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Performance Analysis of Godard-Based Blind
Channel Identification
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Abstract—We analyze a blind channel impulse response iden-
tification scheme based on the cross correlation of blind symbol
estimates with the received signal. The symbol estimates specified
are those minimizing the Godard (or constant modulus) criterion,
for which mean-squared symbol estimation error bounds have re-
cently been derived. In this paper, we derive upper bounds for the
average squared parameter estimation error (ASPE) of the blind
identification scheme that depend on the mean-squared error of
the Wiener equalizer, the kurtoses of the desired and interfering
sources, and the channel impulse response. The effects of finite
data length and stochastic gradient equalizer design on ASPE are
also investigated. All results are derived in a general multiuser
vector-channel context.

Index Terms—Blind channel identification, blind deconvolution,
constant modulus algorithm, Godard algorithm.

I. INTRODUCTION

CONSIDER the linear system of Fig. 1, where a desired
source sequence combines linearly with

interferers through vector channels .
Our goal is to estimate the impulse response coefficients of the
linear channel knowing only the statistics of the

received signal . The literature refers to this problem as
blind channel identification [1].

In this paper, we analyze the performance of the blind
channel identification scheme illustrated in Fig. 2, whereby
blind symbol estimates are cross-correlated with the
received signal under the presumption that the source

processes are mutually independent. We
focus specifically on the case of blind linear symbol estimation
according to the Godard, or constant modulus (CM), criterion
[2]–[4].

There are various applications of the proposed adaptive
channel identification algorithm. For one, engineers need a
detailed understanding of expected channel characteristics
when designing a communication system. The identification
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Fig. 1. Linear system model withK sources of interference.

algorithm could be used “off-line” during such a design phase
to yield channel estimates with guaranteed performance. In
addition, the tracking capabilities of the algorithm would allow
a study of channel time-variations (e.g., [5]). Perhaps more
interesting are “on-line” applications, where the proposed
identification algorithm would be used in an operating receiver.
One such idea is that accurate channel estimates, generated
using a low-complexity adaptive linear equalizer, could be used
by a complex and high-performance symbol detector such as
a maximum-likelihood sequence detector (MLSD). Alterna-
tively, the blind channel estimates could be used to initialize a
blind decision feedback equalizer or other equalization scheme
for which cold blind startup is not feasible [6].

Linear estimation via the CM criterion has become perhaps
the most studied and implemented means of blind symbol
estimation for data communication over dispersive channels
(see, e.g., [4] and the references within). The popularity of CM
methods are usually attributed to

i) the existence of a simple adaptive algorithm (“CMA” [2],
[3]) for estimation and tracking of the CM-minimizing
linear equalizer ;

ii) the typically excellent mean-squared error (MSE) perfor-
mance of CM-minimizing equalizers;

iii) the insensitivity to residual carrier phase/frequency off-
sets in received signal .

The second of these two points was first conjectured in the sem-
inal works [2], [3] and recently established in [7] for the arbi-
trary linear model1 of Fig. 1.

In this paper, we derive upper bounds for the average squared
parameter error (ASPE) of blind channel parameter estimates

1A (nonclosed-form) bounding procedure for the MSE of CM-minimizing
equalizers was presented earlier by Zenget al. [9] under a single-user AWGN
channel model.

1053–587X/01$10.00 ©2001 IEEE
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Fig. 2. Blind channel identification using CM-minimizing equalizerfff (z), which generates nearly MMSE�-delayed symbol estimates of the zeroth user, i.e.,
fy g � fs g.

generated by the method of Fig. 2. The bounds are a function of
the channel coefficients, the source kurtoses, and the symbol es-
timation delay. Next, we derive the expected ASPE that results
when the correlations in Fig. 2 are estimated from-length
data blocks. Finally, we discuss the effect of stochastic-gra-
dient equalizer design (i.e., the use of CMA versus exact gra-
dient descent) on ASPE. All results are derived in the multiuser
vector-channel context of Fig. 1.

The organization of the paper is as follows. Section II dis-
cusses the properties of the system model and reviews CM-mini-
mizing symbol estimation and blind channel identification, Sec-
tion III derives bounds for the MSE performance of the channel
estimation scheme, and Section IV covers implementational is-
sues such as finite data effects and the use of CMA. Section V
presents the results of numerical simulations verifying our per-
formance analyzes, and Section VI concludes the paper.

II. BACKGROUND

In this section, we give background information on the linear
system model, the CM criterion, and on blind channel identifi-
cation. The following notation is used throughout:

transpose;
conjugation;
hermitian;
expectation.

