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Performance Analysis of Godard-Based Blind
Channel Identification
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Abstract—We analyze a blind channel impulse response iden- .
tification scheme based on the cross correlation of blind symbol desired { S(nO) - h“’)(z)
estimates with the received signal. The symbol estimates specified
are those minimizing the Godard (or constant modulus) criterion,

for which mean-squared symbol estimation error bounds have re- p
cently been derived. In this paper, we derive upper bounds for the 37(11) — h(l)(z) @ > Tn
average squared parameter estimation error (ASPE) of the blind

identification scheme that depend on the mean-squared error of  noise &
the Wiener equalizer, the kurtoses of the desired and interfering

sources, and the channel impulse response. The effects of finiteinterference
data length and stochastic gradient equalizer design on ASPE are () K
also investigated. All results are derived in a general multiuser | Sn —h (z)
vector-channel context.

Index Terms—BIlind channel identification, blind deconvolution,
constant modulus algorithm, Godard algorithm.

Fig. 1. Linear system model witR" sources of interference.
algorithm could be used “off-line” during such a design phase
to yield channel estimates with guaranteed performance. In

ONSIDER the linear system of Fig. 1, where a desireaddition, the tracking capabilities of the algorithm would allow

source sequence[sﬁ,,o)? combines linearly with kK @ study of channel time-variations (e.g., [5]). Perhaps more
. - interesting are “on-line” applications, where the proposed
interferers through vector channe{sh(o)(z), T h(ls)(z)}' identificat?on algorithm woulgpbe usedin an operatingprecl:aeiver.
Our goal is to estimate the impulse response coefficients of iige such idea is that accurate channel estimates, generated
linear channelih(o)(z)} knowing only the statistics of the using a low-complexity adaptive linear equalizer, could be used
received signakr,}. The literature refers to this problem ady a complex and high-performance symbol detector such as
blind channel identification [1]. a maximum-likelihood sequence detector (MLSD). Alterna-

In this paper, we analyze the performance of the blirtilely, the blind channel estimates could be used to initialize a
channel identification scheme illustrated in Fig. 2, wherelylind decision feedback equalizer or other equalization scheme
blind symbol estimateqy,} are cross-correlated with thefor which cold blind startup is not feasible [6].
received signalr,} under the presumption that the source Linear estimation via the CM criterion has become perhaps
processe 3;0?... sV are mutually independent. Wethe most studied and implemented means of blind symbol
I

focus specifically on the case of blind linear symbol estimatidfstimation for data communication over dispersive channels
according to the Godard, or constant modulus (CM), criteridi€€: €-9-, [4] and the references within). The popularity of CM
[2]-[4]. methods are usually attributed to

There are various applications of the proposed adaptive i) the existence of a simple adaptive algorithm ("*CMA” 2],
channel identification algorithm. For one, engineers need a  [3]) for estimation and tracking of the CM-minimizing
detailed understanding of expected channel characteristics linear equalizerf, ,(z);

when designing a communication system. The identification ii) the typically excellent mean-squared error (MSE) perfor-
mance of CM-minimizing equalizers;
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Fig. 2. Blind channel identification using CM-minimizing equalifer,, (=), which generates nearly MMSEdelayed symbol estimates of the zeroth user, i.e.,
{yn} = {s\2,}.

generated by the method of Fig. 2. The bounds are a functionomirresponds to the use of multiple sensors and/or sampling at
the channel coefficients, the source kurtoses, and the symbolasinteger multiple of the symbol rate. The observations can be
timation delay. Next, we derive the expected ASPE that resultsitten
when the correlations in Fig. 2 are estimated frdvdlength K oo
dgta blocks_. Flnally, we discuss the effect of stochastic-gra- - Zzh(k)s(kz 1
dient equalizer design (i.e., the use of CMA versus exact gra- oo
dient descent) on ASPE. All results are derived in the multiuser
vector-channel context of Fig. 1. Where{hg“)} denotes the impulse response coefficients of the
The organization of the paper is as follows. Section Il dis- . i hannek® Wi h
cusses the properties of the system model and reviews CM-m T?)ar tlme-|nvar|ant (LT1) c ann (2). We assume that
mizing symbol estimation and blind channel identification, Seé’- (z) is causal and a?unded-|qp_ut_bpunded-putput (BIBO)
tion 1l derives bounds for the MSE performance of the channgiaP!e. Note that such' ™ (z) admit infinite-duration impulse
estimation scheme, and Section IV covers implementational f€SPONnse (IIR) channel models. §
sues such as finite data effects and the use of CMA. Section VAS shown in Fig. 2, linear estimateg, } of {32_)1,} for
presents the results of numerical simulations verifying our pdixed estimation delay, are generated from the vector-valued
formance analyzes, and Section VI concludes the paper.  observation sequende, }. Using{ f, } to denote the impulse
response of the linear equalizgfz), the symbol estimates are
Il. BACKGROUND formed asy, = >.°°___ fFr,_;. We will assume that the

