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a b s t r a c t

We consider spectrally-efficient communication over a Rayleigh N-block-fading channel
with a K -sparse L-length discrete-time impulse response (for 0 < K < L < N), where
neither the transmitter nor the receiver know the channel’s coefficients nor its support.
Since the high-SNR ergodic capacity of this channel has been shown to obeyC(SNR) = (1−
K/N) log2(SNR) + O(1), any pilot-aided scheme that sacrifices more than K dimensions
per fading block to pilots will be spectrally inefficient. This causes concern about the
conventional ‘‘compressed channel sensing’’ approach, which uses O(Kpolylog(L)) pilots.
In this paper, we demonstrate that practical spectrally-efficient communication is indeed
possible. For this, we propose a novel belief-propagation-based reception scheme to use
with a standard bit-interleaved coded orthogonal frequency division multiplexing (OFDM)
transmitter. In particular, we leverage the ‘‘relaxed belief propagation’’ methodology,
which allows us to perform joint sparse-channel estimation and data decoding with only
O(LN) complexity. Empirical results show that our receiver achieves the desired capacity
pre-log factor of 1−K/N and performs near genie-aided bounds at both low and high SNR.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Our goal is to communicate, in a spectrally efficient
manner, over a Rayleigh N-block-fading channel with a
K -sparse discrete-time impulse response of length L
(where 0 < K < L < N), under the realistic assump-
tion that neither the transmitter nor the receiver knows
the channel’s coefficients nor its support. It has been re-
cently shown [1] that the ergodic capacity of this nonco-
herent sparse channel obeys

Csparse(SNR) =
N − K

N
log2(SNR)+ O(1) (1)

as the signal-to-noise ratio (SNR) grows large. For com-
parison, the high-SNR ergodic noncoherent capacity of
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the Rayleigh N-block-fading L-length non-sparse channel
obeys [2]

Cnon-sparse(SNR) =
N − L
N

log2(SNR)+ O(1), (2)

which exhibits a lower pre-log factor than (1). Thus, in-
formation theory confirms that channel sparsity can in-
deed be exploited to increase spectral efficiency, at least
for high SNR. In particular, it establishes that, in the high-
SNR regime, the signaling scheme does not need to sac-
rifice more than K degrees-of-freedom per fading-block to
mitigate the effects of not knowing the K non-zero channel
coefficients nor their locations.

Among the many strategies that exist for communi-
cation over unknown channels, pilot-aided transmission
(PAT) [3] has emerged as one of the most effective. For
example, it is known [2] that, for the Rayleigh N-block-
fading L-length non-sparse channel, PAT achieves rates in
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accordance with the capacity expression (2).1 It is then not
surprising that the vast majority of techniques that have
recently been proposed for communication over sparse
channels are also based on PAT (see, e.g., the extensive bib-
liography in [4]). Broadly speaking, these techniques pro-
pose to exploit channel sparsity in order to reduce the
number of pilots used for accurate channel estimation,
with the end goal of increasing spectral efficiency. Typi-
cally, these schemes take a decoupled approach to recep-
tion: a sparse-channel estimate is calculated from pilot
observations using a practical compressed sensing algo-
rithm like LASSO [5,6], and the channel estimate is subse-
quently used for data decoding. Hereafter, we shall refer
to this decoupled approach as ‘‘compressed channel sens-
ing ’’ (CCS), after [4].WhenO (Kpolylog(L)) pilots2 are used
for CCS, the theory of compressed sensing guarantees that
– with high probability – the resulting channel estimates
will be accurate, e.g., their squared-error will decrease in
proportion to the received noise variance [4].

While the use of O (Kpolylog(L)) pilots may be an
improvement over L pilots requiredwhen channel sparsity
is not taken into account, the capacity expression (1)
implies that any PAT scheme sacrificing more than K
degrees of freedom (per fading block) to pilots will be
spectrally inefficient in the high-SNR regime. Thus, any
scheme based on CCS, which uses O (Kpolylog(L)) > K
pilots, will fall short of maximizing spectral efficiency.
One may then wonder whether there exists a practical3
communication scheme that achieves the capacity prelog
factor in (1).

In this paper, we propose a novel approach to commu-
nication over sparse channels that (empirically) achieves
rates in accordance with the sparse-channel capacity
expression (1). For transmission, we use a conven-
tional scheme, based on bit-interleaved coded modulation
(BICM) with orthogonal frequency division multiplexing
(OFDM) and a few carefully placed training bits. For re-
ception, we deviate from the CCS approach and perform
sparse-channel estimation anddata decoding jointly. To ac-
complish this latter task in a practical manner, we take an
approach suggested by belief-propagation (BP) [7], leverag-
ing recent advances in ‘‘relaxed BP’’ [8,9] and in BP-based
soft-input/soft-output (SISO) decoding [10]. The scheme
that we propose has very low computation complexity:
only O(NL) multiplies per fading block are required. Thus,
we are able to handle long channels, many subcarriers, and
large QAM constellations (which are in fact necessary to
achieve high spectral efficiencies). Our simulations, for ex-
ample, use N = 1021 subcarriers, up to 256-point QAM
constellations,≈10,000-bit LDPC codes, and channels with
length L = 256 and average sparsity E{K} = 64. Un-
der these conditions, we find that our scheme yields error

1 Note that (1) and (2) specify only that the maximum rate of reliable
communication grows in linear proportion to log(SNR) according to
the specified pre-log factor; the exact value of the capacity remains
unspecified due to the O(1) term.
2 The use of O (Kpolylog(L)) pilots corresponds to the case of OFDM-

based transmission, which is the case that we focus on later in this paper.
3 In [1], a scheme that achieves the prelog factor in (1) was proposed,

but it is impractical in the sense that its complexity grows exponentially
with the fading-block length N .

rates that are close to genie-aided bounds, and far superior
to CCS, in both low- and high-SNR regimes. Moreover, we
find that the outage rate behavior of our scheme coincides
with the sparse-channel capacity expression (1).