In addition, denotes the Moore–Penrose pseudo-inverse,
and the -norm defined by . In general, we use
boldface lowercase type to denote vector quantities and bold-
face uppercase type to denote matrix quantities.

A. Linear System Model

First, we formalize the linear time-invariant multi-channel
model illustrated in Fig. 1. Say that the desired symbol sequence

and sources of interference
each pass through separate linear channels before being ob-
served. The interference processes may correspond, e.g., to
co-channel interference signals or additive noise processes.2 In
addition, say that the equalizer uses a sequence of the-dimen-
sional vector observations to estimate (a possibly delayed
version of) the desired source sequence, where the case

2Modeling AWGN of variance� at P sensors requiresP noise
sources s with corresponding channels of the formhhh (z) =
(0; . . . ; 0; � =� ; 0; . . . ; 0) .

corresponds to the use of multiple sensors and/or sampling at
an integer multiple of the symbol rate. The observations can be
written

(1)

where denotes the impulse response coefficients of the

linear time-invariant (LTI) channel . We assume that
is causal and bounded-input bounded-output (BIBO)

stable. Note that such admit infinite-duration impulse
response (IIR) channel models.

As shown in Fig. 2, linear estimates of , for
fixed estimation delay , are generated from the vector-valued
observation sequence . Using to denote the impulse
response of the linear equalizer , the symbol estimates are
formed as . We will assume that the
linear system is BIBO stable withconstrainedARMA
structure, i.e., certain polynomial coefficients in the numerator
and denominator of may be held at zero.

The global channel-plus-equalizers
are often used in the sequel. The impulse response

coefficients of can be written

(2)

allowing the estimates to be written as .
Adopting the following vector notation helps to streamline the
remainder of the paper.

(3)
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For instance, the estimates can be rewritten concisely as

(4)

We now point out two important properties of. First, rec-
ognize that a particular channel and set of equalizer constraints
will restrict the set of attainable global responses, which we will
denote by . For example, when the equalizer is finite im-
pulse response (FIR) but otherwise unconstrained, (2) implies
that , where

...
...

...
...

...
...

(5)

Restricting the equalizer to be sparse or autoregressive, for
example, would generate different attainable sets. Second,
BIBO stable and imply BIBO stable so
that exists for all , and thus, does as well.

Throughout the paper, we make the following assumptions on
the source processes.

S1) For all , is zero-mean i.i.d.
S2) are jointly statistically indepen-

dent.
S3) For all .
S4) , where denotes kurtosis

(6)

S5) If, for any or is not real-valued, then

for all .

B. Constant Modulus Criterion

The CM (or Godard) criterion, which was introduced inde-
pendently in [2] and [3], specifies the minimization of the cost
functional defined as

(7)

In (7), is a positive design parameter known as the “disper-
sion constant.” We are interested in the MSE performance of
the CM-minimizing equalizer because it can be directly related
to the ASPE of the blind channel estimation scheme in Fig. 2.

Since both symbol power and channel gain are unknown in
the “blind” scenario, blind estimators suffer from a gain ambi-
guity. To ensure that estimator performance evaluation is mean-
ingful in the face of such ambiguity, we base our evaluation on
normalized versions of the blind estimators and normalize by
the receiver gain . Given that the estimate can be decom-
posed into signal and interference terms as

, where denotes with the term removed and

denotes with the term removed, the normalized es-
timate can be referred to as “conditionally unbiased”

since . The conditionally unbiased

MSE (UMSE) associated with , which is an estimate of ,
is then defined as

(8)

Substituting the estimate decomposition into (8), we can write
the UMSE in terms of the system response:

(9)

where the second equality invokes assumptions S1)–S3).
For the linear channel model of Fig. 1, it is possible to

upper bound the UMSE of CM-minimizing equalizers of
delay directly in terms of the UMSE of Wiener symbol
equalizers of the same delay, i.e., . Henceforth,
we use to denote the MMSE global response associated
with symbol delay . In the FIR case, S1)–S3) imply that

, where is a column vector
with a single nonzero element of value 1 located such that

[8]. A similar expression exists for the IIR
case. Before the statement of the bounds, we introduce some
additional terminology.

First, we definenormalizedkurtosis [not to be confused
with in (6)]:

(10)

Under the following definition of , our results will hold for
both real-valued and complex-valued models.

and
otherwise.