. . . . . _linear systemf(z) is BIBO stable withconstrainedARMA
In this section, we give background information on the line&ctyre, i.e., certain polynomial coefficients in the numerator
system model, the CM criterion, and on blind channel |dent|f5nd denominator of (=) may be held at zero.

cation. The following notation is used throughout:
(-)t transpose;
(-)* conjugation;
()" hermitian;

k=0 =0

The global channel-plus-equalizet$® (z) : = f(z)
h(k)(z) are often used in the sequel. The impulse response
coefficients ofg™*)(z) can be written

E{-} expectation. o0 4
In addition, (-)" denotes the Moore—Penrose pseudo-inverse, ¢ = Z ff{hff‘_)7 2
and||z||,, thep-norm defined byg/> . |«;|?. In general, we use i=—00
boldface lowercase type to denote vector quantities and bold- . . B ) (k)
face uppercase type to denote matrix quantities. allowing the estimates to be written s = >, >, ;'

Adopting the following vector notation helps to streamline the

A. Linear System Model remainder of the paper.

First, we formalize the linear time-invariant multi-channel q(k) = (.. .,qg“l),qék)vqgk) )t

PIIRIR

modelillustrated in Fig. 1. Say that the desired symbol sequence © W 0 (1) ) ()
sV and K sources of interferencd st L ... {50 q:= < A L A SRR ALY/ N R Y

each pass through separate linear channels before being ob- t
served. The interference processes may correspond, e.g., to q§1),...,q§K),...)
co-channel interference signals or additive noise procésises.

addition, say that the equalizer uses a sequence dttlienen- () () .— ( LosB) s B _)t
sional vector observations-, } to estimate (a possibly delayed ’ ’

version of) the desired source sequence, where theftase s(n) = < 78(0)17 3(1117 78(13;)17 PORNOREININCS
s R DAY Mo TR Ay N N T
2Modeling AWGN of variancec? at P sensors requires® noise t
sources {s(*>1 with corresponding channels of the forl®)(z) = ) (D) (K)
(0,___70{‘Zly/%75707___70)t.p d ( ) Spn—12Sp-1r 5 Sn—1» (3)
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For instance, the estimates can be rewritten concisely as  denotess(n) with the sflol,, term removed, the normalized es-
X timateyn/q,(,o) can be referred to as “conditionally unbiased”
A (k i 0,0 1 _ (0 o ;
Yo = Zg(k) §(k)(n) _ gtg(n)' (4) sinceE {yn/q,, |sn_y} s,,~,. The conditionally unbiased
k=0 MSE (UMSE) associated with, , which is an estimate @ﬁol,,,

. . . ) is then defined as
We now point out two important properties @f First, rec-

ognize that a particular channel and set of equalizer constraints
will restrict the set of attainable global responses, which we will Juo(Un) = F % - sELOZV (8)
denote byQ,. For example, when the equalizer is finite im- Qv

pulse response (FIR) but otherwise unconstrained, (2) implies
thatqg € Q, = row(H), where Substituting the estimate decomposition into (8), we can write
B the UMSE in terms of the system respogse

ISV TSR ST S SO 30

0 K 0 K E {1g*5(n)|? ql|2
o | 000 SR SRR S SR Tun(g) = { (2)| b lall> - 9)
= . . . . . . : (0) (0)
: : : : : : I qv
0...0 0...0 B _pMO

) where the second equality invokes assumptions S1)-S3).
For the linear channel model of Fig. 1, it is possible to

Restricting the equalizer to be sparse or autoregressive, hper boynd thg UMSE of CM-minimizing .equahzers of
example, would generate different attainable $2ts Second, delay_z/ directly in terms of the_ UMSE of Wiener symbol
BIBO stable f(z) and h®)(z) imply BIBO stableq®)(z) so equalizers of the same delay, i.¢, . (gnw). Henceforth,
that||q<’“>||p exists for allp > 1, and thus||g||, does as well. ~Wwe useg  to denote the MMSE global response associated

Throughout the paper, we make the following assumptions w#ith sy?ni:}'al delayr. In the FIR case, S1)-S3) imply that

the K 4 1 source processes. q = Ht(H*Ht)TH*e,(,O), whereel®) is a column vector
S1) Forall %, {32’0} is zero-mean i.i.d. with a single nonzero element of value 1 located such that
= q,(,k) [8]. A similar expression exists for the IIR