Wewill nowplace ourwork in context. The basic idea of
using BP for joint channel-estimation and decoding (JCED)
has been around for more than a decade (see, e.g., the
early overview [11] and the more recent works [12,13]).
The standard rules of BP specify that messages are passed
among nodes of the factor graph according to the sum-
product algorithm (SPA) [7]. However, since in many cases
exact implementation of SPA on the JCED factor graph
is impractical, SPA must be approximated, and there is
considerable freedom as to how this can be done. In fact,
many well known iterative estimation algorithms can be
recognized as particular approximations of SPA-BP: the
expectation-maximization (EM) algorithm [14], particle
filtering [15], variational Bayes (or ‘‘mean-field’’) [16], and
even steepest descent [17]. Not surprisingly, this plurality
of possibilities has yielded numerous BP-based JCED
designs for frequency-selective channels (e.g., [18–21]).

Our work is distinct from the existing BP-based JCED
literature in that (1) we model the channel as a priori
sparse (i.e., the coefficients are non-Gaussian) whereas,
in all of the existing BP-based JCED work that we are
aware, the channel coefficients4 are modeled as Gaussian,
and (2) we leverage a state-of-the-art BP approximation
known as ‘‘relaxed BP’’ (RBP), which has been rigorously
analyzed and shown to yield asymptotically exact poste-
riors (as the problem dimensions N, L → ∞ and under
certain technical assumptions on the mixing matrix) [8,9].
In fact, we conjecture that the success of our method is
due in large part to the principled approximations used
within RBP. We also note that, although we focus on the
case of sparse channels, our approach would be applicable
to non-sparse channels or, e.g., non-sparse channels with
unknown length [18], with minor modification of the as-
sumed channel priors.

Our paper is organized as follows. In Section 2we detail
the systemmodel, and in Section 3wedetail our RBP-based
JCED approach. In Section 4 we report the results of our
simulation study, and in Section 5 we conclude.

2. Systemmodel

WeassumeanOFDM-based transmitter that uses a total
of N subcarriers, each modulated by a QAM symbol from a
2M-ary unit-energy constellationS. Of these subcarriers,Np

are dedicated as pilots,5 and the remaining Nd , N − Np

are used to transmit a total of Mt training bits and Md ,
NdM − Mt coded/interleaved data bits. To generate the
latter, we encode Mi information bits using a rate-R coder,
interleave them, and partition the resultingMc , Mi/R bits
among an integer number T , Mc/Md of OFDM symbols.

4 After submitting this manuscript, we became aware of the related
work [22], which applies BP to JCED for flat-fading Gaussian channel
coefficients and non-Gaussian interference.
5 For our BP-based JCED, we will see in Section 4 that (Np,Mt) =

(0,MK) is most effective.
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The resulting scheme has a spectral efficiency of η ,
MdR/N information bits per channel use (bpcu). It should
be emphasized that our model supports both subcarriers
whose QAM symbols are completely known to the receiver
(‘‘pilot subcarriers’’), as well as subcarriers whose QAM
symbols are only partially known to the receiver (via
‘‘training bits’’). In our nomenclature, the known bits that
make up a ‘‘pilot subcarrier’’ are distinct from the ‘‘training
bits’’ that may be sprinkled among the ‘‘data subcarriers’’.

In the sequel, we use s(k) ∈ S for k ∈ {1, . . . , 2M
} to de-

note the kth element of the QAM constellation, and c(k) ,
(c1(k), . . . , cM (k))T ∈ {0, 1}M to denote the bits correspond-
ing to s(k) as defined by the symbol mapping. Likewise,
we use si[t] ∈ S to denote the QAM symbol transmitted
on the ith subcarrier of the tth OFDM symbol and ci[t] ,
(ci,1[t], . . . , ci,M [t])T ∈ {0, 1}M to denote the (coded/
interleaved or training or pilot) bits corresponding to that
symbol. We then collect the NM bits that make up the tth
OFDM symbol into c[t] , (c0[t], . . . , cN−1[t])T, and we
collect the NMT bits that make up the entire (interleaved)
codeword into c , (c[1], . . . , c[T ])T ∈ {0, 1}TNM . The el-
ements of c that are known a priori as pilot or training
bits will be referred to as cpt. The remainder of c is de-
termined from the information bits b = (b1, . . . , bMi)

T by
coding/interleaving.

Weuse the standardOFDMmodel (see, e.g., [23]) for the
received value on subcarrier i of OFDM-symbol t:

yi[t] = si[t]zi[t] + vi[t], (3)

where zi[t] ∈ Cdenotes the ith subcarrier’s gain and {vi[t]}
denotes circular white Gaussian noise with varianceµv . As
usual, the subcarrier gains z[t] , (z0[t], . . . , zN−1[t])T are
related to the baud-spaced channel impulse response vec-
tor x[t] , (x0[t], . . . , xL−1[t])T via zi[t] =

L−1
j=0 Φijxj[t],

where Φij = e−
√
−1 2π

N ij can be recognized as the (i, j)th el-
ement of the N-DFT matrix Φ . Throughout, we will use j
to index the lag of the impulse response. We assume that
the channel is block-fading with fading interval N , so that
the vectors {x[t]}Tt=1 are i.i.d. across t . To simplify our de-
velopment of the algorithm, we assume in the sequel that
T = 1 and drop the ‘‘[t]’’ notation for brevity. However, for
the simulations in Section 4, we revert back to general T in
order to facilitate the use of long LDPC codewords.

As described in Section 1, the focus of the paper is
on block-Rayleigh-fading channels with sparse impulse
responses {xj}. To model sparsity, we treat the impulse
response coefficients as random variables {Xj} with the
independent Bernoulli–Gaussian prior pdf.

pXj(x) = λjCN (x; 0, µj)+ (1− λj)δ(x), (4)

where CN (x; a, b) , (πb)−1 exp(−b−1|x − a|2) denotes
the complex-Gaussian pdf, δ(·) the Dirac delta, λj =

Pr{Xj ≠ 0} the sparsity rate, and µj = var{Xj} the vari-
ance. We furthermore assume that the channel is energy-
preserving with an exponential delay-power profile, so
that µj = 2−j/Lhpd/(

L−1
r=0 λr2−r/Lhpd), where Lhpd denotes

the half-power delay. For simplicity, we assume a uniform
sparsity rate of λ = λj ∀j.

