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ABSTRACT

Channel state information (CSI) is important for achieving large rates in MIMO

channels. However, in time-varying MIMO channels, there is a trade-off between the

time (or energy) spent gathering CSI and the remaining time in which to transmit

data before the channel loses coherence. This trade-off is accentuated in the MIMO

multiple-access channel (MAC) as the number of users, thus the number of channel

vectors to be estimated, increases. Furthermore, the problem is inherently coupled

with multiuser scheduling. In this paper, we consider a multiple access block fad-

ing channel with coherence time T , n independent users, each with one transmit

antenna and the same average power constraint ρavg, and a base station with M

receive antennas and no a priori channel state information. We construct a training-

based communication scheme and jointly optimize the training and user selection:

we find the optimal number of users to be trained, Lopt, and the optimal number

to be scheduled for transmission out of those trained, in order to maximize sum

rate. Our optimized training-based scheme achieves the same scaling law with in-

creasing SNR as the non-coherent capacity of a single user n × M MIMO channel:

Lopt

(
1− Lopt

T

)
log2(ρavg)+O(1) as ρavg → ∞, where Lopt = min(n, M, bT

2
c). We show

this is also the scaling law of the sum capacity of the associated non-coherent MIMO

MAC, hence our scheme is scaling-law optimal. Finally, the asymptotic behavior of

sum rate and throughput per-user under increasing n, M or T is explored.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

It is important for multiple-input multiple-output (MIMO) transceivers to be

robust to varying degrees of channel state information (CSI.) While large capacity

gains are possible with MIMO architectures when the channel response is known

at the receiver (see, e.g. [1–3],) learning the channel often requires the transmitters

to allocate some time and energy to send known training sequences to the receiver.

When channel variation is slow, hence the coherence time long, learning the channel

coefficients may be a good investment of time and energy. On the other hand, when

the coherence time is relatively short, there is a trade-off between how much time (or

energy) is used to learn channel coefficients and how much time remains in which to

transmit data. This trade-off has been explored for a single-user MIMO channel by

Hassibi and Hochwald [4], where, under some assumptions, the optimal fraction of

the coherence interval to be used for training has been found under different values

of signal to noise ratio (SNR) and other parameters.

The problem is more challenging in multiuser MIMO channels, where training is

inherently tied to user selection (scheduling.) The multiuser setting is of practical
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interest for the design of existing and proposed communication networks such as

broadband wireless described by the IEEE 802.16 standard. Thus for concreteness,

we will describe the problem in the context of a wireless multiple-antenna uplink,

while the results could equally well apply to other MIMO multiple-access channels.

1.2 Contributions

In this thesis, we will address the joint optimization of training and scheduling in a

multiple access channel with n users where each user has an average power constraint

ρavg. Each user (transmitter) has a single antenna and the base station (BS) has M

antennas. We assume block-fading with a coherence time of T , where the BS knows

the channel statistics but has no a priori information about current realizations. We

ask the following broad set of questions: For a given M and T , how much time

should be spent on training and how many users should be trained within a coherence

interval? How many of those trained should be selected to transmit data? How does

the sum capacity scale with the number of users and SNR?

Our approach is constructive: we design a training scheme where each coherence

interval is divided into two phases. In the training phase, a (randomly) selected

group of L users send training symbols, upon reception of which the BS estimates

their channel vectors. In the data transmission phase, a subset of size K ≤ L out

of the trained users are scheduled to transmit data. We consider the maximization

of sum rate by optimally setting parameters such as the time and power allocated to

each phase, and the values of L and K. In order to do this, we obtain a lower bound

on the sum rate by extending to the multiple-access MIMO channel a non-coherent

channel capacity lower bound introduced in [5] and also used in [4].

2



The high SNR regime is one where a training-based scheme performs best, and

consequently this regime is of interest to us. We will show that setting L = K =

Lopt = min(n, M, bT
2
c) is optimal, resulting in a sum rate (bits/channel use) of

Lopt

(

1 − Lopt

T

)

log2(ρavg) + O(1) as ρavg → ∞. This sum rate has the same rate

of increase in SNR as that in a non-coherent, single user, n × M channel [6]. Also,

we show that the sum capacity of the non-coherent uplink also scales at the same

rate with SNR, implying that our scheme is scaling-law optimal. The prelog fac-

tor, Lopt

(

1 − Lopt

T

)

, has the physical interpretation as the number of parallel, non-

interfering point-to-point channels available for data communication, and happens to

be equal to the degrees of freedom of the non-coherent single user n×M channel [6].

Thus we prove that the non-coherent n × M uplink channel has the same degrees of

freedom as its single user counterpart.

At high SNR, and as the coherence time of the channel grows, we will find that

the prelog factor of the sum rate of our scheme approaches min(n, M), the degrees of

freedom available to a multiple access channel with perfect CSI at the receiver. As the

SNR, the number of users n or the number of BS antennas grows, the scheduling gain

vanishes (i.e., L = K becomes optimal) due to several factors that will be discussed.

In this regime, the optimal number of users to be trained (and allowed to transmit)

will be shown to be Lopt = min(n, M, bT
2
c).

Meanwhile, we will observe that the throughput per-user strictly decreases with

n. This is in contrast to the coherent MIMO MAC where the per-user throughput

remains a constant for n ≤ M and drops with n only for n > M . We identify the

availability of CSI at the BS to be behind this behavior in coherent channels as against

the non-coherent MIMO MAC.

3



1.3 Organization of this Thesis

The rest of this thesis is organized as follows.

Chapter 2 reviews fundamental ideas and sheds light on the existing literature.

Chapter 3 describes the problem setup more precisely.

Chapter 4 includes the derivation of the sum capacity lower bound, to be used as the

main performance metric.

Chapter 5 discusses the optimal design of various parameters involved in our scheme.

Chapter 6 contains an asymptotic analysis of the proposed scheme.

Chapter 7 includes conclusions and insights on extending our work.
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CHAPTER 2

BACKGROUND

2.1 MIMO systems

Multiple-input multiple-output technology that employ multiple antennas at both

the transmitter and the receiver was first invented by Jack Winters at the Bell Labo-

ratories in 1984. Since then, a large amount of research [1,7] etc., has been performed

in using this technique to improve transmission reliability for a given data rate or

increase data rate for a given transmission reliability. The former gain is called the

diversity gain obtained by transmitting same information over multiple paths. These

multiple paths are made possible by the rich scattering environment that offers inde-

pendent point to point links between the multiple antennas at the transmitter side to

those at the receiver side. The latter gain is known as the multiplexing gain achieved

by multiplexing independent data over the available multiple paths.

2.2 Multiuser communication

In applications such as wireless local area networks (WLANs), satellite-based net-

works and cellular networks two possible communication links exists: (a) Uplink -
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a common receiver (base station, BS) is accessed by multiple users through a com-

mon medium. This type of channel is also referred to as Multiple Access channel,

MAC, [8]. (b) Downlink (also known as Broadcast channel, BC) - a single transmit-

ter (BS) sends independent data to multiple receivers through a shared medium [9].