. (%)
I‘)} are jointly statistically indepen- qg'er
" J y y P case. Before the statement of the bounds, we introduce some

s2) isgw},...,{s

ent. i .
k additional terminology.
S3) Forallk, B |3£L )|2} = o5 First, we definenormalizedkurtosis« [not to be confused
S4) K (320)) < 0, wherek'(-) denotes kurtosis with (- in (6)]:
K( o 41 _ 21\2 _ 272 ls
R UL B (10)
S5) If,foranyk, ¢ (2) or{sﬁ,,k)} is not real-valued, then <E{ s 2})

N2
E {sﬁ,’“) } = 0 for all k.
Under the following definition ofs,, our results will hold for

B. Constant Modulus Criterion both real-valued and complex-valued models.
The CM_(or Godard) crlterl_qn, which was mt_roduced inde- f3 Vkn: h® ¢ RP andsﬁ,,k) cR
pendently in [2] and [3], specifies the minimization of the cost Kg = 9 otherwisg (11)

functional J. defined as
Note that under S1) and S5}, represents the normal-

2
Je(yn) :IE{(Ian2 -7) } (7) ized kurtosis of a Gaussian source. It can be shown that
the normalized and un-normalized kurtoses are related by
In (7), v is a positive design parameter known as the “dispeg: (s*)) = (k¥ — x,)o* under S3) and S5). Finally, we

sion constant.” We are interested in the MSE performance @ifine the minimum and maximum (normalized) interference
the CM-minimizing equalizer because it can be directly relatggrtoses and two other quantities that appear later.
to the ASPE of the blind channel estimation scheme in Fig. 2.

Since both symbol power and channel gain are unknown in gL — pin kR
the “blind” scenario, blind estimators suffer from a gain ambi- Osk<K
guity. To ensure that estimator performance evaluation is mean- Ko%= Jmax k)

ingful in the face of such ambiguity, we base our evaluation on

.min

normalized versions of the blind estimators and normalize by Prmin 1= Fig —Fs
the receiver gaiq,(,o). Given that the estimatg, can be decom- kg — ﬁgo)
posed into signal and interference termsgas= q£°>s§f)ly + Ky — KPP
q'5(n) , whereg denotesy with theq” term removed ana(n) Pmasx 3= Ky — 10
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Theorem 1:(See [7] for proof.) If Wiener UMSE

Juw (q ) < Joo2, where we have

’ =m,v
Jo =
(1 + prnin)_l - 1,
1—%1-%

Pmax+\/1* (S*Pn]in>4(1+/31naX> ?

3— Pmin
5+ pmin ’

max
KT < Ry

max

> Rgs Pmax 7£

max

> Rg, Pmax = -1
(12)
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C. Channel Identification

Fig. 2 illustrates the proposed blind channel impulse re-
sponse identification scheme, wherel+delayed versions of
the CM-minimizing symbol estimategy, } ELO)V
are cross-correlated with the vector received samples
{rn—q,...,rn}, yielding the vector channel parameter

estimates[fz,(iM_Q, B, i}fﬁM } Theéth parameter estimate
2 (0)

h can be expressed as a scaled version of the true
v+M—6
parameter corrupted by an error term

~
~

the UMSE of CM-minimizing equalizers associated with the

same user/delay can be upper bounded as follows:

Jur (a,,,) < T (a,,) < T |22

where we have (13), shown at the bottom of the page. Further- =E Z R 5P
more, (12) guarantees the existence of a CM-minimizing equal- k.

izer associated with this user/delay whgis FIR.

It should be noted that Theorem 1 implicitly incorporates the

channel and/or equalizer constraints that defihethrough its
use of the MMSE responsg (€ Q.). For example, ifg

is a MMSE global response Constrained to the set of causal IIR
equalizers, then the UMSE bound pertains to CM-minimizing
obeying the same causal-IIR constraint.
was generated with the constraint
thatf,, () was FIR of | Iengtth, then (13) would bound the

global responseg
As another example tj

CM-UMSE for length#V, delay» CM-minimizing equalizers
fen(2)-

h,(/iM—é

=E{rsys_um}

QLMoL

Spl6— —j i SnM—i
1%
E)*
_022"(4-1\4 54 z( )
(k) (k)%
— o240 | p© L £ Pita—odi
4 viM—6 T (o)*
W—/
scaling e

error

(14)

We note that the identification scheme in Fig. 2 bears
similarity to the Gooch—Harp method of channel identification

In typical scenarios a) sub-Gaussian desired source in {i€] illustrated in Fig. 3, whereby the CM-minimizing esti-
presence of AWGN or b) constant-modulus desired sourcenmates{y, } are processed by a hard decision devitbefore
the presence of nonsuper-Gaussian interference, it turns out ttrass correlation. Due to the nonlinear operatidnhowever,

Pmin = 1, simplifying (12) and (13) as [7].
V2 -1

—2
) (e, )Y
. W z..)) y

= O—S

1+\/2<1+#>2—1

1 5

+O(J;'j’y( my)).

