Regularization by Denoising: Clarifications and New Interpretations

Phil Schniter and Ted Reehorst

The Ohio State University

With support from: NSF CCF-1527162 and NSF CCF-1716388

SIAM Conference on Imaging Science (Bologna, Italy) — June 7, 2018
Outline

- Introduction to RED
- Clarifications on RED
- New Interpretation of RED
- Fast RED Algorithms
Inverse Problems in Imaging

Inverse problems in imaging:

Recover x^0 from measurements $y = \text{corrupted}(Ax^0)$

where A is a known linear operator.

In this talk, we’ll focus on additive white Gaussian noise (AWGN):

Recover x^0 from measurements $y = Ax^0 + e$ with $e \sim \mathcal{N}(0, \sigma^2 I)$.

Other corruptions include loss of phase, quantization, Poisson arrivals...
The variational approach to recovering x solves an optimization problem:

$$\hat{x} = \arg\min_x \{ \ell(x; y) + \lambda \rho(x) \}$$

with

- $\ell(x; y)$: loss function
- $\rho(x)$: regularization
- $\lambda > 0$: tuning parameter

Can be interpreted as Bayesian MAP estimation:

$$\hat{x}_{\text{map}} = \arg\min_x \{- \ln p(y|x) - \ln p(x)\}$$

with

- $p(y|x)$: likelihood
- $p(x)$: prior

AWGN likelihood implies quadratic loss $\ell(x; y) = \frac{1}{2\sigma^2} \|Ax - y\|^2$.

But how should we choose the regularization $\rho(\cdot)$?
Recently, Romano, Elad and Milanfar1 proposed the RED regularization
\[\rho_{\text{red}}(x) \triangleq \frac{1}{2} x^\top (x - f(x)) , \]
where \(f : \mathbb{R}^N \to \mathbb{R}^N \) is an image denoising function (e.g., BM3D).

RED leads to a family of “plug-and-play” (PnP) algorithms, similar to those proposed by Bouman et al.2 and Metzler et al.3, but with some advantages.

1Romano, Elad, Milanfar’17, 2Venkatakrishnan, Bouman, Wolhberg’13, 3Metzler, Maleki, Baraniuk’15
RED versus PnP

Experiments in the RED paper1 show advantages of RED algs over PnP:

Above represents super-resolution recovery averaged over 10 test images.
Claims about RED

The RED paper\(^1\) claims . . .

1. If \(f(\cdot) \) is **locally homogeneous** (LH), i.e.,
 \[
 f((1 + \epsilon)x) = (1 + \epsilon)f(x) \quad \text{for small } \epsilon,
 \]

 and **differentiable**, then gradient of \(\rho_{\text{red}}(x) \equiv \frac{1}{2} x^\top (x - f(x)) \) obeys
 \[
 \nabla \rho_{\text{red}}(x) = x - f(x).
 \]

2. If the Jacobian \(Jf(x) \) is **strongly passive**, i.e.,
 \[
 \| Jf(x) \|_2 \leq 1,
 \]

 then the RED regularization \(\rho_{\text{red}}(x) \) is **convex**.
Implications of RED Claims

- The convexity claim on $\rho_{\text{red}}(\cdot)$ implies that minimization of
 \[C_{\text{red}}(x) \triangleq \frac{1}{2\sigma^2} \| Ax - y \|^2 + \lambda \rho_{\text{red}}(x) \]
can be easily tackled by many algs (e.g., SD, ADMM, etc.).

- The gradient claim $\nabla \rho_{\text{red}}(x) = x - f(x)$ implies the minimizers obey
 \[
 \text{RED fixed-point condition: } \frac{1}{\sigma^2} A^T (A\hat{x} - y) + \lambda (\hat{x} - f(\hat{x})) = 0
 \]
The RED algorithms find exactly these \hat{x}.
Introduction to RED

Mysterious Behavior

Surprisingly, the RED algorithms do not always behave as expected!