The presence of a Dirac delta in (4) indicates that we
assume an ‘‘perfectly sparse’’ channel model. Although

perfect sparsity is not expected tomanifest in practice, it is
frequently assumed in the literature (see, e.g., [4] and the
papers cited therein). While the JCED algorithm proposed
in Section 3.3 can handle genericmarginal priors pXj(x), we
make the perfect sparsity assumption only to facilitate a
direct comparison to the information theoretic result (1)
from [1]. In follow-on work [24,25], we consider channel
taps that are both clustered and non-perfectly sparse, as
motivated by the IEEE 802.15.4a model in combination
with raised-cosine pulse shapes.

3. BP-based joint channel estimation and decoding
Our goal is to infer the information bits b, given the

OFDM observations y , (y0, . . . , yN−1)T and the pilot/
training bits cpt, in the absence of channel state informa-
tion. For simplicity, we assume that the channel statistics
(i.e., {µv, λ, Lhpd, L}) are known.6 In particular, we aim to
maximize the posterior pmf p(bm | y, cpt) of each informa-
tion bit bm. Given the model of Section 2, this posterior can
be decomposed into a product of factors as follows:

p(bm | y, cpt)

=


b\m

p(b | y, cpt) ∝

b\m

p(y | b, cpt)p(b) (5)

=


x


c


s


b\m

p(y | s, x)

× p(x)p(s | c)p(c | b, cpt)p(b) (6)

=


x

L−1
j=0

p(xj)

s

N−1
i=0

p(yi|si, x)

c

p(si|ci)

×


b\m

p(c|b, cpt)
Mi

m=1

p(bm), (7)

where ‘‘∝’’ denotes equality up to a scaling and where
b\m denotes the vector b with the mth element omitted.
The factorization (7) is illustrated by the factor graph in
Fig. 1, where the round nodes represent random variables
and the square nodes represent the factors of the posterior
identified in (7).

3.1. Background on belief propagation

While exact evaluation of the posteriors {p(bm | y,
cpt)}

Mi
m=1 is computationally impractical for the problem

sizes of interest, these posteriors can be approximately
evaluated using belief propagation (BP) [7] on a loopy factor
graph like the illustrated in Fig. 1. In standard BP, beliefs
take the form of pdfs/pmfs that are propagated among
nodes of the factor graph according to the rules of the sum-
product algorithm (SPA):

6 Although it remains outside the scope of this work, it should be
possible to jointly estimate these statistics together with the channel and
data realizations by treating them as random variables with appropriate
non-informative priors and expanding the factor graph accordingly.
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Fig. 1. The factor graph of the JCED problem for a toy example with N = 4 OFDM subcarriers, M = 2 bits per QAM symbol, Mi = 3 information bits,
Mt = 2 training bits, Np = 1 pilot subcarriers (at subcarrier index i = 3), and a channel with length L = 3.

Fig. 2. Examples of belief propagation among nodes of a factor graph.

(1) If factor node f (v1, . . . , vA) is connected to variable
nodes {va}

A
a=1, then the belief passed from f to vb is

pf→vb(vb) ∝


{va}a≠b

f (v1, . . . , vA)

a≠b

pva→f (va), (8)

where {pva→f (·)}a≠b are the beliefs most recently
passed to f from {va}a≠b.

(2) If variable node v is connected to factor nodes
{f1, . . . , fB}, then the belief passed from v to fa is

pv→fa(v) ∝

b≠a

pfb→v(v), (9)

where {pfb→v(·)}b≠a are the beliefs most recently
passed to v from {fb}b≠a.

(3) If variable node v is connected to factor nodes
{f1, . . . , fB}, then the posterior on v is the product of
all most recently arriving beliefs, i.e.,

p(v) ∝

B
b=1

pfb→v(v). (10)

Fig. 2 is provided to illustrate the first two rules.
When the factor graph contains no loops, SPA-BP yields

exact posteriors after only two rounds of message pass-
ing (i.e., forward and backward passes). However, with
loops in the factor graph, convergence to the exact poste-
riors is not guaranteed, as exact inference is known to be
NP-hard [26]. That said, there exist many problems to
which loopy BP has been successfully applied, including
inference on Markov random fields [27], multiuser detec-
tion [28,8], turbo decoding [29], LDPC decoding [10], and
compressed sensing [9,30,31]. Our work not only lever-
ages these past successes, but unites the last two through
‘‘turbo’’ message scheduling on a larger factor graph [32].

3.2. Background on RBP

A sub-problem of particular interest to us is the
estimation of a non-Gaussian vector x that is linearly
mixed to form z = Φx and subsequently observed as
y through componentwise non-Gaussian measurements
{pYi|Zi(yi|zi)}

N−1
i=0 . In our case (4) specifies the non-Gaussian

prior on x and (3) yields the non-Gaussian measurement
(where the non-Gaussianity results from the inherent
uncertainty on data symbols si). This sub-problem yields
the factor graph shown within the right dashed box in
Fig. 1, where the nodes ‘‘yi’’ represent the measurements
and the rightmost nodes represent the prior on x.

Building on prior multiuser detection work by Guo
and Wang [8], Rangan recently proposed a so-called
‘‘relaxed BP’’ (RBP) scheme [9] that yields asymptotically
exact posteriors as N, L → ∞ (under some additional
technical conditions on Φ) [9]. The main ideas behind
RBP are the following. First, although the beliefs flowing
leftward from the nodes {xj} are clearly non-Gaussian,
the corresponding belief about zi =

L−1
j=0 Φijxj can be

accurately approximated as Gaussian, when L is large,
using the central limit theorem. Moreover, to calculate the
parameters of this distribution (i.e., itsmean and variance),
only the mean and variance of each xj are needed. Thus,
it suffices to pass only means and variances leftward from
each xj node. It is similarly desirable to pass only means
and variances rightward from each measurement node.
Although the exact rightward flowing beliefs would be
non-Gaussian (due to the non-Gaussian assumption on the
measurement channels pYi|Zi ), RBP approximates them as
Gaussian using a 2nd-order Taylor series, and passes only
the resultingmeans and variances. A further simplification
employed by RBP is to approximate the differences among
the outgoing means/variances of each left node, and the
incomingmeans/variances of each right node, using Taylor
series. The RBP algorithm7 is summarized in Table 1.
Assuming (D1)–(D6) can be calculated efficiently (as is the
case in our problem), the complexity of RBP is O(NL).