Jo

Pmin=1

max
Ju z/|

Pmax=1

performance analysis of the Gooch—Harp scheme is difficult
unless perfect decision-making (i.€,, = s,,_,) is assumed.

In addition, forming reliable decisions requires carrier phase
synchronization (an issue with passband data transmission
[11]), which is not required in the identification scheme of
Fig. 2.

Many other methods of blind channel identification have
been proposed [1], most of which estimate channel coefficients
from the observed data directly, i.e., without first forming
blind symbol estimates. When there are multiple subchannels
(P > 1) satisfying certain conditions, it is possible to accom-
plish blind identification using only the second-order statistics

( -2
oo (2s)
1=y | Qpmin) | 1-——ZF ) —pmin
2 ,

max .__
Juplon =

—2
v (a,,,)
Pmin+4 [ (14+pmin) — —Pmin

193 Ky < Ky

59

(13)

—2
1\/(1+Pmin) <1+JE%”)> <1+/7,]11XJ3’V5%’”)> —Pmin
2

—2
Ju,vlg Ji,p q
Pmin+\/(1+/7min) <1+%> <1+/7nnx # — Pmin
s s
\

0—57



SCHNITERet al. PERFORMANCE ANALYSIS OF GODARD-BASED BLIND CHANNEL IDENTIFICATION 1761

) i (0) 2 (0)
hl/+M hU+M—1 h’r/-H\J—Q

E{} E{} E{}

Tn z ml=--
% * T
i Yn d dn—Mm ]
fc)y(z) ; I D n Z—[\l n

Fig. 3. Gooch—Harp method of blind channel identification.

(S0S) of the observed process (see, e.g., the references in [12])L,(gm V)SJOO—S? in Theorem 1. The operat®f,,is defined as
Most SOS-based techniques, however, are known to fail cata- ’

strophically when the channel order is overestimated (see, e.g., Ek,i hgi)qu‘(k)
the discussion in [13]) or underestimated [14]. An exception is S hgi)M_lqi("‘)

the approachin [13], where, similar to Figs. 2 and 3, the channdfx - 1 (CP) — M9t Hug=
coefficients are estimated using cross correlations with blind (k) *)
symbol estimates based on linear prediction. The CM-based Ek,i hi—l—]\l—qu

schemes in Figs. 2 and 3, however, give good performance,f ) (19)
even when the typical channel identifiability conditions fail. with induced norm
Hyug"
[|Haz|| := sup Hi_Q (20)
I1l. BLIND IDENTIFICATION—PERFORMANCEBOUNDS q#0 H2H2
We are interes(tée)d in quantify(ior;g the error of the-1 param-  Recall thatg and; (C”) were defined in Section II-A. The
eter estimate{hVJrM_Q, - hu+M} relative to the true pa- operatorH,, is a generalization of an/-shifted version of{

from (5) and is employed so that our bound applies to both finite

(0) (0) i
rameter subseth +M-Q ’h’u+1\l}' We tolerate arbltrgry and infinite-dimensional channels and equalizers. WHEK )
scaling of the total estimated channel response and define gyt F|R 7¢,, reduces to a block Toeplitz matrix, ait ||
average squared parameter error (ASPE) criterion as fonow%pecifies its largest singular value.

Proof: First, we define
Q

o1 +(0) ) 2 T r rQ T
gé;:%%12+1§;‘W%+M—6—hwﬂﬁﬁm (15) Mar 20 (€7) = € <£LT3M
6=0 Z(k,i)#(o,u) b2
? > R 8
(k,1)#£(0,0) Yi-m—4; ' 1)
iL(O) L@ :
1 v+M v+M ' (k) (k)
; . . ‘ h. ‘
= min 0 : — : . Z(k,z)#(o,u) i+M—Q%i
ocC Q + 1 0 ) ) - . . .
i,f}iM_Q r% o H,, is a version ofH,; with the components for the zeroth
~— _@;—’ source at delay removed, and is a version ofy with th6q,(,0)
E(:XM h, y element extracted. 0
(16)  Using (14) and the definitions dk, , ,, andhy"} , in (16),
the operatord{,, andH ; allow us to write
Note that by choosing4 and @ large enough, an arbitrarily - (0) . 2
0 - h, v =Hug o
large subset of the total channel respo bé may be esti- B © (O 2
mated, regardless of the symbol estimation delay =HuT o} +hy) 0 or (22)