We expect SD to decrease the (convex) RED cost, but it is increasing it!

\[
\text{RED-SD: } \mathbf{x}_{k+1} = \mathbf{x}_k - \mu \nabla C_{\text{red}}(\mathbf{x}_k)
\]
Clarifications on RED Gradient

It can be shown that...

- **differentiability** in $f(\cdot)$ implies

 $$\nabla \rho_{\text{red}}(x) \overset{D}{=} x - \frac{1}{2} f(x) - \frac{1}{2} [J f(x)]^\top x.$$

- adding **local-homogeneity** (LH) gives

 $$\nabla \rho_{\text{red}}(x) \overset{D,\text{LH}}{=} x - \frac{1}{2} [J f(x)] x - \frac{1}{2} [J f(x)]^\top x.$$

- adding **Jacobian symmetry** (JS) finally leads to

 $$\nabla \rho_{\text{red}}(x) \overset{D,\text{LH,JS}}{=} x - f(x) \ldots \text{which yields the RED algorithms.}$$

So **both LH and JS** are needed to link RED cost to RED alg.
Which Denoisers Yield Jacobian Symmetry?

Clear that these yield JS:
- Linear denoisers $f(x) = Wx$ with $W = W^\top$.
- Transform-domain-thresholding (TDT) denoisers $f(x) = W^\top g(Wx)$.
- MAP or MMSE denoisers under any assumed prior $x \sim \hat{p}_x$.

Not clear that these yield JS:
- Pseudo-linear denoisers $f(x) = W(x)x$ with non-linear $W(\cdot)$.
- Approximately MAP or MMSE denoisers.

Most state-of-the-art denoisers fall into the 2nd category.
Jacobian Symmetry Experiments

Avg JS error on suite of 16×16 images:

<table>
<thead>
<tr>
<th></th>
<th>TDT</th>
<th>MF</th>
<th>NLM</th>
<th>BM3D</th>
<th>TNRD</th>
<th>DnCNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{</td>
<td></td>
<td>\hat{J}f(x) - [\hat{J}f(x)]^\top</td>
<td></td>
<td>_F^2}{</td>
<td></td>
<td>\hat{J}f(x)</td>
</tr>
</tbody>
</table>

Avg gradient error on suite of 16×16 images:

<table>
<thead>
<tr>
<th></th>
<th>TDT</th>
<th>MF</th>
<th>NLM</th>
<th>BM3D</th>
<th>TNRD</th>
<th>DnCNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{</td>
<td></td>
<td>\nabla \rho_{\text{red}}(x) - \hat{\nabla} \rho_{\text{red}}(x)</td>
<td></td>
<td>_2^2}{</td>
<td></td>
<td>\nabla \rho_{\text{red}}(x)</td>
</tr>
<tr>
<td>$\nabla \rho_{\text{red}}(x)$ with D</td>
<td>0.565</td>
<td>0.966</td>
<td>0.913</td>
<td>1.00</td>
<td>0.957</td>
<td>0.852</td>
</tr>
<tr>
<td>$\nabla \rho_{\text{red}}(x)$ with D,LH,JS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key points:

1. **Large JS error** for all but TDT.
2. **Large gradient error** under JS & LH assumptions for all denoisers!
3. Even TDT has large gradient error! Is LH the problem?
Local Homogeneity Experiments

Avg LH error on suite of 16×16 images:

<table>
<thead>
<tr>
<th></th>
<th>TDT</th>
<th>MF</th>
<th>NLM</th>
<th>BM3D</th>
<th>TNRD</th>
<th>DnCNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|f((1+\epsilon)x-(1+\epsilon)f(x))|^2 |\epsilon f(x)|^2$</td>
<td>7.99e-10</td>
<td>0</td>
<td>5.60e-9</td>
<td>1.52e-13</td>
<td>5.09e-10</td>
<td>2.06e-9</td>
</tr>
<tr>
<td>$|\hat{J}_f(x)\cdot x-f(x)|^2 |f(x)|^2$</td>
<td>4.10e-4</td>
<td>2.14e-15</td>
<td>5.63e-3</td>
<td>0.214</td>
<td>2.60e-4</td>
<td>8.02e-3</td>
</tr>
</tbody>
</table>