In both these cases, like in point to point links, multi-antenna transmitter/receiver

structures are proved to be of tremendous value in increasing the spectral efficiency.

For a MIMO MAC, the capacity region is a convex n-dimensional region that defines

the individual rates achievable simultaneously by all the n users in the system [3,10].

The corner points can be achieved by linear MMSE filtering followed by successive

interference cancellation at the BS. Although the BC region is not known explicitly

with closed form expressions, it has been proven that the BC rate region is the union

of the MAC region for various combinations of individual powers that sum to the same

total power constraint and that this region is achievable with Costa precoding [11–15].

These results on MIMO multiuser channels apply straightforwardly to fading channels

by considering the channel in each fading state as a parallel non-interfering multiuser

channel.

2.3 Opportunistic communication

Apart from the multiplexing and diversity gains seen by the use of multiple anten-

nas in fading channels, multiuser systems offer a type of gain called multiuser diversity

gain or scheduling gain. The diversity or richness in the links of users that are geo-

graphically far apart renders the channel of some users better than others during a

fading state. When the BS exploits this diversity, i.e., when it schedules communica-

tion with users whose instantaneous channel quality is good, a considerable increase in
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the achievable sum rate can be realized. This opportunistic scheduling was first intro-

duced in [16] for single antenna multiuser systems and extended to MIMO multiuser

systems in [17]. These works clearly projected fading as a beneficial phenomenon

that acts as a source of randomness in the channel coefficients, hence, leading to mul-

tiuser diversity gains. In fact, researchers have considered promoting fading in these

channels using transmit beamforming [18]. For a detailed treatment on opportunistic

communication the reader may refer to [19] and the references therein.

Throughout the discussion thus far, we have assumed the availability of CSI at the

BS. CSI at BS is instrumental in realizing the MIMO and multiuser gains effectively.

But if the channel fading states change rapidly, it is impractical to trace the channel

accurately, forcing us to deploy a suitable non-coherent communication technique.

These techniques can be broadly classified as (a) those that explicitly estimate the

channel coefficients (b) those that equalize the channel without estimating it explic-

itly. Despite the richness of this problem, non-coherent MIMO multiuser systems is a

topic that has enjoyed relatively less attention than its single user counterpart [4, 6].

Even more, when it comes to multiuser scheduling in non-coherent MIMO MAC,

there is no literature available to the best of our knowledge. We attempt to fill this

gap by considering a cross layer design of pilot based training (Physical layer) and

user scheduling (MAC layer) in this thesis.

7



CHAPTER 3

PROBLEM SETUP

3.1 Channel Model

There are n users, each with one antenna and the same average power constraint,

ρavg, and a base station with M antennas. The fading coefficients linking the users

to the BS antennas are i.i.d. CN (0, 1). The channel is block-fading, i.e., the channel

coefficients remain constant for a discrete coherence interval T ≥ 2 after which it

changes to an independent realization. The BS does not know the realization of H,

but knows its distribution. Noise is Gaussian and independent across receive antennas

and time.

We shall restrict our attention to a training-based non-coherent communication

scheme consistent with the scheme adopted in [4] for a single user MIMO channel.

According to this scheme, within every coherence interval T , there are two phases:

training, followed by transmission. Let c ∈ Z be the index of a coherence interval.

3.2 Training Phase

In coherence interval c, L ≤ n users are allowed to train. Since the BS does

not have any information about the current channel state, it chooses the L users

8



on a random or round-robin basis and these users transmit for Tτ symbol times (we

assume the existence of a feedback channel on which the BS can inform the users of

the selection using negligible time and power.)

Each user transmits a vector of length Tτ , so the vectors transmitted by all L

users can be summarized as the training symbol matrix Sτ,c ∈ CTτ×L such that

tr[S∗
τ,cSτ,c] ≤ LTτ (A∗ indicates the Hermitian of the matrix A throughout this paper.)

Received signals at each of the M antennas for the duration of training can be written

in the form of a matrix Xτ,c ∈ C
Tτ×M :

Xτ,c =
√

ρτSτ,cHτ,c + Vτ,c, (3.1)

where Hτ,c is the channel matrix made up of i.i.d. CN (0, 1) coefficients. Vτ,c ∈ CTτ×M

is an AWGN matrix with i.i.d. CN (0, 1) entries, independent of Hτ,c. ρτ is the

training power level of each of the L active users, giving the total training energy

spent by all the active users, in any coherence time, as ρτLTτ .

At the end of the training phase, the BS finds the minimum mean square error

(MMSE) estimate of Hτ,c as follows:

Ĥτ,c =

√
1

ρτ

(IL

ρτ

+ S∗
τ,cSτ,c

)−1

S∗
τ,cXτ,c, (3.2)

with H̃τ,c := Hτ,c − Ĥτ,c being the zero mean channel estimation error.

3.3 Data Transmission Phase

Having found the channel estimate Ĥτ,c, the BS uses it as if it were accurate

during the data transmission phase and treats the estimation error as additive noise.

It chooses a subset of K users from these L users (according to a performance criterion

to be introduced soon.) Let this subset be indexed by i and ρd be the data power
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level of each of the K active users. Then, the received signal on all M antennas

during the data transmission phase of length Td := T −Tτ can be written as a matrix

X i
d,c ∈ CTd×M :

X i
d,c =

√
ρdS

i
d,cH

i
d,c + V i

d,c

=
√

ρdS
i
d,cĤ

i
d,c +

√
ρdS

i
d,cH̃

i
d,c + V i

d,c
︸ ︷︷ ︸

V̄ i
d,c

, (3.3)

where H i
d,c ∈ CK×M is constructed from the rows of Hτ,c corresponding to these K

users, Si
d,c ∈ CTd×K is the data symbol matrix that satisfies E tr[S i∗

d,cS
i
d,c] ≤ KTd, and

V i
d,c ∈ CTd×M is an AWGN matrix with i.i.d. CN (0, 1) entries. In (3.3), X i

d,c has been

explicitly written in terms of the MMSE estimate Ĥ i
d,c ∈ CK×M of (the corresponding

portion of) the channel matrix, and H̃ i
d,c = H i

d,c−Ĥ i
d,c, which is the zero-mean channel

estimation error. Since all statistical quantities are stationary across the coherence

intervals, the suffix c will hereafter be dropped w.l.o.g.

Note that the total data energy spent by all the K active users in any coherence

time is ρdKTd. Since ρavg is the average power constraint of each user, with equal

total energy (data and training of all users) allocated to all coherence times, the

total energy spent in any coherence time is ρavgnT thus giving the relation ρavgnT =

ρdTdK +ρτTτL. Also, by the symmetry of the random/round-robin selection of users,

each user ends up spending the same average power, ρavg.