7 To be precise, the RBP algorithm in Table 1 is an extension of that
proposed in [9]. Table 1 handles complex Gaussian distributions and non-
identically distributed signal and measurement channels.
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Table 1
The RBP algorithm.

definitions:

pZi |Yi (z|y; ẑ, µ
z) =

pYi |Zi (y|z) CN (z;ẑ,µz )
z′ pYi |Zi (y|z

′) CN (z′;ẑ,µz )
(D1)

Fout,i(y, ẑ, µz) =

z z pZi |Yi (z|y; ẑ, µ

z) (D2)
Eout,i(y, ẑ, µz) =


z |z − Fout,i(y, ẑ, µz)|2 pZi |Yi (z|y; ẑ, µ

z) (D3)

pQj (q; q̂, µ
q) =

pXj (q) CN (q;q̂,µq)
q′ pXj (q

′) CN (q′;q̂,µq)
(D4)

F in,j(q̂, µq) =

q q pQj (q; q̂, µ

q) (D5)
E in,j(q̂, µq) =


q |q− F in,j(q̂, µq)|2 pQj (q; q̂, µ

q) (D6)

initialize:
∀i, j : x̂ij[1] = x̂j[1] =


x x pXj (x) (I1)

∀j : µx
j [1] =


x |x− x̂j[1]|2pXj (x) (I2)

for n = 1, 2, 3, . . .
∀i : µz

i [n] =
L−1

j=0 |Φij|
2µx

j [n] (R1)
∀i : ẑi[n] =

L−1
j=0 Φij x̂ij[n] (R2)

∀i, j : ẑij[n] = ẑi[n] − Φij x̂ij[n] (R3)
∀i : µe

i [n] = Eout,i(yi, ẑi[n], µz
i [n]) (R4)

∀i, j : êij[n] = Fout,i(yi, ẑi[n], µz
i [n])− ẑij[n]

− Φij x̂ij[n]µe
i [n]/µ

z
i [n]

(R5)

∀i : µu
i [n] =


1− µe

i [n]/µ
z
i [n]

−1
µz

i [n] (R6)

∀i, j : ûij[n] =

1− µe

i [n]/µ
z
i [n]

−1
êij[n] (R7)

∀j : µq
j [n] =

N−1
i=0 |Φij|

2/µu
i [n]

−1
(R8)

∀j : q̂j[n] = µ
q
j [n]

N−1
i=0


Φ∗ij ûij[n]/µu

i [n]


(R9)

∀j : µx
j [n+ 1] = E in,j(q̂j[n], µ

q
j [n]) (R10)

∀j : x̂j[n+ 1] = F in,j(q̂j[n], µ
q
j [n]) (R11)

∀i, j : x̂ij[n+1] = x̂j[n+1]−

Φ∗ij ûij[n]/µu

i [n]

µx

j [n+1] (R12)

end

3.3. BP-based joint channel estimation and decoding

In this section, we detail our BP-based approach to
JCED, frequently referring to the factor graph in Fig. 1.
Note that, since our factor graph is loopy, there exists
considerable freedom in the message passing schedule.
We choose to propagate beliefs from the left to the right
and back again, several times, stopping as soon the beliefs
have appeared to converge. Each full cycle of message
passing on the overall factor graph will be referred to as
a ‘‘turbo iteration’’. During each turbo iteration, several
rounds of message passing are performed within each
of the dashed boxes in Fig. 1. We refer to the iterations
within the left dashed box as ‘‘SISO decoder iterations’’ and
the iterations within the right dashed as ‘‘RBP iterations’’.
Below,weprovide details onhowbeliefs are calculated and
propagated.

At the very start, nothing is known about the infor-
mation bits, which are assumed a priori to be equally
likely (i.e., Pr{bm = 1} = 1

2 ∀m). Thus, the bit beliefs
that initially flow rightward out of the coding/interleaving
block are uniform (i.e., pci,m→Mi(1) =

1
2 for all indices

(i,m) corresponding to data bits). Meanwhile, the values
of the pilot/training bits are known with certainty, and so
pci,m→Mi(c) = 1 for c = ci,m.

Next, coded-bit beliefs are propagated rightward into
the symbol mapping nodes. Since the symbol mapping is
deterministic, the pdf factors take the form p(s(k) | c(l)) =
δk−l, where {δk}k∈Z denotes the Kronecker delta sequence.

According to the SPA, the message passed rightward from
symbol mapping node ‘‘Mi’’ takes the form

pMi→si(s
(k)) ∝


c∈{0,1}M

p(s(k) | c)
M

m=1

pci,m→Mi(cm) (11)

=

M
m=1

pci,m→Mi(cm
(k)). (12)

The SPA then implies that the same message is passed
rightward from node si (i.e., pMi→si(s

(k)) = psi→yi(s
(k))).