Avg gradient error on suite of 16×16 images:

<table>
<thead>
<tr>
<th></th>
<th>TDT</th>
<th>MF</th>
<th>NLM</th>
<th>BM3D</th>
<th>TNRD</th>
<th>DnCNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|\nabla\rho_{\text{red}}(x) - \hat{\nabla}\rho_{\text{red}}(x)|^2 |\hat{\nabla}\rho_{\text{red}}(x)|^2$</td>
<td>3.39e-19</td>
<td>2.65e-15</td>
<td>6.17e-21</td>
<td>2.14e-13</td>
<td>5.42e-17</td>
<td>1.02e-12</td>
</tr>
<tr>
<td>$\nabla\rho_{\text{red}}(x)$ with D</td>
<td>0.565</td>
<td>6.09e-15</td>
<td>0.0699</td>
<td>0.344</td>
<td>0.139</td>
<td>1.20</td>
</tr>
<tr>
<td>$\nabla\rho_{\text{red}}(x)$ with D, LH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key points:

- It is important how LH is quantified.
- The RED gradient is very sensitive to small imperfections in LH.
Implications of our Findings

We found:

- The RED algorithms solve a fixed-point equation corresponding to \(\nabla \rho(x) = x - f(x) \).
- \(x - f(x) \) is very different from \(\nabla \rho_{\text{red}}(x) \) under practical \(f(\cdot) \), such as TDT, MF, NLM, BM3D, TNRD, and DnCNN.

Implication:

- \(\rho_{\text{red}}(\cdot) \) does not explain the RED algorithms under practical \(f(\cdot) \).

A bigger problem:

- For non-JS \(f(\cdot) \), can show that there exists no explicit regularizer \(\rho(\cdot) \) for which \(\nabla \rho(x) = x - f(x) \), i.e., explaining the RED algorithms!
How to Explain the RED Algorithms?

The RED algorithms assume $\nabla \rho(x) = x - f(x)$ and work very well.

Can we justify this $\nabla \rho(x)$?
Even when $f(\cdot)$ is not LH and/or JS?

Yes! Using score matching. We explain this in 3 steps:

1. regularization by log-likelihood (RLL),
2. RLL as kernel density estimation (KDE),
3. score matching.
Consider noisy pseudo-measurements

\[r = x^0 + \mathcal{N}(0, \nu I) \]

Suppose we adopt the prior pdf \(\hat{p}_x \). Then the likelihood of \(r \) is

\[\hat{p}_r(r; \nu) = \int_{\mathbb{R}^N} \mathcal{N}(r; x, \nu I) \hat{p}_x(x) \, dx. \]

“Gaussian blurred prior”

Define the RLL regularization as

\[\rho_{LL}(r; \nu) \triangleq -\nu \ln \hat{p}_r(r; \nu) \]

Then it can be shown using Tweedie’s formula\(^4\) that

\[\nabla \rho_{LL}(r; \nu) = r - \hat{f}_{\text{mmse}, \nu}(r), \]

which is consistent with the RED algorithms!

\(^4\)Robbins’56
RLL as Kernel Density Estimation

- Given training data \(\{x_t\}_{t=1}^T \), consider the empirical prior

\[
\hat{p}_x(x) = \frac{1}{T} \sum_{t=1}^{T} \delta(x - x_t).
\]

- A better match to the true \(p_x \) is obtained via KDE or Parzen windowing:

\[
\tilde{p}_x(x; \nu) = \frac{1}{T} \sum_{t=1}^{T} \mathcal{N}(x; x_t, \nu I).
\]

 “blurred empirical prior”

- Using this \(\tilde{p}_x \) for MAP/variational optimization yields

\[
\hat{x} = \arg \min_x \frac{1}{2\sigma^2} \|Ax - y\|^2 - \ln \tilde{p}_x(x; \nu)
= \arg \min_x \frac{1}{2\sigma^2} \|Ax - y\|^2 + \lambda \rho_{\text{LL}}(x; \nu) \text{ for } \lambda = \frac{1}{\nu}.
\]

So RLL arises naturally in non-parametric estimation via KDE!
The above RLL/KDE framework encompasses only JS denoisers $f(\cdot)$. We now generalize.