Note that using the channel estimate as if it were perfect is not necessarily an

optimal approach. Nevertheless, the scheme we described, which is an extension

of the single-user training-based scheme of [4], is interesting because it is practical,

analyzable, and, as will be shown, scaling-law optimal.

10



In the next chapter, a capacity lower bound will be presented. This bound will

serve as a performance metric upon which we shall study the effects of various pa-

rameters like the training sequence (Sτ ), the training period (Tτ ), power allocation

between the training and data phases, the number of users to be trained (L) and the

number of users to be allowed to transmit data (K).
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CHAPTER 4

PERFORMANCE METRIC

The performance metric we will use is a lower bound on the sum capacity of the

non-coherent uplink, Csum, which is a straightforward extension of the non-coherent

channel capacity lower bound first introduced in [5] and applied to the MIMO channel

in [4].

Consider the channel in (3.3) for one symbol time given by

x
i
d =

√
ρds

i
dĤ

i
d + v̄

i
d. (4.1)

where s
i
d, x

i
d and v̄

i
d correspond to one row (i.e., one channel use) of S i

d, X i
d and V̄ i

d in

(3.3) respectively. Let I i be the mutual information between s
i
d and x

i
d given Ĥ i

d, i.e.,

I(si
d; x

i
d|Ĥ i

d). Then the lower bound is given by, (see Appendix A for its derivation):

CLB(R
v̄

i
d
, R

s
i
d
) = E inf

p
v̄

i
d
,∀i

sup
p

s
i
d
,∀i

max
i

T − Tτ

T
I i(p

v̄
i
d
, p

s
i
d
, R

v̄
i
d
, R

s
i
d
) (4.2)

The mutual information I i has been written as a function of the signal and noise

PDFs and also explicitly as a function of the respective correlation matrices R
s

i
d

and

R
v̄

i
d
. The reason for this will be clear as we proceed.

The signal correlation matrix is R
s

i
d

= E[si∗
d s

i
d]. Since the users cannot cooperate

and since we do not perform power control across space or time (other than multiuser

12



scheduling), R
s

i
d

= IK , ∀i (where IK is the K × K identity matrix). The correlation

matrix of the zero-mean noise, v̄
i
d, is given by

R
v̄

i
d

= E(
√

ρds
i
dH̃

i
d + v

i
d)

∗(
√

ρds
i
dH̃

i
d + v

i
d)

= ρd E[H̃ i∗
d H̃ i

d] + IM . (4.3)

For brevity we will refer to this capacity lower bound as CLB hereafter and provide

an explicit expression for it in the following lemma.

Lemma 1.

CLB =
T − Tτ

T
E max

i
log det(IM + ρdR

−1
v̄

i
d

Ĥ i∗
d Ĥ i

d) (4.4)

Proof. Consider the channel x =
√

ρsH̆ + v, where s ∈ C1×K is the zero mean

transmitted signal with autocorrelation matrix Rs, v ∈ C1×M is zero mean additive

noise with autocorrelation matrix Rv, x ∈ C
1×M is the received signal and H̆ ∈ C

K×M

is a known channel matrix. Following the proof of Theorem 1 in [4], under the

constraint E[s∗
v] = 0K×M , for any Rs, Rv,

inf
pv

sup
ps

I(s; x|H̆) = log det(IM + ρR−1
v

H̆∗RsH̆) (4.5)

with Gaussian distributed signal and noise (throughout this paper, logarithms are to

the base 2, unless mentioned otherwise.) Now, for our channel in (4.1), the following

holds:

E[si∗
d v̄

i
d|Xτ , Sτ ] =

√
ρd E[si∗

d s
i
d|Xτ , Sτ ] E[H̃ i

d|Xτ , Sτ ]

= 0K×M . (4.6)

Hence, using Theorem 1 of [4],

(CN (0, R
v̄

i
d
), CN (0, IK)) = arg inf

p
v̄

i
d
(.)

sup
p

s
i
d
(.)

I i(p
v̄

i
d
, p

s
i
d
, R

v̄
i
d
, IK). (4.7)
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But note that

I i(CN (0, R
v̄

i
d
), CN (0, IK)) = log det(IM + ρdR

−1
v̄

i
d

Ĥ i∗
d Ĥ i

d). (4.8)

Define I i
lb = T−Tτ

T
I i(CN (0, R

v̄
i
d
), CN (0, IK)) for brevity. Due to symmetry, (4.8) holds

for any subset i, and so we obtain

CLB = E max
i

I i
lb (4.9)

We show in Appendix A that CLB is also a lower bound on the maximum sum

rate achievable within the two-phased training scheme described earlier, under worst

noise and best signal design conditions. Let us call this rate Rmax
worst, and record this

fact below.

CLB ≤ Rmax
worst ≤ Csum (4.10)

Note that CLB is influenced by the training sequence used, the energy shared

between the training and the data transmission phases and the duration of training.

We consider the roles of these parameters and how to set them in the following

chapter.
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CHAPTER 5

PARAMETER DESIGN

Within the training based scheme described in Section 3, the following three are

design choices: training sequence Sτ , training power ρτ , and training period Tτ .

In light of the analysis in the preceding chapter, it is tempting to choose these

parameters to maximize CLB. However, from (4.9), the effect of these parameters on

the capacity lower bound is highly convoluted. For analytical tractability, we relax the

objective function and limit consideration to a certain solution space. In particular,

we do the following:

• From (4.9), CLB = E maxi I
i
lb ≥ E I

q
lb, for any fixed q. In the rest of this chapter,

E I
q
lb, for a fixed q, will be the objective function.

• Sτ is restricted to the class of training sequences that render symmetry in the

estimation error variance across the user subsets, i.e., σ2
H̃i

d

= σ2
H̃

j
d

, ∀i, j where

σ2
H̃i

d

:= 1
MK

E tr[H̃ i∗
d H̃ i

d], ∀i.
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5.1 Training Sequence, Sτ

We now design the training sequence by identifying an effective SNR term that

affects the objective function. Specifically, we proceed by normalizing the noise cor-

relation and the channel estimate matrices in I
q
lb as follows: Define R̈

v̄
q
d

:= 1
σ2

v̄
q
d

R
v̄

q
d
,

where

σ2
v̄

q

d
: =

1

M
tr[R

v̄
q

d
]

= 1 + Kρdσ
2
H̃

q
d

. (5.1)

Let Ḧ
q
d := 1

σ
Ĥ

q
d

Ĥ
q
d with σ2

Ĥi
d

:= 1
MK

E tr[Ĥ i∗
d Ĥ i

d], ∀i. Therefore,

E I
q
lb =

T − Tτ

T
E log det(IM + ρ

q
effR̈−1

v̄
q
d

Ḧ
q∗
d Ḧ

q
d), (5.2)

where ρ
q
eff is the effective SNR for the subset q given by

ρ
q
eff =

ρdσ
2
Ĥ

q
d

1 + Kρdσ
2
H̃

q

d

=
1

K

[ 1 + Kρd

1 + Kρdσ
2
H̃

q
d

− 1
]