Theorem 2: For symbol estimation delay, the ASPE gen- P (1) [P N
erated by the blind channel identification scheme in Fig. 2 Cg%}hoosmg& = (@ 0)" In (16)

be upper bounded as - (0) 2 Y.
£ < 1 hoinv _ 1 Hmgtl3
W — * “v+M - 2 7
e < ||H1\4||2Ju,u|1c17lsx (17) - Q + 1 (_Zz(/O) 0_52 ) Q + 1 ql(jo)

LS e @3)

E {||Tn||§} T | The induced norm (20) allows further bounding of (23)

ST a9 1Pl

5 z, (24)

. . . N E=Q+1 | of
when the Wiener equalizer satisfies the UMSE condition Qv
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Recalling the definition of UMSE in (9), (24) becomes Rewriting (27) using
| Harl®
& < Jun(a, ) il (25) B 1
15 9(8,) g e Z\ Zh( 2| = 5E {3}
Since
gives
[l S qHyHug 2 s g HyHug 041
qll,=1 2=1, +
T Iglle=t0.7=0 M3 < == E {JIralI3} (28)
= sup gHHuT = Hul §
91l=—1 which leads to (18).
(25) yields Theorem 2 gives an upper bound for the ASPE that is propor-
tional to the norm of the channel oper&tand the UMSE of the
1 H as||? v-delayed Wiener equalizer [through the definitionigf,,|5*
& <, ( >(Q T 1)o2 (26) in (13)], as well as a looser bound that is proportional to the

received power and the Wiener UMSE. Section V plots these

When{h(k)(z)}7 0., andv are suchthaf,, , (q ) < J,o2 upper bounds for comparison with the actual ASPE attained
ATy *  using the CM-minimizing equalizer.

for J, in (12), Theorem 1 allows upper boundingf,. (Qc V),

and (26) becomes (17). IV. BLIND IDENTIFICATION ISSUES INPRACTICAL
Simplification of (17) is possible using the fact that IMPLEMENTATION
2 A. ASPE with Finite-Data Correlation Approximation
Mg |2 = Z Zhii)M s In practice, the expectation operations in Fig. 2 will be re-
5=0|| ki ) placed by some sort of block or exponential averages. In this
o section, we analyze the effect of block averaging on the param-
Z h(k) (k)* eter estimation error. Th&h block parameter estimate is de-
~ im—st |, fined below for block sizeV.
S * * i b
-3y \ S WP hurr—s = 3 O Ta-stimnr (29)
6=0 ki n=0
<(Q+1) Z ‘ || 2 Lemma 1: The expected ASPE usiny-block estimates of
- z the autocorrelations can be written as (30), shown at the bottom

of the page, where the last term in (30) appears only in the case
which implies of real-valued sources, channels, and equalizers.

(k) 2 3The norm of the channel operator equals the maximum singular value of a
hi H . (27) suitably defined channel matrix when channel and equalizer are FIR.
2

4Recall assumption S5).

[Ha* <

OH ) |
E {8 } —& n U;L hz/—l—/\/lﬁr(/-ﬁ—]\l‘
TR N@Q ) ﬁ<o>MH4
LL778E 9
Q 2
k k)* .
x Z( 5\4) s+i4 z( ) (’igk) - 1)
57 4

N—-1

Z Z hgr’:)ljﬁjhgk) Z Z(C)* r(;) n4i

n,m=0 k.j (e, ) (k,j—M+6)
1 N-1
NDH )= k k
] Zhgn) n+M— 6+zqz() Z hfl )rn M— 5+dq((1 ) ) (30)
n,m=0 1,7 (k,d)#Z(l,m—n-+i)

ilTscR
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2 H
2(0) N
—E{hi } A
2
R H 2(0) . 2
2 - (1) E{hi }+ 3
} o2

A (0) ]2
h _
2
Now, we wish to examine
2(0) 2(0)
eﬁth—é - %E hyiri—s

X <‘ 2 & NO) ?
2 E =) kE |:hu+1\4—6:|
- {;L<0> } B 2)} 2) 3 r
13 v+M—-6( — Ryt rmr—s
2 where[h],, denotes theth component of. To avoid compli-

wheret; is the value o minimizing (16). Zeroing the partial cated notation, we focus temporarily on the c&se: 1. Thus
derivative of (16) with respect #), it is straightforward to show

2(0)

%

Proof: The expected block-ASPE can be written _E {

B{e
|
£

NO) .
9 hu—l—]\l 5 hz/—l—]\l—é

‘ =

Q
i

6=0

d 1

1
+16

O

(33)