Recall, from the discussion of RBP, that the belief
propagating rightward into the OFDM observation node
‘‘yi’’ determines RBP’s ith measurement pdf pYi|Zi(y|z).
Writing this belief as βi

(k) , psi→yi(s
(k)), (3) implies a

Gaussian-mixture channel of the form

pYi|Zi(y|z) =
2M
k=1

βi
(k) CN (y; s(k)z, µv). (13)

From (13), it can be shown (see Appendix A) that the
quantities (D2)–(D3) in Table 1 become

Fout,i(y, ẑ, µz) = ẑ + êi(y, ẑ, µz) (14)

Eout,i(y, ẑ, µz) =

2M
k=1

ξi
(k)(y, ẑ, µz)


µzµv

|s(k)|2µz + µv

+
êi(y, ẑ, µz)− ê(k)(y, ẑ, µz)

2  (15)

for

ê(k)(y, ẑ, µz) ,
 y
s(k)
− ẑ


|s(k)|2µz

|s(k)|2µz + µv
(16)

ξi
(k)(y, ẑ, µz) ,

βi
(k)CN (y; s(k)ẑ, |s(k)|2µz

+ µv)
k′

βi
(k′)CN (y; s(k′)ẑ, |s(k′)|2µz + µv)

(17)

êi(y, ẑ, µz) ,

2M
k=1

ξi
(k)(y, ẑ, µz) ê(k)(y, ẑ, µz). (18)

The quantities in (14)–(15) can be interpreted as follows.
Given the observation yi = y and assuming the prior
zi ∼ CN (ẑ, µz) on the subcarrier gain zi, the quantity
Fout,i(y, ẑ, µz) is the MMSE estimate of zi, Eout,i(y, ẑ, µz) is
its variance, and {ξi(k)(y, ẑ, µz)}2

M

k=1 is the posterior pmf of
si. Likewise, from (4), it can be shown (see Appendix B) that
the quantities (D5)–(D6) in Table 1 take the form

Fin,j(q̂, µq) =
γj(q̂, µq)

αj(q̂, µq)
(19)

Ein,j(q̂, µq) = |γj(q̂, µq)|2
αj(q̂, µq)− 1
[αj(q̂, µq)]2

+
νj(µ

q)

αj(q̂, µq)
, (20)

for

αj(q̂, µq) , 1+
1− λj

λj

µj

νj(µq)
exp


−
|γj(q̂, µq)|2

νj(µq)


(21)
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γj(q̂, µq) ,
νj(µ

q)

µq
q̂ (22)

νj(µ
q) ,

µqµj

µq + µj
. (23)

The quantity Fin,j from (19) can be interpreted as theMMSE
estimate of the channel tap xj given the observations y
and the pilots cpt, and the quantity Ein,j from (20) can be
interpreted as its variance.

Using the quantities derived in (14)–(23), the RBP
algorithm in Table 1 is iterated until convergence is
detected. Doing so generates approximately conditional-
mean (i.e., nonlinear MMSE) estimates {x̂j} of the sparse-
channel impulse-response coefficients {xj}, as well as their
conditional variances {µx

j }, based on the observations {yi}
and the soft symbol estimates {βi

(k)
}. Conveniently, RBP

also returns (a close approximation to) the conditional-
mean estimates {ẑi} of the subchannel gains {zi}, as well
as their conditional variances {µz

i }.
Before continuing, we discuss some RBP details that

are specific to our JCED application. First, we notice that
the condition µe

i [n] < µz
i [n] is required to guarantee a

positive value of the variance µu
i [n] in (R6). Intuitively,

we might expect that µe
i [n] < µz

i [n], because µe
i [n] =

Eout,i(yi, ẑi[n], µz
i [n]) is a posterior variance and µz

i [n] a
prior variance. However, this is not necessarily the case
during the first few RBP iterations, when the soft channel
and symbol estimates may be inaccurate. We remedy this
situation by clipping µe

i [n] at the value 0.99µz
[n], where

0.99 was chosen heuristically. Second, due to the DFT ma-
trix property |Φij|

2
= 1 ∀i, j, step (R1) in Table 1 simpli-

fies to µz
i [n] = µz

[n] ,
L−1

j=0 µx
j [n], and (R8) simplifies to

µ
q
j [n] = µq

[n] ,
N−1

i=0 1/µu
i [n]

−1
.With these simplifi-

cations, the complexity of RBP is dominated by the compu-
tation of the elementwise matrix products Φijx̂ij and Φ∗ij ûij,
which must each be calculated once per RBP iteration, as
well as three other elementwise matrix products in (R5),
(R7), and (R12). Thus, RBP requires only ≈5NL multiplies
per iteration.

After RBP converges, updated symbol beliefs are passed
leftward out of the RBP sub-graph. According to the SPA,
the belief propagating leftward from the yi node takes the
form

psi←yi(s) ∝

z
CN (yi; sz, µv) CN (z; ẑi, µz

i ) (24)

= CN (yi; sẑi, |s|2µz
i + µv), (25)

where the quantities (ẑi, µz
i ) play the role of soft channel

estimates. The SPA then implies that pMi←si(s) = psi←yi(s).
Next, beliefs are passed leftward from each symbol-

mapping nodeMi to the corresponding bit nodes ci,m. From
the SPA, these beliefs take the form

pci,m←Mi(c) ∝
2M
k=1


c:cm=c

p(s(k) | c) pMi←si(s
(k))

×


m′≠m

pci,m′→Mi(cm′)

=


k:cm(k)=c

pMi←si(s
(k))

M
m′=1

pci,m′→Mi(cm′
(k))

pci,m→Mi(c)
(26)

=
1

pci,m→Mi(c)


k:cm(k)=c

pMi←si(s
(k))pMi→si(s

(k)) (27)

for pairs (i,m) that do not correspond to pilot/training
bits. (Since the pilot/training bits are knownwith certainty,
there is no need to update their pmfs.)

Finally, messages are passed leftward into the cod-
ing/interleaving block. Doing so is equivalent to feeding ex-
trinsic soft bit estimates to a soft-input/soft-output (SISO)
deinterleaver/decoder, which treats them as priors. Since
SISO decoding is a well-studied topic (see, e.g., [10,33])
and high-performance implementations are readily avail-
able, we will not elaborate on the details here. It suffices
to say that, once the extrinsic outputs of the SISO decoder
have been computed, they are re-interleaved and passed
rightward from the code/interleave block to begin another
round of belief propagation on the overall factor graph of
Fig. 1. The outer ‘‘turbo’’ iterations then continue until ei-
ther the decoder detects no bit errors, the soft bit estimates
have converged, or a maximum number of iterations has
elapsed.

4. Numerical results

In this section, we present numerical results that
compare our proposed BP-JCED to the CCS approach aswell
as to several reference schemes that act as performance
upper/lower bounds.