(5.3)

since σ2
H̃

q

d

+ σ2
Ĥ

q
d

= σ2
H

q
d

= 1. As argued in [4], since the training sequence primarily

affects the objective function in (5.2) through ρ
q
eff , we choose to maximize ρ

q
eff by

minimizing σ2
H̃

q
d

. Let,

σ2
H̃τ

: =
1

ML
E tr[H̃∗

τ H̃τ ]

=
1

ML

L∑

a=1

M∑

b=1

var[H̃τ ]a,b (5.4)

where var[H̃τ ]a,b indicates the variance of the (a, b)th element of H̃τ . Observe that, if Q

is the number of subsets of K users formed from the L trained users, i.e. Q =

(
L

K

)

,
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then
∑Q

i=1 σ2
H̃i

d

MK has QKM entries made up of variances of LM elements in the

H̃τ matrix. Since the subsets we form are symmetric with respect to all the users

and hence to all H̃τ entries, each element has QK

L
representations in this summation.

Therefore, we have

Q
∑

i=1

σ2
H̃i

d

MK =

L∑

a=1

M∑

b=1

var[H̃τ ]a,b

QK

L
(5.5)

and (5.4) becomes,

σ2
H̃τ

=
1

Q

Q
∑

i=1

σ2
H̃i

d

= σ2
H̃

q
d

, (5.6)

where the last equality arises from our assumption on Sτ that ensures σ2
H̃i

d

= σ2
H̃

j
d

for

all i, j. We therefore minimize σ2
H̃

q

d

by minimizing σ2
H̃τ

. The following condition on

the training sequence is necessary and sufficient for minimizing σ2
H̃τ

(see Appendix

B):

S∗
τ Sτ = TτIL. (5.7)

Observe that we need Tτ ≥ L to achieve (5.7). This constraint is intuitive because,

during training, every transmission gives us M equations. There are LM unknowns,

thus at least L transmissions are needed in the training phase. With Tτ ≥ L, we can

prove (see Appendix B) that,

RH̃
q
d

:= E
[
(vec H̃

q
d)(vec H̃

q
d)

∗
]

=
1

1 + ρτTτ

IKM

σ2
H̃

q

d

=
1

1 + ρτTτ

(5.8)
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Also, since RH̃
q
d

+ RĤ
q
d

= IKM , RĤ
q
d

:= E
[
(vec Ĥ

q
d)(vec Ĥ

q
d)

∗
]

= ρτ Tτ

1+ρτ Tτ
IKM . Thus,

Ḧ
q
d = 1

σ
Ĥ

q
d

Ĥ
q
d has independent CN (0, 1) entries. We will use this property later. From

(4.3) and (5.1),

R̈
v̄

q
d

=
1

σ2
v̄

q
d

[ ρdK

1 + ρτTτ

IM + IM

]

= IM . (5.9)

ρ
q
eff =

ρdρτTτ

1 + ρτTτ + Kρd

. (5.10)

Note that (5.8) applies to all q, thus Sτ renders symmetry in the estimation error

variance across the user subsets. This is consistent with the assumption we made in

the beginning of this chapter on Sτ . In fact, all the equations from (5.6) through (5.10)

apply equally well to any subset i leading to E I i
lb = E I

j
lb, ∀i, j. Defining Ilb := I

q
lb,

the objective function can be rewritten as the following where ρeff = ρi
eff , ∀i:

E Ilb =
T − Tτ

T
E log det(IM + ρeffḦ i∗

d Ḧ i
d) (5.11)

5.2 Power Allocation, α

The energy consumed by the active users in any coherence time is composed of

the energy used in the training phase and that in the data transmission phase. It

is possible to maximize ρeff by appropriate power allocation between these phases.

In each coherence time, the total energy consumed by all the users is ρavgnT =

ρτTτL + ρdTdK, where, recall that ρavg is the average power constraint of each user.

Let ρdTdK = αρavgnT for some α ∈ (0, 1]. Then

ρeff =
(ρavgnT )2

TdK

α(1 − α)

L + ρavgnT − αρavgnT (1 − L
Td

)
(5.12)
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The value of α that maximizes ρeff is derived in Appendix C to be the following:

αopt =







1
2

Td = L

γ −
√

γ(γ − 1) Td > L

γ +
√

γ(γ − 1) Td < L

where γ =
L + ρavgnT

ρavgnT [1 − L
Td

]
(5.13)

The intuition behind (5.13) will be apparent after we discuss the design of the training

period.

5.3 Training Period, Tτ

We now derive the training period Tτ that maximizes E Ilb. It can be proven (see

Appendix D) that E Ilb monotonically increases with Td for 0 < Td ≤ T − L. From

this, combined with the fact that Tτ ≥ L (from the argument following (5.7)), we

conclude the value of Tτ that maximizes E Ilb is Tτ,opt = L.

With Tτ = L, using the result in (5.13), it can easily be proven that ρτL > ρavgn >

ρdK when Td > L and ρτL < ρavgn < ρdK when Td < L, thus giving the intuitive

physical interpretation that, when more time is spent on data transmission relative

to training, less total power should be spent on data and vice versa.

With this, we have optimized the parameters for our scheme with the exception

of L and K which we summarize as follows.

5.4 Summary

Signal Design : Gaussian symbols, i.i.d. across space and time, with variance ρd.

Training Period : Tτ = L, where L is the number of users trained.

Training Sequence: Designed such that S∗
τ Sτ = Tτ IL. Since Tτ = L, the standard

L dimensional basis vectors (scaled by
√

ρτTτ ) can be used as training sequences for

the L users. This gives the interesting physical interpretation that, during training
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phase, each participating user gets exactly one channel use to train its channel.

Power Share: The total energy spent on data is ρdTdK = αρavgnT and the total

energy spent on training is ρτTτL = (1−α)ρavgnT , where α = αopt is given in (5.13).

User Selection Protocol:

• In each coherence time, during the training phase, L users are selected either

randomly or by a round-robin technique to train their channel.

• At the BS, after training is complete, a subset, imax, of users is chosen such

that imax = arg maxi I
i
lb (or to maximize the mutual information if the signal

and additive noise distributions are known and non-Gaussian) and scheduled to

transmit data, over a low rate feedback channel.