(11)

Note that under S1) and S5), represents the normal-
ized kurtosis of a Gaussian source. It can be shown that
the normalized and un-normalized kurtoses are related by

under S3) and S5). Finally, we
define the minimum and maximum (normalized) interference
kurtoses and two other quantities that appear later.
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Theorem 1: (See [7] for proof.) If Wiener UMSE
, where we have

(12)

the UMSE of CM-minimizing equalizers associated with the
same user/delay can be upper bounded as follows:

where we have (13), shown at the bottom of the page. Further-
more, (12) guarantees the existence of a CM-minimizing equal-
izer associated with this user/delay whenis FIR.

It should be noted that Theorem 1 implicitly incorporates the
channel and/or equalizer constraints that definethrough its
use of the MMSE response . For example, if
is a MMSE global response constrained to the set of causal IIR
equalizers, then the UMSE bound pertains to CM-minimizing
global responses obeying the same causal-IIR constraint.
As another example, if was generated with the constraint
that was FIR of length- , then (13) would bound the
CM-UMSE for length- delay- CM-minimizing equalizers

.
In typical scenarios a) sub-Gaussian desired source in the

presence of AWGN or b) constant-modulus desired source in
the presence of nonsuper-Gaussian interference, it turns out that

, simplifying (12) and (13) as [7].

C. Channel Identification

Fig. 2 illustrates the proposed blind channel impulse re-
sponse identification scheme, whereby-delayed versions of
the CM-minimizing symbol estimates
are cross-correlated with the vector received samples

, yielding the vector channel parameter

estimates . The th parameter estimate

can be expressed as a scaled version of the true
parameter corrupted by an error term

(14)

We note that the identification scheme in Fig. 2 bears
similarity to the Gooch–Harp method of channel identification
[10] illustrated in Fig. 3, whereby the CM-minimizing esti-
mates are processed by a hard decision devicebefore
cross correlation. Due to the nonlinear operation, however,
performance analysis of the Gooch–Harp scheme is difficult
unless perfect decision-making (i.e., ) is assumed.
In addition, forming reliable decisions requires carrier phase
synchronization (an issue with passband data transmission
[11]), which is not required in the identification scheme of
Fig. 2.

Many other methods of blind channel identification have
been proposed [1], most of which estimate channel coefficients
from the observed data directly, i.e., without first forming
blind symbol estimates. When there are multiple subchannels

satisfying certain conditions, it is possible to accom-
plish blind identification using only the second-order statistics

(13)
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Fig. 3. Gooch–Harp method of blind channel identification.

(SOS) of the observed process (see, e.g., the references in [12]).
Most SOS-based techniques, however, are known to fail cata-
strophically when the channel order is overestimated (see, e.g.,
the discussion in [13]) or underestimated [14]. An exception is
the approach in [13], where, similar to Figs. 2 and 3, the channel
coefficients are estimated using cross correlations with blind
symbol estimates based on linear prediction. The CM-based
schemes in Figs. 2 and 3, however, give good performance,
even when the typical channel identifiability conditions fail.

III. B LIND IDENTIFICATION—PERFORMANCEBOUNDS

We are interested in quantifying the error of the param-

eter estimates relative to the true pa-

rameter subset . We tolerate arbitrary
scaling of the total estimated channel response and define our
average squared parameter error (ASPE) criterion as follows:

(15)

...
...

(16)

Note that by choosing and large enough, an arbitrarily
large subset of the total channel response may be esti-
mated, regardless of the symbol estimation delay.

Theorem 2: For symbol estimation delay, the ASPE gen-
erated by the blind channel identification scheme in Fig. 2 can
be upper bounded as

(17)

(18)

when the Wiener equalizer satisfies the UMSE condition

in Theorem 1 . The operator is defined as

...

(19)
with induced norm

(20)

Recall that and were defined in Section II-A. The
operator is a generalization of an -shifted version of
from (5) and is employed so that our bound applies to both finite
and infinite-dimensional channels and equalizers. When
are FIR, reduces to a block Toeplitz matrix, and
specifies its largest singular value.

Proof: First, we define

s.t.

...
(21)

is a version of with the components for the zeroth
source at delay removed, and is a version of with the
element extracted.

Using (14) and the definitions of and in (16),
the operators and allow us to write

(22)

Choosing in (16)

(23)
The induced norm (20) allows further bounding of (23)

(24)
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Recalling the definition of UMSE in (9), (24) becomes

(25)

Since

(25) yields

(26)

When , and are such that

for in (12), Theorem 1 allows upper bounding of ,
and (26) becomes (17).

