gives

¯
C =

λ1

2
exp

(
¯
µ2 − µ2

2σ2

)
Φ
(−

¯
µ

σ

)
, (F.27)

C̄ =
λ1

2
exp

( µ̄2 − µ2

2σ2

)[
1− Φ

(−µ̄
σ

)]
(F.28)

=
λ1

2
exp

( µ̄2 − µ2

2σ2

)
Φ
( µ̄
σ

)
. (F.29)

Therefore, C = N (0; r̂, τ r + (2λ2)
−1)(

¯
C + C̄).

Now that we have computed the normalizing constant, we turn to evaluating the

posterior mean:

E[x|r̂] =
1

C

∫

x

x p(r̂|x)p̃(x)dx, (F.30)
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=
1

C

∫

x

xN (x; r̂, τ r)N (x; 0, (2λ2)
−1)L(x;λ1)dx (F.31)

=
N (0; r̂, τ r + (2λ2)

−1)

C

∫

x

xN (x;µ, σ2)L(x;λ1)dx (F.32)

=
1

¯
C + C̄

(
λ1

2

∫ 0

−∞
xN (x;µ, σ2) exp(λ1x)dx

+
λ1

2

∫ ∞

0

xN (x;µ, σ2) exp(−λ1x)dx

)
, (F.33)

=
1

¯
C + C̄

(
λ1

2
exp

(
¯
µ2 − µ2

2σ2

)∫ 0

−∞
xN (x;

¯
µ, σ2)dx

+
λ1

2
exp

( µ̄2 − µ2

2σ2

)∫ ∞

0

xN (x; µ̄, σ2)dx

)
. (F.34)

In order to evaluate the integrals in (F.34), we first multiply each integral by a

specific constant, and its reciprocal:

E[x|r̂] =
1

¯
C + C̄



λ1

2
exp

(
¯
µ2 − µ2

2σ2

)
Φ
(−

¯
µ

σ

)∫ 0

−∞
x
N (x;

¯
µ, σ2)

Φ
(−

¯
µ

σ

) dx

+
λ1

2
exp

( µ̄2 − µ2

2σ2

)
Φ
( µ̄
σ

)∫ ∞

0

x
N (x; µ̄, σ2)

Φ
(
µ̄
σ

) dx



 . (F.35)

Observing the integrals in (F.35), we see that each integral represents the first moment

of a truncated normal distribution, a quantity which can be computed in closed form.

Denote by T N (x;µ, σ2, a, b) the truncated normal distribution with (non-truncated)

mean µ, variance σ2, and support (a, b). Then, with an abuse of notation,

E[T N (x;
¯
µ, σ2,−∞, 0)] =

¯
µ− σ

φ
(−

¯
µ

σ

)

Φ
(−

¯
µ

σ

) , (F.36)

E[T N (x; µ̄, σ2, 0,∞)] = µ̄+ σ
φ
(
µ̄
σ

)

Φ
(
µ̄
σ

) , (F.37)
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where φ(·) is the standard normal pdf [129]. Applying these facts to (F.35) yields

E[x|r̂]= 1

¯
C + C̄

(

¯
C · E[T N (x;

¯
µ, σ2,−∞, 0)] + C̄ · E[T N (x; µ̄, σ2, 0,∞)]

)
. (F.38)

Next, to compute var{x|r̂}, we take advantage of the relationship var{x|r̂} =

E[x2|r̂]−E[x|r̂]2 and opt to evaluate E[x2|r̂]. Following the same line of reasoning by

which we arrived at (F.35), we reach

E[x2|r̂] =
1

¯
C + C̄



λ1

2
exp

(
¯
µ2 − µ2

2σ2

)
Φ
(−

¯
µ

σ

)∫ 0

−∞
x2
N (x;

¯
µ, σ2)

Φ
(−

¯
µ

σ

) dx

+
λ1

2
exp

( µ̄2 − µ2

2σ2

)
Φ
( µ̄
σ

)∫ ∞

0

x2 N (x; µ̄, σ2)

Φ
(
µ̄
σ

) dx



 . (F.39)

Again, we recognize each integral in (F.39) as the second moment of a truncated

normal distribution, which can be computed in closed-form from knowledge of the

mean and variance of a truncated normal random variable. From the preceding

discussion, we have expressions for the means of the necessary truncated normal

random variables. The corresponding variances are given by [129]

var{T N (x;
¯
µ, σ2,−∞, 0)} = σ2



1−
φ
(−

¯
µ

σ

)

Φ
(−

¯
µ

σ

)




φ
(−

¯
µ

σ

)

Φ
(−

¯
µ

σ

) − ¯
µ

σ







 , (F.40)

var{T N (x; µ̄, σ2, 0,∞)} = σ2



1−
φ
(
µ̄
σ

)

Φ
(
µ̄
σ

)




φ
(
µ̄
σ

)

Φ
(
µ̄
σ

) +
µ̄

σ







 . (F.41)

Inserting the needed quantities into (F.39) produces

E[x2|r̂] =
1

¯
C + C̄

[

¯
C
(
var{T N (x;

¯
µ, σ2,−∞, 0)}+ E[T N (x;

¯
µ, σ2,−∞, 0)]2

)

+C̄
(
var{T N (x; µ̄, σ2, 0,∞)}+ E[T N (x; µ̄, σ2, 0,∞)]2

)]
, (F.42)
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from which it is possible to calculate var{x|r̂}.

Finally, for the purpose of adaptive step-sizing, sum-product GAMP must be able

to evaluate the (negative) Kullback-Leibler divergence, −DKL(p(x|r̂) ‖ p(x)), which

can be computed as follows:

−DKL(p(x|r̂) ‖ p(x)) ,

∫

x

p(x|r̂) log

(
p(x)

p(x|r̂)

)
dx (F.43)

∼=
∫

x

p(x|r̂) log

(
p̃(x)

1
C
p(r̂|x)p̃(x)

)
dx (F.44)

=

∫

x

p(x|r̂) log

(
C

p(r̂|x)

)
dx (F.45)

= logC −
∫

x

p(x|r̂) logN (x; r̂, τ r)dx (F.46)

= logC + 1
2
log(2πτ r) +

∫

x

(x− r̂)2

2τ r
p(x|r̂)dx (F.47)

= logC + 1
2
log(2πτ r) + 1

2τr

[
var{x|r̂}+ E[x|r̂]2

]

− r̂
τr

E[x|r̂] + r̂2

2τr
, (F.48)

where ∼= indicates equality up to an additive constant independent of r̂ and τ r.
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