Due to the inherent symmetry established by this protocol, each user gets the

same ergodic rate. Since we may be dealing with possibly short coherence times,

interleaving of data symbols across coherence intervals may be necessary to achieve

the promised ergodic rate. Thus each user maintains a codebook of rate T
n(T−L)

CLB

and interleaves its codewords across the coherence intervals in which it transmits

data. Using the designed parameters, we update CLB and ρeff as follows,

CLB =
T − L

T
E max

i
log det(IM + ρeffḦ i∗

d Ḧ i
d) (5.14)

with ρeff in (5.12) rewritten as,

ρeff =







(ρavgn)2

K(1+2ρavgn)
T = 2L

ρavgnT

K(T−2L)
(
√

γ −√
γ − 1)2 T > 2L

ρavgnT

K(2L−T )
(
√−γ −√

1 − γ)2 T < 2L

where γ =
L + ρavgnT

ρavgnT

T − L

T − 2L
.(5.15)

We now illustrate the proposed scheme with a numerical example in the following

section.
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5.5 Illustration

System parameters:

number of users, n = 5

number of BS antennas, M = 3

average power constraint, ρavg = 3 dB

coherence interval, T = 10 channel uses

Design parameters: Since we have not designed L and K yet (this will be addressed

in the next chapter), we set L=4 and K=3 arbitrarily without compromising the

objective of this example.

training period, Tτ = L = 4

data period, Td = T − Tτ = 6

training sequence matrix, Sτ =







2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2







power allocation, αopt = 0.5481

With these system and design parameters, we have γ = 3.1203, effective SNR,

ρeff = 1.6011 and number of subsets Q = 4. Also,

total power spent in training, ρτL = 11.2696

total power spent in data, ρdK = 9.1141

thus giving more power to training than to data since more time is spent on data

than on training.
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For a single realization, the channel estimate matrix (normalized by its standard

deviation) of the L = 4 trained users is obtained by generating CN (0, 1) entries as

follows,

Ĥτ
︸︷︷︸

normalized

=







0.5524 − 0.6697i −0.8399 + 1.0412i 0.2315 − 0.7979i
0.4023 − 0.2648i −1.5573 + 0.0394i 0.1655 − 0.9541i
−0.5810 − 0.8385i 0.6974 − 0.8608i 0.0152 − 0.1846i
−0.1878 − 0.7466i −0.3667 − 0.0292i −0.7099 + 0.6742i







where the jth row corresponds to the channel signature vector (estimate) of the user

indexed by j.

Now, we proceed with the calculation of the mutual information associated with

each subset i ∈ {1, 2, 3, 4} as follows.

Subset 1 :

contributing user indices = {1, 2, 3}

Ḧ1
d =





0.5524 − 0.6697i −0.8399 + 1.0412i 0.2315 − 0.7979i
0.4023 − 0.2648i −1.5573 + 0.0394i 0.1655 − 0.9541i
−0.5810 − 0.8385i 0.6974 − 0.8608i 0.0152 − 0.1846i





mutual information, I1
lb = 3.4979

Subset 2 :

contributing user indices = {1, 2, 4}

Ḧ2
d =





0.5524 − 0.6697i −0.8399 + 1.0412i 0.2315 − 0.7979i
0.4023 − 0.2648i −1.5573 + 0.0394i 0.1655 − 0.9541i
−0.1878 − 0.7466i −0.3667 − 0.0292i −0.7099 + 0.6742i





mutual information, I2
lb = 3.5590

Subset 3 :

contributing user indices = {1, 3, 4}
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Ḧ3
d =





0.5524 − 0.6697i −0.8399 + 1.0412i 0.2315 − 0.7979i
−0.5810 − 0.8385i 0.6974 − 0.8608i 0.0152 − 0.1846i
−0.1878 − 0.7466i −0.3667 − 0.0292i −0.7099 + 0.6742i





mutual information, I3
lb = 3.8238

Subset 4 :

contributing user indices = {2, 3, 4}

Ḧ4
d =





0.4023 − 0.2648i −1.5573 + 0.0394i 0.1655 − 0.9541i
−0.5810 − 0.8385i 0.6974 − 0.8608i 0.0152 − 0.1846i
−0.1878 − 0.7466i −0.3667 − 0.0292i −0.7099 + 0.6742i





mutual information, I4
lb = 3.8702

Comparing the mutual information of all the four subsets, we conclude the user

subset {2,3,4} is associated with the largest mutual information. Hence these users

are allowed to transmit data during the data transmission phase. This completes our

numerical example.

This chapter addressed the design of various parameters involved in the proposed

scheme. However, an important question is left unanswered: What are the optimum

numbers of users to be trained (L) and allowed to transmit data (K)? We explore

this in the following chapter.
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CHAPTER 6

ASYMPTOTIC ANALYSIS

In this chapter, we address the design of L and K in regimes where various param-

eters such as the SNR (ρavg), the number of users in the system (n) and the number

of receive antennas (M) are large. We also derive the scaling-law (w.r.t SNR) for

the sum capacity of the non-coherent multiuser channel and prove that our scheme

is scaling-law optimal.

Theorem 1. With T, n, M fixed,

CLB =
T − L

T
min(K, M) log(ρavg) + O(1) as ρavg → ∞ (6.1)

and this rate of increase is maximized when L = K = Lopt = min(n, M, bT
2
c).

Proof. From (5.14), with imax indexing the CLB-maximizing subset,

CLB =
T − L

T
E log det(IM + ρeffḦ imax∗

d Ḧ imax

d )

=
T − L

T
E log

min(K,M)
∏

j=1

(1 + ρeffλimax

j ) (6.2)

where, λimax

j corresponds to the jth non-zero eigenvalue of Ḧ imax∗
d Ḧ imax

d .

24



As ρavg → ∞, from (5.15),

ρeff

ρavg
=

n

K(
√

1 − L
T

+
√

L
T
)2

since γ =
T − L

T − 2L
(6.3)

and
log(1+ρeffλ

imax
j )

log(ρeffλ
imax
j

)
= 1. Thus

CLB =
T − L

T
min(K, M) log(ρavg) +

T − L

T
min(K, M) log

( n

K(
√

1 − L
T

+
√

L
T
)2

)

︸ ︷︷ ︸

A

+
T − L

T
E

min(K,M)
∑

j=1

log λimax

j

︸ ︷︷ ︸

B

+ O(1) as ρavg → ∞ (6.4)

We have already shown that the optimal value of L is equal to Tτ , where 0 ≤

Tτ ≤ T − 1 (where the second inequality is due to the necessity of reserving at

least one symbol time for data transmission.) As L ≤ n by definition, we have

L ≤ min(n, T − 1). Note that the term B can be upper bounded as,

E

min(K,M)
∑

j=1

log λimax

j ≤ E max
i

min(K,M)
∑

j=1

log λi
j. (6.5)

The upper bound contains a sum of the λi
j’s, which is finite with probability 1 (for

any subset i), since K, L are upper-bounded by n and M , T and n are fixed. Thus

B is bounded and does not increase with ρavg. Similarly, A is also bounded as ρavg

increases. Putting these together,

CLB =
T − L

T
min(K, M) log(ρavg) + O(1) as ρavg → ∞. (6.6)

The prelog factor T−L
T

min(K, M) is decreasing in L for a given K, and increasing in K

up to K = M for a given L. But K ≤ L. Hence this prelog factor is maximized when

L = K ≤ M . Thus, under the constraint L ≤ min(n, M, T − 1), the prelog factor is
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given by
(

T−L
T

)

L which is concave and quadratic in L with the maximum at L = T
2
.