Simplification of (17) is possible using the fact that

which implies

(27)

Rewriting (27) using

gives

(28)

which leads to (18).
Theorem 2 gives an upper bound for the ASPE that is propor-

tional to the norm of the channel operator3 and the UMSE of the
-delayed Wiener equalizer [through the definition of

in (13)], as well as a looser bound that is proportional to the
received power and the Wiener UMSE. Section V plots these
upper bounds for comparison with the actual ASPE attained
using the CM-minimizing equalizer.

IV. BLIND IDENTIFICATION ISSUES INPRACTICAL

IMPLEMENTATION

A. ASPE with Finite-Data Correlation Approximation

In practice, the expectation operations in Fig. 2 will be re-
placed by some sort of block or exponential averages. In this
section, we analyze the effect of block averaging on the param-
eter estimation error. Theth block parameter estimate is de-
fined below for block size .

(29)

Lemma 1: The expected ASPE using-block estimates of
the autocorrelations can be written as (30), shown at the bottom
of the page, where the last term in (30) appears only in the case
of real-valued sources, channels, and equalizers.4

3The norm of the channel operator equals the maximum singular value of a
suitably defined channel matrix when channel and equalizer are FIR.

4Recall assumption S5).

(30)
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Proof: The expected block-ASPE can be written

where is the value of minimizing (16). Zeroing the partial
derivative of (16) with respect to, it is straightforward to show
that

(31)

From (29) it follows that

, and thus

(32)

Furthermore

(33)

Now, we wish to examine

where denotes the th component of . To avoid compli-
cated notation, we focus temporarily on the case . Thus

The quantity above vanishes unless the indices
and are suitably aligned. After a bit of algebra,5 we have the
equation at the bottom of the page, where the last term only ap-
pears in the real-valued case. Generalizing the previous expres-
sion to the case and combining the result with (31)– (33),
we arrive at (30).

Simulations suggest that for CM-minimizing equalizers
and typical values of , the second term in (30)

dominates the first. This implies that the performance of the
proposed channel estimation scheme is, in practice, limited
by the finite-data correlations rather than by the performance
of the blind equalizers. The plots in Section V agree with
this notion: Improvement in symbol estimates gained through

5Contact the corresponding author for the details.
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quantization of gives the Gooch–Harp scheme [10] only
a minor advantage in ASPE.

B. Stochastic Gradient Estimation of CM Equalizer

Practical implementations of the identification scheme in
Fig. 2 will not have knowledge of the exact CM-minimizing
equalizer . Typically, will be replaced by an
iteratively updated approximation to generated by
CMA, which attempts stochastic gradient minimization of CM
cost [2], [3]. For finite-length , CMA updates the equalizer

parameters using the following rule (where
denotes the time step):

(34)

Similar update rules can be derived for equalizer structures that
employ feedback (resulting in an IIR equalizer) [15]. In (34),
is a small positive stepsize.

The operation of CMA can be considered as a two-stage
process. Starting from an initialization , the CMA-up-
dated equalizer first converges to a neighborhood of
the exact CM-minimizing equalizer associated with
some combination of source and symbol estimation delay

. The particular {source, delay}, as well as the time to con-
vergence, depend on the initialization . Although various
initialization procedures have been proposed (see, e.g., the
references in [4]), none are known to work “perfectly” in all
situations. Recent work, however, has shown that if the signal to
interference-plus-noise (SINR) ratio of the estimates generated
by is above a prescribed threshold, then small stepsize
CMA will converge to a neighborhood of the CM-minimum

associated with the same {source, delay} as .
For i.i.d. sub-Gaussian sources in the presence of AWGN, the
SINR threshold equals 3.8 dB [16].

Once the CMA-updated equalizer parameters have converged
to a neighborhood of the local CM minimum , averaging
theory predicts that the CMA-updated equalizer trajectory con-
verges almost surely and in mean to [17]. In practical
situations, however, the CMA-updated equalizer will “jitter”
around this local minimum, where the amount of jitter is pro-
portional to the stepsize and to the average size of the error
term in (34). It is possible to derive expres-
sions for theexcessMSE due to CMA, i.e., the difference be-
tween the expected MSE of CMA-generated equalizers and the
MSE of CM-minimizing equalizers. For example, CMAs ex-
cess MSE resulting from the use of source symbols drawn from
a nonconstant-modulus alphabet is characterized in [18]. The
simulations in Section V, however, seem to indicate that for typ-
ical block sizes , the effects of finite-data correlation approx-
imation overwhelm the effects of CMA-induced excess symbol
estimation error. For this reason, we do not investigate further
the CMA-induced error.