4.1. Setup and reference schemes

The following decoupled channel-estimation and de-
coding (DCED) procedure was used to implement CCS.
First, a LASSO8 channel estimate x̂[t] was generated using
pilot-subcarriers. To implement LASSO, we used the cele-
brated SPGL1 algorithm [34] with a genie-optimized tun-
ing parameter.9 The frequency-domain estimate ẑ[t] =
Φx̂[t] was then computed, from which the (genie-aided
empirical) variance µ̂z

[t] , ∥ẑ[t] − z[t]∥22/N was calcu-
lated. Using the soft channel estimate (ẑ[t], µ̂z), leftward
SPA-BP on the factor graph in Fig. 1 was performed exactly
as described in Section 3.3, ensuring that the LASSO out-
putswere properly combinedwith SISO decoding.We note
that, due to the two genie-aided steps, the performance at-
tained by CCS may be somewhat optimistic. Even so, we
shall see that this optimistic CCS performance remains far

8 The criterion employed by LASSO [5] is equivalent to the one
employed in ‘‘basis pursuit denoising’’ [6].
9 The performance of LASSO/SPGL1 is highly dependent on the value of

a tuning parameter that determines the tradeoff between the estimate’s
sparsity and the residual’s variance. To optimize this tradeoff, for each
realization, SPGL1 was invoked over a dense grid of tuning parameters,
and the one that minimizedNMSE (with respect to the true channel) was
chosen.
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below that of our BP-based JCED approach (which requires
no genie-aided steps).

We now describe several reference schemes, all of
which use the DCED procedure described above, but with
different channel estimators. The first uses traditional
linear MMSE (LMMSE) estimation. Since LMMSE does not
exploit channel sparsity, it yields a performance lower-
bound for any sparsity-leveraging technique. We also
consider MMSE-optimal10 pilot-aided channel estimation
under the support-aware genie (SG), reasoning that this
yields a performance upper-bound for CCS. Finally, we
consider MMSE-optimal estimation under a bit- and
support-aware genie (BSG). Here, in addition to the channel
support being known, all bits (including data bits) are
known and used for channel estimation. This latter
reference scheme yields a performance upper-bound for
any implementable DCED or JCED scheme, including our
BP-based JCED. Remarkably, we shall see that performance
of our proposed scheme is not far from that of the BSG.

For all of our results, we used irregular LDPC codes with
codeword length ≈10,000 and average column weight 3,
generated (and decoded) using the publicly available soft-
ware [35]. Random interleaving did not seem to have an
effect, and so no interleaving was employed. For bit-to-
symbol mapping, we used multilevel Gray-mapping [36],
noting recent work [37] that conjectures the optimality of
Gray-mapping when BICM is used with a strong code. For
OFDM, we used11 N = 1021 subcarriers, since prime N en-
sures that square/tall submatrices ofΦ will be full-rank. As
described in the sequel, we tested various combinations of
pilot subcarriers Np and interspersed training bits Mt. The
Np pilot subcarriers were spaced uniformly andmodulated
with QAM symbols chosen uniformly at random. The Mt

training bitswere placed at themost significant bits (MSBs)
of uniformly spaced data subcarriers with values chosen
uniformly at random.

Unless otherwise specified, we used length L = 256
channels with sparsity rate λ = 1/4, yielding E{K} =
λN = 64 non-zero taps on average. All results are aver-
aged over T = 100 OFDM symbols.

4.2. NMSE and BER versus the number of pilot subcarriers

Fig. 3 plots channel estimation normalized mean-
squared error NMSE , ∥x̂[t] − x[t]∥22/∥x[t]∥

2
2 versus the

pilot-to-sparsity ratio Np/K at SNR = 20 dB. As expected,
CCS’s NMSE falls between that of LMMSE and SG estima-
tors, and all three decreasemonotonically withNp/K . Even
after a single turbo iteration, BP-JCED significantly out-
performs CCS, and – perhaps surprisingly – the SG (when
Np/K ≥ 3). The reason for this latter behavior is that,
while the SG uses only the Np pilot subcarriers, BP-JCED
uses allN subcarriers, which yields improved performance
even though the Nd = N − Np data symbols are known

10 When the sparse-channel support is known, the non-zero channel
coefficients follow a Gaussian prior, and MMSE-optimal estimates can be
calculated linearly.
11 Experiments with non-prime N = 1024 showed a slight degradation
of performance.

Fig. 3. Channel estimation NMSE versus pilot-to-sparsity ratio Np/K , for
SNR = 20 dB, Mt = 0 training bits, η = 3 bpcu, and 64-QAM.

Fig. 4. BER versus pilot ratio Np/K , for SNR = 20 dB, Mt = 0 training
bits, η = 3 bpcu, and 64-QAM.

with very little certainty during the first turbo iteration.
Fig. 3 indicates that, after only 2 turbo iterations, BP-JCED
learns the data symbols well enough to estimate the chan-
nel nearly as well as the BSG (which knows the data sym-
bols perfectly). The fact that BP-JCED can generate channel
estimates that are nearly as good as BSG’s support-aware
estimates attests to the near-optimal compressive estima-
tion abilities of RBP.

Fig. 4 plots bit error rate (BER) versus the pilot ratio
Np/K at SNR = 20 dB and a fixed spectral efficiency of
η = 3 bpcu. The curves exhibit a ‘‘notched’’ shape because,
as Np increases, the code rate R must decrease to main-
tain a fixed value of spectral efficiency η. Thus, while an
increase in Np can make channel estimation easier, the re-
duction in R makes data decoding more difficult. For CCS,
Fig. 4 indicates that Np = 4K = L is optimal. The SG
and BP-JCED curves show a similar notch-like shape, al-
though their notches aremuchwider. Finally, the degrada-
tion of BP-JCED’s data-bit estimates at large Np/K explains
the degradation of its channel estimates, as seen in Fig. 3,
since, with JCED, channel estimation is data-directed.