Therefore L has to be as close as possible to T
2

giving Lopt = min(n, M, T−1, T
2
). Since

T ≥ 2, and since T
2

might not be an integer, we have Lopt = Kopt = min(n, M, bT
2
c).

Thus the optimized prelog factor is given by
(

T−Lopt

T

)

Lopt.

Note that the non-coherent capacity (C) of a single user n×M channel is derived

in [6] as,

C =
T − n∗

T
n∗ log(ρavg) + O(1) as ρavg → ∞ (6.7)

with n∗ = min(n, M, bT
2
c) thus giving CLB the same prelog factor as C. This is

illustrated in Fig. 6.1. Also, coding across antennas is not ruled out in deriving the

non-coherent capacity of this single user MIMO channel. Therefore C acts as an

upper bound to the sum capacity of our multiple access MIMO channel where users

cannot cooperate. Thus we have the following corollary to Theorem 1.

Corollary 1. With CLB acting as a lower bound and C as an upper bound to the sum

capacity (Csum) of the non-coherent, multiple access MIMO channel, from Theorem 1

and [6],

Csum =
T − n∗

T
n∗ log(ρavg) + O(1) as ρavg → ∞ (6.8)

giving the non-coherent multiple access MIMO channel the same degrees of freedom as

the non-coherent single user MIMO channel. Note that our scheme is thus scaling-law

optimal with the same prelog factor as Csum.

Now we proceed to analyze how the gain from exploiting multiuser diversity be-

haves as SNR grows. If CLB(L, K) indicates the lower bound in (5.14), then the
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Figure 6.1: Comparison of CLB with the non-coherent single user MIMO capacity
when T = 30, n = M = 8.

baseline case (i.e., no multiuser scheduling) occurs with L = K as,

CLB(L, L) =
T − L

T
E log det(IM + ρeffḦ i∗

d Ḧ i
d) (6.9)

with i = 1 since we have only one subset now. Following the proof of Theorem 1, we

can see that,

CLB(L, L) =
(T − Lopt

T

)

Lopt log(ρavg) + O(1) as ρavg → ∞ (6.10)

with Lopt = min(n, M, bT
2
c). Thus we see that,

lim
ρavg→∞

maxL,K CLB(L, K)

maxL CLB(L, L)
= 1 (6.11)

An intuitive explanation for this is: at high SNR, the power gain obtained by ex-

ploiting the statistical diversity available within the trained group of users (i.e., with

K < L) shows inside the log function. This gain could not compensate for the loss in
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the prelog factor (due to K < L). Thus as SNR grows, trying to tap the scheduling

gain in the system and hence selecting a subset of trained users to transmit data is

suboptimal. Hence K = L becomes optimal at high SNR.

Theorem 2. With n, M fixed,

CLB = min(n, M) log(ρavg) + O(1) as ρavg → ∞, T → ∞ (6.12)

and Lopt = Kopt = n.

Proof. As ρavg, T → ∞, it is easy to verify that terms A and B in (6.4) are bounded

w.r.t T using a similar analysis used for ρavg. Thus CLB = T−L
T

min(K, M) log(ρavg)+

O(1) = min(K, M) log(ρavg) + O(1) as ρavg → ∞, T → ∞. Now the prelog factor is

maximized when K = n and, since L ≥ K, we have L = K = Lopt = n and thus

CLB = min(n, M) log(ρavg) + O(1) as ρavg → ∞, T → ∞.

Note that (6.12) has the same prelog factor as that of the capacity expression of

the coherent multiuser uplink [6, 10], i.e., capacity under perfect channel knowledge.

As coherence time increases, the sum rate of our scheme approaches the coherent sum

rate. This is because, as T grows, the finite training overhead (recall L ≤ n) becomes

negligible. This is illustrated by Fig. 6.2. In fact, using an argument similar to that

of Corollary 1, we have the quite intuitive result that, as T → ∞ and ρavg → ∞, the

non-coherent sum capacity increases at the same rate as coherent capacity.

Csum = min(n, M) log(ρavg) + O(1) as ρavg → ∞, T → ∞. (6.13)
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Figure 6.2: Illustration to show how the slope of sum rate achieved by the training-
based scheme approaches that of coherent channel capacity when n = M = 4.

Theorem 3. With T , M , ρavg fixed,

CLB =
T − L

T
min(K, M) log(n) + O(1) as n → ∞ (6.14)

and CLB is maximized when L = K = Lopt = min(M, bT
2
c).

Proof. The proof follows that of Theorem 1. From (5.15), as n → ∞,

ρeff

n
=

ρavg

K(
√

1 − L
T

+
√

L
T
)2

since γ =
T − L

T − 2L
(6.15)

29



Thus from (6.2),

CLB =
T − L

T
min(K, M) log(n) +

T − L

T
min(K, M) log

( ρavg

K(
√

1 − L
T

+
√

L
T
)2

)

︸ ︷︷ ︸

A

+
T − L

T
E

min(K,M)
∑

j=1

log λimax

j

︸ ︷︷ ︸

B

=
T − L

T
min(K, M) log(n) + O(1) as n → ∞ (6.16)

Here A is bounded w.r.t n since K ≤ L ≤ min(n, T − 1) and B is bounded using a

similar argument as in the ρavg → ∞ case. Thus, as the number of users in the system

grows, CLB is maximized when L = K = Lopt = min(M, bT
2
c), giving a prelog factor

equal to the degrees of freedom of the non-coherent uplink obtained in Corollary

1.

An interesting physical interpretation is, at high values of n, every time the number

of users in the system doubles, the sum rate, in bits per channel use, increases by the

channel’s degrees of freedom. This is illustrated in Fig. 6.3. This is because every

additional user to the system brings along its own average power constraint, thus

effectively increasing the total SNR. This is unlike the case of a downlink with a total

power constraint at the BS that does not increase with the number of users.

The importance of this phenomenon in multiple access channels deserves a detailed

analysis. In fact, the increase in the power of the active users with increasing number

of users in the system may mislead us to the following conclusion: In every coherence

interval, the users that are not active share their power with those that are active, thus

suggesting cooperation among supposedly independent users. A careful analysis will

disprove this conception. With the number of users in the system increasing, every
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user is allowed to access the channel less frequently. Specifically, any user accesses

the channel for a fraction, L
n
, of the coherence intervals. Thanks to the average power

constraint for each user, the power that is not spent when an user doesn’t transmit

data is saved and used when it becomes active. Thus, the more users are present in

the system, the less frequently an user accesses the channel and more power is saved

to be used when it transmits data. Therefore, the increase in power of any active

user and hence the rise in sum rate with n is due to sharing of power within a user

across time and not due to sharing of power across space, i.e., across users.