Throughout our discussion of blind channel estimation, we
have been assuming that the CMA-derived symbol estimates are
reasonably accurate, which would seem to require use of a data
record long enough to support the convergence time of CMA.

Fig. 4. Magnitude of SPIB channel #3 impulse response shown on (a) linear
and (b) log scales.

Even with very short data records, however, it may be possible to
adapt CMA using a repeatedly concatenated version of the same
data record (similar to “looped” LMS [19]). Since source inde-
pendence assumptions S1) and S2) become less valid as record
length decreases, however, it is difficult to make solid claims
about the convergence of such data-reusing CMA schemes. Al-
though of practical importance, CMA data-reuse lies outside the
scope of this paper.

V. NUMERICAL EXAMPLES

Our first experiments were based on complex-valued
-spaced (i.e., ) signal processing information base6

(SPIB) microwave channel response model #3, consisting of
300 -spaced samples and depicted in Fig. 4. We blindly
estimated the “interesting” subset of the channel response
spanning -spaced taps 15–85 [see Fig. 8(a) and (b)].

Figs. 5–7 each plot bounds (17) and (18) for the ASPE of the
exact CM-minimizing equalizer with exact cross correlations
compared with

i) the average ASPE achieved by the proposed CMA-based
scheme using block length ;

ii) the average ASPE achieved by the Gooch–Harp scheme
[10] using block length ;

iii) the expected ASPE for the exact CM-minimizing equal-
izer7 using block length [from (30)];

iv) the ASPE for the exact CM-minimizing equalizer with
exact cross correlations [from (15)];

v) the ASPE for the Wiener equalizer with exact cross cor-
relations [also from (15)].

The following details apply to all experiments: The symbol
delay was chosen as the MSE-minimizing delay for the

6The SPIB microwave channel database resides at
http://spib.rice.edu/spib/microwave.html.

7The CM-minimizing equalizerfff (z) was determined numerically using
Matlab’s “fminunc” routine.
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Fig. 5. Average-squared parameter error forT=2-spaced SPIB microwave
channel #3 versus SNR of AWGN.

Fig. 6. Average-squared parameter error forT=2-spaced SPIB microwave
channel #3 versus equalizer lengthN for 64-QAM.

particular combination of channel, noise, and equalizer con-
straints, and CMA was initialized at and adapted with
stepsize .

In Fig. 5, we use a -spaced equalizer with
and varied the level of AWGN, and the source alphabet was
64-QAM. The equalizer was long enough to do a good job of
“inverting” the channel under high SNR, leading to
and, thus, accurate channel estimation under perfect cross cor-
relations. Note that the Wiener and CM-minimizing equalizers
generated nearly identical performance (i.e., their traces were
overlaid), which we expect given that the close relationship
implied by Theorem 1. The bounds (17) and (18) lie clearly
above the trace corresponding to the exact CM-miminizing
equalizer with exact cross correlations, as expected.8 The
dotted line in Fig. 5 corresponds to an exact CM-minimizing

8We have determinined that (24) is primarily responsible for the looseness of
bound (17), whereas (27) is responsible for the further looseness of (18).

Fig. 7. Average-squared parameter error forT=2-spaced SPIB microwave
channel #3 versus equalizer lengthN for QPSK.

equalizer with block-averaged cross correlations (for block
length ); the relative independence from SNR

dB implies that the block effects swamp out
noise-induced errors. The trace corresponding to the CMA
adaptive equalizer and -block cross correlations is further
corrupted by EMSE in the equalizer output (due to a non-
constant modulus 64-QAM source [18] and nonzero stepsize

), although the EMSE contribution to ASPE is minor.
In the Gooch–Harp scheme, we process the CMA equalizer
output with a nearest-element detector. We expect the equalizer
outputs to be cleaned up under high SNR (since decisions
should be reliable), although we expect little improvement at
low SNR (since decisions should be unreliable given our large
64-QAM alphabet). This behavior is demonstrated in Fig. 5;
at low SNR, the decisions are not accurate enough to make
Gooch–Harp any better than CMA, whereas at high SNR, the
decision device removes residual EMSE in the equalizer output
and yields ASPE equivalent to the exact-CM equalizer (which
is practically perfect for this equalizer length at high SNR).