O

Il
S

2

2(0)
hu—l—]\l—é

+

that . ;L<0> 2
iL(O)H h(O) v—M-—6
L= —V+]\4—V+J\4 (31) 5
h (0) H N-1
k k D+ (D*
by iy =E szh()i)" sz() EL)MZ
A (0) n=0 k,j X
From (29) it follows thatE{h +I\/I—6} = E{rn_sy._y} = 1
v n _ (k) (D% (a)x_(c)
- (0) =3 2 ha” D0 Wy
h, | _s, and thus k,j,lyi ab,c,d
1 N—1N-1
k LS a)* c
E{gﬁ}:Q— XZZE{i)oJEI)M7£n)o bsgn)J\l d}
12 n=0 m=0 v
(1078 L]5© - (0) B
z_: ‘ h honi—s = Rosri—s ) The quantityB above vanishes unless the indiéeg, [, i, a, b, ¢
=0 - (0) andd are suitably aligned. After a bit of algebraye have the
+ H9 hy s hfﬂZM 5H ) equation at the bottom of the page, where the last term only ap-

pears in the real-valued case. Generalizing the previous expres-
2} sionto the cas# > 1 and combining the result with (31)— (33),

P . (0)
v+M—-6 " o M6

we arrive at (30). [ |
Simulations suggest that for CM-minimizing equalizers
(32) f..(z) and typical values ofN, the second term in (30)
dominates the first. This implies that the performance of the

2

ozl

Furthermore S N : -
) . proposed channel estimation scheme is, in practice, limited
. ;L(O) E(O) —E ;L(O) B ;L(O) 4O by the finite-data correlations rather than by the performance
i S “, i i of the blind equalizers. The plots in Section V agree with
O H 2(0) v this notion: Improvement in symbol estimates gained through
B (hi ) hi + h7 } 5Contact the corresponding author for the details.
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quantization of{y,,} gives the Gooch—Harp scheme [10] only ¢ @

a minor advantage in ASPE.

06
B. Stochastic Gradient Estimation of CM Equalizer sl |

Practical implementations of the identification scheme i | ; ]
Fig. 2 will not have knowledge of the exact CM-minimizing bL JL

equalizerf, ,(z). Typically, f.,(z) will be replaced by an o5 | - o - - o oo
iteratively updated approximation t¢.,(») generated by

CMA, which attempts stochastic gradient minimization of Cl\mo . ‘ ) ’ .
cost [2], [3]. For finite-lengthf (z), CMA updates the equalizer
parameters fq, ... ,fo,l} using the following rule (where W
n denotes the time step): \/n
MI
filn+1) = fi(n) + pro—iyy (v = lunl?) MM
0<i<Ny—1. (34) .. ‘ , , . ‘
0 50 100 150 200 250 300

T/2-spaced samples

Similar update rules can be derived for equalizer structures that
employ feedback (resulting in an IIR equalizer) [15]. In (34), Fig. 4. Magnitude of SPIB channel #3 impulse response shown on (a) linear
is a small positive stepsize. and (b) log scales.

The operation of CMA can be considered as a two-stage
process. Starting from an initializatiofy,(z), the CMA-up- Even with very short data records, however, it may be possible to
dated equalizerf(z) first converges to a neighborhood ofadapt CMA using a repeatedly concatenated version of the same
the exact CM-minimizing equalizef, ,(z) associated with data record (similar to “looped” LMS [19]). Since source inde-
some combination of source and symbol estimation delay pendence assumptions S1) and S2) become less valid as record
v. The particular {source, delay}, as well as the time to conength decreases, however, it is difficult to make solid claims
vergence, depend on the initializatigy z). Although various about the convergence of such data-reusing CMA schemes. Al-
initialization procedures have been proposed (see, e.g., theugh of practical importance, CMA data-reuse lies outside the
references in [4]), none are known to work “perfectly” in alkcope of this paper.
situations. Recent work, however, has shown that if the signal to
interference-plus-noise (SINR) ratio of the estimates generated V. NUMERICAL EXAMPLES
by f,(z) is above a prescribed threshold, then small stepsize i .
CMA will converge to a neighborhood of the CM-minimum_ OUr first experiments were based on complex-valued
f..,(z) associated with the same {source, delay} f). T/2-spaced (i.e.P = 2) signal processing information base

For i.i.d. sub-Gaussian sources in the presence of AWGN, tk(gplB) microwave channel response model #3, consisting of
SINR threshold equals 3.8 dB [16]. 300 7'/2-spaced samples and depicted in Fig. 4. We blindly