Also, the increase in the sum rate with n is not without cost: the per-user through-

put monotonically decreases in the number of users, n. The result is made precise in

the following theorem.
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Figure 6.3: CLB increases by the channel’s degrees of freedom (DoF) every time the
number of users in the system doubles. T = 10, M = 4, ρavg = 3 dB used.
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Theorem 4. For fixed M and T , as ρavg → ∞, CLB

n
monotonically decreases with n.

Similarly, the per-user capacity Csum

n
also decreases with n. Since the per-user rate of

our scheme is sandwiched between CLB

n
and Csum

n
, it also decreases with n.

Proof. From (6.1), CLB

n
is given by

CLB

n
=

(T − L

T

)(min(K, M)

n

)

log(ρavg) + O(1) as ρavg → ∞ (6.17)

For any value of n, CLB

n
is maximized when L = K = min(n, M, bT

2
c) from Theorem

1. We now consider the following two cases,

(i) n ≥ min(M, bT
2
c): Here CLB

n
=

(
T−min(M,bT

2
c)

T

)(
min(M,bT

2
c)

n

)

log(ρavg)+O(1), which

is monotonically decreasing with n with the maximum given by,
(

T−min(M,bT
2
c)

T

)

log(ρavg) + O(1) at n = min(M, bT
2
c) .

(ii) 1 ≤ n < min(M, bT
2
c): Here CLB

n
=

(
T−n

T

)

log(ρavg)+O(1) which is also monoton-

ically decreasing with n, with the maximum at n = 1 given by
(

T−1
T

)

log(ρavg)+O(1).

From the above two cases, combined with the fact that CLB

n
|n=min(M,bT

2
c)−1 >

CLB

n
|n=min(M,bT

2
c), we prove that CLB

n
is monotonically decreasing with n for all n ≥ 1.

Also, from Corollary 1, since the non-coherent sum capacity has the same prelog

factor as CLB, the per-user capacity, Csum

n
, also monotonically decreases with n. The

per-user rate of our scheme, which is lower bounded by CLB

n
and upper bounded by

Csum

n
, also monotonically decreases with n.

The result of Theorem 4 is illustrated in Fig. 6.4 where CLB from (5.14) is used

to calculate the per-user rate lower bound CLB

n
. It is instructive to compare this

result with the coherent channel case. Here, as ρavg → ∞, the per-user capacity

is min(n,M)
n

log(ρavg) + O(1) [10], [6], which remains constant for n ≤ M and starts

to decrease with n only when n > M . The cost of learning the channel is the sole
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Figure 6.4: As the total number of users increases, CLB

n
, the per-user rate (lower

bound) drops monotonically. T = 10, M = 4, ρavg = 30 dB was used.

reason for the monotonic decrease in non-coherent per-user capacity versus n. Note

also that, as the coherence period (T ) of the channel grows, at high SNR, the non-

coherent channel’s per-user capacity resembles that of the coherent channel.

Theorem 5. With T , n, ρavg fixed,

CLB =
(T − L

T

)

K log(M) + O(1) as M → ∞ (6.18)

with the maximum at L = K = Lopt = min(n, bT
2
c)

Proof. Recall from (4.9) and (5.9), with Tτ = Tτ,opt = L, I i
lb = T−L

T
log det(IM +

ρeffḦ i∗
d Ḧ i

d) from which CLB = E maxi I
i
lb. Since Ḧ i

d ∈ C
K×M is made up of i.i.d.
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CN (0, 1) elements (as noted before (5.9)), as M → ∞, ∀i I i
lb converges (in distribu-

tion) to a Gaussian [20],

I i
lb

d
= N

((T − L

T

)

K log(1 + ρeffM),
(T − L

T

)2 K

M
log2

2 e

)

as M → ∞ (6.19)

Using log(1 + ρeffM) → log(ρeffM) as M → ∞, and defining X1, . . . , XQ as CN (0, 1)

random variables, for Q defined after (5.4), we have,

CLB =
(T − L

T

)

K log(ρeffM) +
(T − L

T

)
√

K

M
(log2 e) E( max

i=1,...,Q
Xi) + O(1)

as M → ∞

Since E(maxi=1,...,Q Xi) is bounded w.r.t M (as L, K and hence Q are bounded), we

have

CLB =
(T − L

T

)

K log(M) + O(1) as M → ∞ (6.20)

This is maximized when L = K = Lopt = min(n, bT
2
c) giving a prelog factor which is

the same as the available degrees of freedom of the non-coherent uplink channel.

Note that every time the number of antennas at the receiver doubles, the sum

rate (in bits per channel use) increases by the channel’s degrees of freedom, as il-

lustrated in Fig. 6.5. Also note that as M → ∞, from (6.19), the variance of the

mutual information associated with any subset goes to zero (channel hardening [20])

and consequently the scheduling gain disappears (see Fig. 6.6). That is, as M grows,

maxL,K CLB(L, K) − maxL CLB(L, L) converges to zero, where maxL CLB(L, L) cor-

responds to the case with no multiuser scheduling. It is interesting to compare this

result with the case when ρavg → ∞ (Theorem 1). There the scheduling gain was still

present with increasing SNR, but we found that exploiting it was suboptimal.
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Figure 6.5: As M → ∞, CLB (in bits per channel use) increases by the channel’s
degrees of freedom (DoF) every time the number of receive antennas at the base
station doubles. T = 10, n = 4, ρavg = 3 dB.
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Figure 6.6: Comparison of maxL,K CLB(L, K) with maxL CLB(L, L), where there is
no multiuser scheduling. The scheduling gain vanishes as M grows due to channel
hardening effects. Here n = 8, T = 50, total power ρavgn=1.
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CHAPTER 7

CONCLUSIONS

We designed a training based communication scheme for a non-coherent MIMO

MAC wherein training and user selection are jointly optimized. We established that

the non-coherent MIMO multiple-access channel has the same degrees of freedom as

the non-coherent single user MIMO channel given by Lopt

(

1 − Lopt

T

)

, where Lopt =

min(n, M, bT
2
c). Further, we proved that our training-based scheme has a prelog factor

equal to the above degrees of freedom of the non-coherent MIMO MAC. This implies

that our training based scheme is scaling-law optimal. We studied the behavior

of the scheme in the asymptotic regime, i.e., when SNR, the number of users or

the number of BS antennas grows. The multiuser scheduling gain vanishes as SNR

grows. The scheduling gain also vanishes as M grows due to channel hardening

effects. Consequently, as SNR or the number of BS antennas is high, all the users

that are trained must be allowed to transmit, this optimum number being Lopt =

min(n, M, bT
2
c). We also observed that doubling n or M acts in the same way as

a 3dB increase in SNR, resulting in an increase in the rate (bits/channel use) by

the channel’s degrees of freedom. Interestingly, at high SNR, the degrees of freedom

available per-user in a non-coherent channel monotonically decreases with n for all
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n ≥ 1, whereas for a coherent channel, the per-user degrees of freedom remains a

constant for n ≤ M and drops with n only for n > M .