In Fig. 6, we examine the effects of insufficient ISI removal
by varying the equalizer length from to 40 under a rel-
atively high SNR of 40 dB. All other parameters are those of
Fig. 5, and the same trends can be observed. Weiner and CM
performance are practically identical, and (17) and (18) loosely
bound the ASPE of exact CM equalizers with exact cross cor-
relations. Likewise, the effect of block size on
ASPE swamps out the effect of equalization error for all but
the (extremely undermodeled) two-tap equalizer, and perfor-
mance does not improve much as equalizer length is increased
over . Finally, CMA-induced EMSE in the equalizer
output adds little compared with finite-block-induced error, and
the Gooch–Harp scheme effectively removes the EMSE when
the equalizer outputs are accurate enough for nearest-element
detection but does little good otherwise. Note that the sudden
jump in performance for is a result of the equalizer
having a long enough time span to compensate for the signifi-
cant channel feature near tap 75 in Fig. 4.
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Fig. 8. (a) Real and (b) imaginary components of SPIB microwave channel #3
impulse response spanning taps 15–85. (c) Real and (d) imaginary components
of estimation error for SNR= 40 dB,N = 35, and 64-QAM.

Fig. 7 repeats the experiment of Fig. 6 but with a QPSK
source. Although the source kurtosis of QPSK is lower than that
of 64-QAM, the quantity , which predicts the UMSE per-
formance of the CM-minimizing equalizer via Theorem 1, does
not change. Hence, the ASPE with exact-CM equalization re-
mains identical, as do the bounds (17) and (18). The switch to
QPSK does change the performance of CMA and Gooch–Harp
adaptive schemes, however. First, the EMSE of CMA is signif-
icantly reduced because the source alphabet now has constant
modulus [18]. As a result, CMA performance is practically iden-
tical to exact-CM performance (assuming-block cross corre-
lations). The biggest improvement occurs with the Gooch–Harp
scheme, however, because (with this channel) reliable QPSK de-
cisions can be made for all equalizer lengths. Hence,-block
cross correlation is the only contributor to Gooch–Harp ASPE
in Fig. 7.

Fig. 8 shows typical estimation errors compared with the
channel segment being estimated for-block CMA, -block
Gooch–Harp, and exact-CM equalization with exact cross
correlation. In this figure, a 64-QAM source is equalized in 40
dB SNR with an equalizer of .

Our second set of experiments were based on the artificially
generated complex-valued -spaced channel impulse re-
sponse depicted in Fig. 9(a) and (b) for which we estimated all
42 impulse response coefficients. This channel was generated
by filtering a random collection of discrete multipath compo-
nents with a raised-cosine pulse of rolloff factor 0.2 [11]. The
parameters , and are the same as before. Fig. 9(c) and
(d) shows typical estimation errors for-block CMA, -block
Gooch–Harp, and exact-CM equalization with exact cross
correlation when , SNR dB, and the source is
16-QAM. InFig. 10, we keep these parameter choices but vary
the equalizer length from to 28 and plot the resulting
ASPE. Fig. 10 demonstrates behavior similar to Figs. 6 and
7. In Fig. 10, however, the effects of finite-block correlation
approximation do not dominate the ASPE because the ASPE is
well above the “error floor” visible in Figs. 6 and 7. We also

Fig. 9. (a) Real and (b) imaginary components of artificialT=2-spaced
impulse response. (c) Real and (d) imaginary components of estimation error
for SNR= 40 dB,N = 28, and 16-QAM.

Fig. 10. Average-squared parameter error for artificialT=2-spaced channel
versus equalizer lengthN for 16-QAM.

note that, in Fig. 10, the relative performance of Gooch–Harp
is somewhere between that seen for 64-QAM (in Fig. 6) and
QPSK (in Fig. 7) since the source is now 16-QAM.

VI. CONCLUSIONS

We have analyzed the performance of a blind channel identifi-
cation scheme based on the cross correlation of CM-minimizing
blind symbol estimates with the received signal. Leveraging re-
cent results on the unbiased MSE of CM-minimizing equalizers,
upper bounds on the average squared channel parameter estima-
tion error (ASPE) were derived. Implementational aspects were
also considered, such as ASPE increase due to finite-data corre-
lation approximation and stochastic gradient approximations of
the CM-minimizing equalizer. Finally, experiments using SPIB
microwave channel models were presented to verify the results
of our analyses. One conclusion was that the ASPE due to fi-
nite-data correlation approximation may overwhelm the ASPE
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due to errors in the CMA equalizer output, even for reasonably
large data record lengths.
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