It is interesting to notice that Fig. 4 shows the optimal
CCS pilot insertion rate to be the ‘‘Nyquist’’ rate of Np = L,
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Fig. 5. BER versus pilot ratio Np/K , for SNR = 20 dB, Mt = 0 training
bits,η = 3 bpcu, and 64-QAM. The channel used here had the sparsity rate
λ = E{K}/L = 1/8, which is half the value used in all other experiments.

since, at this pilot rate, CCS is not actually ‘‘compressed’’.
To further investigate this behavior, we repeated the
experiment using a channel with half the number of active
coefficients (i.e., λ = E{K}/L = 1/8) and report the results
in Fig. 5. Remarkably, we find the same behavior: CCS again
performs best when pilots are inserted at the Nyquist rate
ofNp = L. In fact, we repeated this experimentwith dozens
of other arbitrary combinations of (N, L, λ,SNR, η,M),
and always found exactly the same behavior. Our empirical
evidence suggests that, generally speaking, decoupled
sparse-channel estimation and data decoding works best
when pilots are inserted at the Nyquist rate, at least for OFDM
signaling under uniform subcarrier power allocation.12

4.3. Outage rate and the importance of bit-level training

Fig. 6 plots η0.001 versus SNR, where η0.001 denotes the
spectral efficiency (in bpcu) yielding BER = 0.001. The
solid-line traces correspond to Np = 4K = L pilots,Mt = 0
training bits, and 64-QAM, as suggested by Fig. 4. These
solid-line traces all display the anticipated high-SNR scal-
ing law (1−Np/N) log2(SNR)+O(1), differing only in the
O(1) offset term. While, for this setup, we are glad to see
BP-JCED performing on par with BSG, neither attains the
desired channel-capacity prelog-factor of (1 − K/N) =
15/16. It turns out that this shortcoming is due to the
choice (Np,Mt) = (L, 0), which was chosen on behalf of
CCS (and not BP-JCED).

To find the optimal choice of (Np,Mt) for BP-JCED, we
constructed the BER plot Fig. 7. There we see that BP-
JCED performs best with (Np,Mt) = (0,MK), at least in
the high-SNR regime. Note that the total number of pilot/
training bits used when (Np,Mt) = (0,MK) is equivalent
to K degrees-of-freedom per fading block, consistent with
the channel-capacity prelog factor. We then evaluated the
outage rate of this scheme (with 256-QAM), obtaining the
dashed η0.001-vs-SNR trace in Fig. 6, which – remarkably –
exhibits the desired prelog-factor of (1− K/N).

12 It would be interesting to see if this behavior persists when the
pilot- versus data-subcarrier power allocation is optimized. Such an
optimization, however, remains outside the scope of this manuscript.

Fig. 6. BER = 0.001-achieving spectral efficiency η0.001 versus SNR. The
solid traces used Np/K = 4,Mt = 0, and 64-QAM, while the dashed trace
used Np = 0, Mt = MK , and 256-QAM.

BER (M=8, SNR=20dB, bpcu=3.75)
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Fig. 7. log10(BER) versus various combinations of pilot and training rate,
for SNR = 20 dB, η = 3.75 bpcu, and 256-QAM.

Fig. 8 plots BER versus Eb/No , SNR/η over a much
lower range of SNR. As stated earlier, experiments con-
firmed that CCS favors (Np,Mt) = (L, 0) in the low-
SNR regime, and so this configuration was used to keep
CCS competitive, while being potentially suboptimal for
BP-JCED. Still, we see from Fig. 8 that BP-JCED, after only
two turbo iterations, beats CCS by 1.8 dB and remains only
0.8 dB away from the BSG.

5. Conclusion

In this work, we presented a novel approach to joint
channel estimation and decoding (JCED) for spectrally effi-
cient communication over channels with possibly sparse
impulse responses. For this, we assumed a pilot-aided
transmission scheme that combines bit interleaved coded
modulation (BICM) with orthogonal frequency division
multiplexing (OFDM). Our JCED scheme is based on belief
propagation (BP) over a loopy factor graph, where our BP
implementation uses very efficient approximations of the
sum-product algorithm recently proposed under the guise
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Fig. 8. BER versus Eb/No(, SNR/η), for Np/K = 4, Mt = 0, η = 0.5
bpcu, and 4-QAM.

of relaxed belief propagation (RBP) [8,38] and soft-input
soft-output decoding. Because our JCED scheme requires
only≈5NLmultiplications per RBP iteration,we canhandle
long impulse responses, large numbers of OFDM subcarri-
ers, and large constellations. Numerical experiments con-
ducted using N = 1021 subcarriers, up to 256-point QAM
constellations,≈10,000-bit LDPC codes, and channels with
length L = 256 and average sparsity E{K} = 64, showed
that the BER of BP-JCED is close to genie-aided bounds and
much better than theBER of the LASSO-based ‘‘compressed
channel sensing’’ (CCS) approach, where sparse channel
estimation is decoupled from data decoding. Moreover,
the outage rates observed for BP-JCED exhibit the sparse-
channel capacity pre-log factor (1−K/N), which is impos-
sible to reach using CCS.
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Appendix A. DerivationofRBPQuantities Fout,i andEout,i

In this Appendix A, we derive the RBP quantities
Fout,i(y, ẑ, µz) and Eout,i(y, ẑ, µz) given in (14)–(18). From
(D1)–(D2), we have that

Fout,i(y, ẑ, µz) =
1

pYi(y)


z
z pYi|Zi(y|z) CN (z; ẑ, µz), (28)

where pYi(y) ,

z pYi|Zi(y|z)CN (z; ẑ, µz). From (13), we

rewrite pYi|Zi(y|z) as

pYi|Zi(y|z) =
2M
k=1

βi
(k)

s(k)
CN


z;

y
s(k)

,
µv

|s(k)|2


, (29)

so that
z
z pYi|Zi(y|z)CN (z; ẑ, µz)

=

2M
k=1

βi
(k)

s(k)


z
z CN


z;

y
s(k)

,
µv

|s(k)|2


CN (z; ẑ, µz) (30)

pYi(y)

=

2M
k=1

βi
(k)

s(k)


z
CN


z;

y
s(k)

,
µv

|s(k)|2


CN (z; ẑ, µz). (31)