First note that, for large T, gradient is very expensive:

$$
\nabla \ln \tilde{p}_x(x;\nu) = \frac{\hat{f}_{\text{mmse},\nu}(x) - x}{\nu} \quad \text{with} \quad \hat{f}_{\text{mmse},\nu}(x) = \frac{\sum_{t=1}^{T} (x_t - x) N(x; x_t, \nu I)}{\sum_{t=1}^{T} N(x; x_t, \nu I)}.
$$

Practical idea:\footnote{Hyvärinen’05} use best match to “score” $\nabla \ln \tilde{p}_x(x)$ among computationally friendly functions $\psi(x;\theta)$:

$$
\hat{\theta} = \arg \min_{\theta} \mathbb{E}_{\tilde{p}_x} \{ \| \psi(x;\hat{\theta}) - \nabla \ln \tilde{p}_x(x;\nu) \|^2 \}.
$$

Vincent\footnote{Vincent’11} connected to denoising: if $\psi(x;\theta) = [f(x;\theta) - x]/\nu$, then

$$
\hat{\theta} = \arg \min_{\theta} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \{ \| f_{\theta}(x_t + N(0, \nu I)) - x_t \|^2 \},
$$

where $f_{\hat{\theta}}(\cdot)$ is MMSE optimal $f_{\theta} \in \mathcal{F}$, where $\mathcal{F} \triangleq \{ f_{\theta} : \theta \in \Theta \}$.
Score-Matching by Denoising (SMD)

Key points:

1. SMD interpretation yields $\nabla \rho(x) = x - f(x)$, thus explaining RED algs.

2. SMD interpretation holds for any \hat{p}_x, any denoiser class F (i.e., f_θ may be non-JS and/or non-LH), and any θ (maybe not MMSE).

3. SMD arises naturally via non-parametric estimation and KDE. Matches construction of learned denoisers liked TNRD and DnCNN.

Related work:
Alain and Bengio7 recently showed that learned auto-encoders can be explained by score-matching and \textit{not} by minimization of an energy function.

7Alain/Bengio’14
Fast RED Algorithms

Until now we focused on how to explain the RED algorithms, which solve

\[
\text{RED fixed-point condition: } \quad \frac{1}{\sigma^2} A^\top (A\hat{x} - y) + \lambda(\hat{x} - f(\hat{x})) = 0
\]

We now focus on interpretation/design of fast RED algorithms.

In the RED paper, three algorithms were described:

1. Steepest-Descent
2. ADMM with \(I \) inner iters (to solve \(\arg\min_x \{ \lambda \rho(x) + \frac{\beta}{2} \| x - r_k \|_2^2 \} \))
3. A “fixed-point” method (we show equivalence to proximal gradient alg\(^8\))

We propose a couple more...

\(^8\) Combettes/Pesquet’11
New algorithms:

- **DPG**: “Dynamic” proximal gradient, which schedules the stepsize.

- **APG**: Accelerated proximal gradient, similar to FISTA.\(^9\)

In this experiment, APG is about \(3 \times\) faster than the Fixed-Point method.

\(^9\)Beck/Teboulle’09
The RED algorithms work very well in practice.

But they do not minimize $C_{\text{red}}(x) = \ell(x; y) + \lambda \rho_{\text{red}}(x)$ for many $f(\cdot)$.

- Why? Practical denoisers $f(\cdot)$ are not sufficiently LH and JS.
- Can construct examples of RED-SD *increasing* $C_{\text{red}}(x)$ over the iterations.

We explained RED algorithms as “score-matching by denoising”.

We proposed new RED algorithms with faster convergence.