Once the CMA-updated equalizer parameters have convergﬁgg‘ggjr/t;iF;;gféi;ggglnsiggs[ite;;i;he8 (;??Arée(lb)r]esponse

to a neighborhood of the local CM minimufi ,(z), averaging _
theory predicts that the CMA-updated equalizer trajectory con-F19s. 57 each plot bounds (17) and (18) for the ASPE of the

verges almost surely and in meanfo, (=) [17]. In practical exact CM-minimizing equalizer with exact cross correlations
situations, however, the CMA-updated equalizer will “jitterSOMPared with _
around this local minimum, where the amount of jitter is pro- 1) the average ASPE achieved by the proposed CMA-based

portional to the stepsizg and to the average size of the error scheme using block length = 10%;

termr_,y% (v — |ya|?) in (34). Itis possible to derive expres- i) the average ASPE achieved by the Gooch—Harp scheme
sions for theexcessMSE due to CMA, i.e., the difference be- [10] using block lengthV;

tween the expected MSE of CMA-generated equalizers and theii) the expected ASPE for the exact CM-minimizing equal-
MSE of CM-minimizing equalizers. For example, CMAs ex- izer” using block lengthV [from (30)];

cess MSE resulting from the use of source symbols drawn fromiv) the ASPE for the exact CM-minimizing equalizer with
a nonconstant-modulus alphabet is characterized in [18]. The €xact cross correlations [from (15)];
simulations in Section V, however, seem to indicate that for typ- V) the ASPE for the Wiener equalizer with exact cross cor-
ical block sizesV, the effects of finite-data correlation approx- relations [also from (15)].
imation overwhelm the effects of CMA-induced excess symbdhe following details apply to all experiments: The symbol
estimation error. For this reason, we do not investigate furthdelay »» was chosen as the MSE-minimizing delay for the
the CMA-induced error.

Throughout our discussion of blind_channel estimf?ltion, we, e SPIB microwave  channel  database  resides  at
have been assuming that_the CMA-derived symb_ol estimates ﬁ\(é//spib.rice.edu/spib/microwave.html.
reasonably accurate, which would seem to require use of a daﬁhe CM-minimizing equalizef . (=) was determined numerically using
record long enough to support the convergence time of CMMatlab’s “fminunc” routine. ’
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Fig. 5. Average-squared parameter error Tof2-spaced SPIB microwave
channel #3 versus SNR of AWGN. Fig. 7. Average-squared parameter error Tgf2-spaced SPIB microwave
channel #3 versus equalizer length for QPSK.

I
-8~ bound (18)

<-vond(17 |} equalizer with block-averaged cross correlations (for block

—~ GooohiN length N = 10000); the relative independence from SNR

.. CM:N

oo 1 (> 20 dB) implies that theNV block effects swamp out
| noise-induced errors. The trace corresponding to the CMA
\E‘\ adaptive equalizer an@-block cross correlations is further
1 corrupted by EMSE in the equalizer output (due to a non-
constant modulus 64-QAM source [18] and nonzero stepsize
i = 0.001), although the EMSE contribution to ASPE is minor.
1 In the Gooch—-Harp scheme, we process the CMA equalizer
T  Outputwith a nearest-element detector. We expect the equalizer
outputs to be cleaned up under high SNR (since decisions
1 should be reliable), although we expect little improvement at
ol | low SNR (since decisions should be unreliable given our large

64-QAM alphabet). This behavior is demonstrated in Fig. 5;

ASPE (dB]

-85 L prs = = P p”  at low SNR, the decisions are not accurate enough to make
N Gooch—Harp any better than CMA, whereas at high SNR, the

Fig. 6. Average-squared parameter error Tof2-spaced SPIB microwave deCISI,On device remoyes residual EMSE in the equghzer OUFDUt
channel #3 versus equalizer |eng‘ﬂ'} for 64-QAM. and yleldS ASPE equ|Va|ent to the exact-CM equa“zer (Wh|Ch

is practically perfect for this equalizer length at high SNR).

particular combination of channel, noise, and equalizer cop-'" Fig. 6, we examine the effects of insufficient ISI removal

straints, and CMA was initialized g, ,,(») and adapted with bY varyin_g the equalizer length fromi; = 1 to 40 under arel-
stepsizey, = 103 v atively high SNR of 40 dB. All other parameters are those of

In Fig. 5, we use a’/2-spaced equalizer wittV; = 35 Fig. 5, and the same trends can be observed. Weiner and CM
and varied,the level of AWGN, and the source alphabet w grformance are practically identical, and (17) and (18) loosely

64-QAM. The equalizer was long enough to do a good job uqd the ASPI_E of exact CM equalizers with exact cross cor-
“inverting” the channel under high SNR, leadinggos el(,o) relations. Likewise, the effect aV = 1_0 OQO block size on
and, thus, accurate channel estimation under perfect cross %SrPE swamps out the effect of equalization error for all but
relations. Note that the Wiener and CM-minimizing equalize g€ (extremely u_ndermodeled) two-tap _equallzer, a_ln(_j perfor-
(hance does not improve much as equalizer length is increased

generated nearly identical performance (i.e., their traces wer

overlaid), which we expect given that the close reIationstheer = 10. Finally, CMA-induced EMSE in the equalizer