Using the property that

CN (x; θ̂ , µθ )CN (x; φ̂, µφ)

= CN


x;

θ̂/µθ
+ φ̂/µφ

1/µθ + 1/µφ
,

1
1/µθ + 1/µφ


×CN (0; θ̂ − φ̂, µθ

+ µφ), (32)

we can rewrite
z
z pYi|Zi(y|z) CN (z; ẑ, µz)

=

2M
k=1

βi
(k)

s(k)
CN


0;

yi
s
− ẑ,

µv

|s(k)|2
+ µz



×


z
z CN

z;
y

s(k)
|s(k)|2

µv +
ẑ

µz

|s(k)|2
µv +

1
µz

,
1

|s(k)|2
µv +

1
µz

 (33)

=

2M
k=1

βi
(k)

s(k)

×CN


yi
s
; ẑ,

µv

|s(k)|2
+ µz

 y
s(k)
|s(k)|2

µv +
ẑ

µz

|s(k)|2
µv +

1
µz

(34)

=

2M
k=1

βi
(k)CN


yi; s(k)ẑ, |s(k)|2µz

+ µv


×

 y
s(k)
− ẑ


|s(k)|2µz

|s(k)|2µz + µv  
,ê(k)(y,ẑ,µz )

+ẑ

 (35)

and, using the same procedure, we get

pYi(y) =
2M
k=1

βi
(k)CN


yi; s(k)ẑ, |s(k)|2µz

+ µv

. (36)

Finally, with ξi
(k)(y, ẑ, µz) defined in (17), Eqs. (28), (35)

and (36) combine to give

Fout,i(y, ẑ, µz) =

2M
k=1

ξi
(k)(y, ẑ, µz)


ê(k)(y, ẑ, µz)+ ẑ


,

(37)

from which (14) follows immediately.
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From (D1) to (D3), we have that

Eout,i(y, ẑ, µz) =


z |z − Fout,i|2 pYi|Zi(y|z) CN (z; ẑ, µz)

pYi(y)
.

(38)

Similar to (33), we can write
z
|z − Fout,i|2 pYi|Zi(y|z) CN (z; ẑ, µz)

=

2M
k=1

βi
(k)

s(k)
CN


0;

yi
s
− ẑ,

µv

|s(k)|2
+ µz


×


z
|z − Fout,i|2

×CN

z;
y

s(k)
|s(k)|2

µv +
ẑ

µz

|s(k)|2
µv +

1
µz

,
1

|s(k)|2
µv +

1
µz

 . (39)

Then, using the change-of-variable z̃ , z − Fout,i, and
absorbing the s(k) terms as we did in (35), we get

z
|z − Fout,i|2 pYi|Zi(y|z) CN (z; ẑ, µz)

=

2M
k=1

βi
(k)CN


yi; s(k)ẑ, |s(k)|2µz

+ µv
 

z̃
|z̃|2

×CN

z̃; ê(k)
+ ẑ − Fout,i  

=−êi

,
µvµz

|s(k)|2µz + µv

 (40)

=

2M
k=1

βi
(k)CN


yi; s(k)ẑ, |s(k)|2µz

+ µv


×


|ê(k)
− êi|2 +

µvµz

|s(k)|2µz + µv


. (41)

Finally, using ξi
(k)(y, ẑ, µz) defined in (17), Eqs. (36), (38)

and (41) combine to give the expression for Eout,i(y, ẑ, µz)
given in (15).

Appendix B. Derivation of RBP quantities Fin,j and Ein,j

In this Appendix B, we derive the RBP quantities
Fin,j(q̂, µq) and Ein,j(q̂, µq) given in (19)–(23).

From (D4)–(D6),wenote that Fin,j(q̂, µq) andEin,j(q̂, µq)
are the mean and variance, respectively, of the pdf

1
Zj
pXj(q) CN (q; q̂, µq), (42)

where Zj =

q pXj(q) CN (q; q̂, µq). Using (32) together

with the definition of pXj(.) from (4), we find that

pXj(q) CN (q; q̂, µq) = λjCN (q; 0, µj) CN (q; q̂, µq)

+ (1− λj)δ(q) CN (q; q̂, µq) (43)
= λjCN (0;−q̂, µj + µq)

×CN


q;

q̂/µq

1/µj + 1/µq
,

1
1/µj + 1/µq



+ (1− λj)CN (0; q̂, µq)δ(q) (44)
= λjCN (q̂; 0, µj + µq)

×CN


q;

q̂
µq

µqµj

µq + µj
,

µqµj

µq + µj


+ (1− λj)CN (q̂; 0, µq)δ(q), (45)

which implies that

Zj = λjCN (q̂; 0, µj + µq)+ (1− λj)CN (q̂; 0, µq). (46)

Thus, the mean obeys

Fin,j(q̂, µq) =
1
Zj


q
q pXj(q) CN (q; q̂, µq) (47)

=
λj

Zj
CN (q̂; 0, µj + µq)  
=1/αj(q̂,µq)

q̂
µq

µqµj

µq + µj  
=γj(q̂,µq)

. (48)

Expression (19) then follows directly from (48).
Since, for the pdf in (42), Fin,j is the mean and Ein,j is the

variance, we can write

Ein,j(q̂, µq) =
1
Zj


q
|q− Fin,j|2 pXj(q) CN (q; q̂, µq) (49)

=
1
Zj


q
|q|2 pXj(q) CN (q; q̂, µq)− |Fin,j|2 (50)

=
1
Zj


q
|q|2


λjCN (q̂; 0, µj + µq)

×CN


q;

q̂
µq

µqµj

µq + µj
,

µqµj

µq + µj


+ (1− λj)CN (q̂; 0, µq)δ(q)


− |Fin,j|2 (51)

=
λj

Zj
CN (q̂; 0, µj + µq)  

=1/αj

×



q̂
µq

µqµj

µq + µj  
=γj


2

+
µqµj

µq + µj  
=νj

− |Fin,j|2 (52)

=
1
αj


|γj|

2
+ νj


−

1
α2
j
|γj|

2. (53)

Expression (20) then follows by rearranging (53).
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