S . utput adds little compared with finite-block-induced error, and
implied by Theorem 1. The bounds (17) and (18) I|§ clle_a_rie Gooch—-Harp scheme effectively removes the EMSE when

above the trace corresponding to the exact CM-miminizi )
P 9 r{ﬂe equalizer outputs are accurate enough for nearest-element

equalizer with exact cross correlations, as expettethe : : .
dotted line in Fig. 5 corresponds to an exact CM-minimizin etecyon but does little good oth_erW|se. Note that the s_udden
mp in performance fofV; > 25 is a result of the equalizer

8\We have determinined that (24) is primarily responsible for the Iooseness@vmg a long enough time span t_o cc_)mpensate for the signifi-
bound (17), whereas (27) is responsible for the further looseness of (18). cant channel feature near tap 75 in Fig. 4.
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Fig.8. (a)Realand (b) imaginary components of SPIB microwave channel B 9. (&) Real and (b) imaginary components of artificfl2-spaced
impulse response spanning taps 15-85. (c) Real and (d) imaginary componliﬂi&"se response. (c) Real and (d) imaginary components of estimation error

of estimation error for SNR= 40 dB, N, = 35, and 64-QAM. for SNR= 40 dB, N, = 28, and 16-QAM.
o T T T T T T T T T
Fig. 7 repeats the experiment of Fig. 6 but with a QPS o bouna (17)
source. Although the source kurtosis of QPSK is lower thanth - x ég%ﬁ'n. :
of 64-QAM, the quantityp,,;,,, which predicts the UMSE per- o CMN—sinf
formance of the CM-minimizing equalizer via Theorem 1, doe -'of “‘*—M

not change. Hence, the ASPE with exact-CM equalization r

mains identical, as do the bounds (17) and (18). The switch % k
QPSK does change the performance of CMA and Gooch—H:& ,\6\6\9\0\‘
adaptive schemes, however. First, the EMSE of CMA is signi§ ™| )

icantly reduced because the source alphabet now has cons
modulus [18]. As aresult, CMA performance is practically ider
tical to exact-CM performance (assumingblock cross corre-
lations). The biggest improvement occurs with the Gooch—Ha
scheme, however, because (with this channel) reliable QPSK:
cisions can be made for all equalizer lengths. Hedéédylock
cross correlation is the only contributor to Gooch-Harp ASP -4, . : : : ; : : : :
in Fig. 7. N,

Flg 8 shows typlcal estimation errors compared with thFelg 10. Average-squared parameter error for artifi@figR-spaced channel

channel segment being estimated féfblock CMA, N-block  \ersus equalizer length, for 16-QAM.

Gooch—-Harp, and exact-CM equalization with exact cross

correlation. In this figure, a 64-QAM source is equalized in 40
dB SNR with an equalizer aV; = 40.

Our second set of experiments were based on the art|f|C|a
generated complex-value@/2-spaced channel impulse re-
sponse depicted in Fig. 9(a) and (b) for which we estimated all
42 impulse response coefficients. This channel was generated
by filtering a random collection of discrete multipath compo- We have analyzed the performance of a blind channel identifi-
nents with a raised-cosine pulse of rolloff factor 0.2 [11]. Theation scheme based on the cross correlation of CM-minimizing
parametersV, u, andr are the same as before. Fig. 9(c) antllind symbol estimates with the received signal. Leveraging re-
(d) shows typical estimation errors féf-block CMA, N-block centresults on the unbiased MSE of CM-minimizing equalizers,
Gooch—Harp, and exact-CM equalization with exact crosgper bounds on the average squared channel parameter estima-
correlation whenV; = 28, SNR = 40 dB, and the source is tion error (ASPE) were derived. Implementational aspects were
16-QAM. InFig. 10, we keep these parameter choices but vaalso considered, such as ASPE increase due to finite-data corre-
the equalizer length fronmV; = 8 to 28 and plot the resulting lation approximation and stochastic gradient approximations of
ASPE. Fig. 10 demonstrates behavior similar to Figs. 6 atlte CM-minimizing equalizer. Finally, experiments using SPIB
7. In Fig. 10, however, the effects of finite-block correlatiomicrowave channel models were presented to verify the results
approximation do not dominate the ASPE because the ASPBfsour analyses. One conclusion was that the ASPE due to fi-
well above the “error floor” visible in Figs. 6 and 7. We alsaite-data correlation approximation may overwhelm the ASPE

note that, in Fig. 10, the relative performance of Gooch—Harp
somewhere between that seen for 64-QAM (in Fig. 6) and
SK (in Fig. 7) since the source is now 16-QAM.

VI. CONCLUSIONS
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due to errors in the CMA equalizer output, even for reasonat,
large data record lengths.
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