Finally, we would like to note that our model contains mathematical similarities

to the problem of communication in non-coherent wideband channels: Dividing a

wideband channel into many narrowband slots, one can ask questions about how

many slots to learn and how many to transmit in. The sub-optimality of spending

energy to learn too large a number of subchannels is well known: Medard et al. have

shown [5,21,22] that non-coherent channel capacity decays due to energy being spread

over a wide bandwidth. More recently, Agarwal and Honig [23] considered optimizing

the number of frequency slots to train and the power allocation to maximize the rate

achievable with a training-based scheme. It may be possible to transport our results

and techniques for the MIMO MAC to non-coherent wideband links: for example,

insights about the optimum number of users to train and select for transmission may

lead to insights in the wideband problem about optimal number of subbands to train

and use.
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APPENDIX A

CAPACITY BOUNDS

Let I i
o(pV̄ i

d
, pSi

d
, RV̄ i

d
, RSi

d
) = 1

Td
I(Si

d; X
i
d|Ĥ i

d) be the mutual information (normal-

ized per channel use) between the input and the output of the channel in (3.3), where

pSi
d

and pV̄ i
d

are the signal and noise distributions respectively, with autocorrelation

matrices given by RSi
d

and RV̄ i
d
. Let I i(p

v̄
i
d
, p

s
i
d
, R

v̄
i
d
, R

s
i
d
) = I(si

d; x
i
d|Ĥ i

d) be the mu-

tual information of the channel x
i
d =

√
ρds

i
dĤ

i
d + v̄

i
d, where x

i
d and s

i
d correspond to

the input and output of the channel in (3.3) considering one channel use, p
s

i
d

and p
v̄

i
d

are the distributions of the signal and noise for this channel with R
s

i
d
and R

v̄
i
d
denoting

their autocorrelation matrices, respectively. Let S
i,t
d corresponds to the input symbol

at tth channel use and let S
i,t1
d and S

i,t2
d be generated i.i.d. when t1 6= t2. Then, for

any signal and additive noise distribution, with h(X) denoting the differential entropy

of a random variable X, by the definition of mutual information,

I i
o(pV̄ i

d
, pSi

d
, RV̄ i

d
, RSi

d
) =

1

Td

(h(Si
d|Ĥ i

d) − h(Si
d|X i

d, Ĥ
i
d))

=
1

Td

(

h(Si
d) −

T∑

t=Tτ+1

h(Si,t
d |Si,Tτ+1

d ..S
i,t−1
d , X i

d, Ĥ
i
d)

)

≥ h(si
d) − h(si

d|xi
d, Ĥ

i
d)

= I i(p
v̄

i
d
, p

s
i
d
, R

v̄
i
d
, R

s
i
d
) (A.1)
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where the inequality comes from the fact that conditioning reduces entropy. Now,

with Csum indicating the sum capacity of the non-coherent channel, and Rmax
worst the

maximum sum rate achieved by the training-based scheme described in Section 3

under worst noise and best signal design conditions, we have

Csum ≥ Rmax
worst := E inf

p
V̄ i

d
,∀i

sup
p

Si
d
,∀i

max
i

Td

T
I i
o(pV̄ i

d
, pSi

d
, RV̄ i

d
, RSi

d
)

From now on, we constrain Si
d to be independently distributed across time, so that

we have,

Rmax
worst ≥ E inf

p
V̄ i

d
,∀i

sup
p

Si
d
,∀i

max
i

Td

T
I i
o(pV̄ i

d
, pSi

d
, RV̄ i

d
, RSi

d
)

Fixing the noise distribution corresponding to the inf of the above expression as p1
V̄ i

d

,

from the inequality proved in (A.1),

E inf
p

V̄ i
d
,∀i

sup
p

Si
d
,∀i

max
i

Td

T
I i
o(pV̄ i

d
, pSi

d
, RV̄ i

d
, RSi

d
) ≥ E sup

p
Si

d
,∀i

max
i

Td

T
I i(p1

V̄ i
d
, pSi

d
, RV̄ i

d
, RSi

d
)

≥ E inf
p

v̄
i
d
,∀i

sup
p

s
i
d
,∀i

max
i

Td

T
I i(p

v̄
i
d
, p

s
i
d
, R

v̄
i
d
, R

s
i
d
)

=: CLB(R
v̄

i
d
, R

s
i
d
). (A.2)

Thus we have Csum ≥ Rmax
worst ≥ CLB(R

v̄
i
d
, R

s
i
d
).
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APPENDIX B

TRAINING SEQUENCE DESIGN

Following the analysis in [4],

RH̃τ
: = E

[
(vec H̃τ )(vec H̃τ )

∗
]

= RHτ
− RHτ Xτ

R−1
Xτ

RXτ Hτ

=
(

IL + ρτS
∗
τ Sτ

)−1

⊗ IM (B.1)

where vec(A) operator stacks all of the columns of A into one long column. From

(5.4),

σ2
H̃τ

=
1

ML
trRH̃τ

=
tr

[(

IL + ρτS
∗
τ Sτ

)−1]

L
. (B.2)

Thus,

min σ2
H̃τ

= min
Sτ ,tr S∗

τ Sτ≤LTτ

1

L
tr

[(

IL + ρτS
∗
τ Sτ

)−1]

= min
λ1,...,λL,

P

j λj≤LTτ

1

L

L∑

j=1

1

1 + ρτλj

(B.3)

where, λ1, . . . , λL are the eigenvalues of S∗
τ Sτ . The minimum is achieved when λj =

Tτ , ∀j ∈ 1, . . . , L. Thus, we design the training sequence based on the following
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condition: S∗
τ Sτ = TτIL. With this condition, (B.1) and (B.2) yield

RH̃τ
=

1

1 + ρτTτ

ILM

σ2
H̃τ

=
1

1 + ρτTτ

(B.4)

and

RH̃
q
d

:= E
[
(vec H̃

q
d)(vec H̃

q
d)

∗
]

=
1

1 + ρτTτ

IKM

σ2
H̃

q

d

=
1

1 + ρτTτ

(B.5)
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APPENDIX C

POWER SHARE DESIGN

In this proof and in the preliminary part of the next proof, we closely follow the

analysis done in [4], where the authors have dealt with a similar design problem for

a single user MIMO channel with L = K. We design the optimum value of α that

maximizes ρeff in (5.12), considering the following three cases,

When Td = L:

ρeff =
(ρavgnT )2α(1 − α)

LK(L + ρavgnT )
(C.1)

with αopt = 1
2
. Thus,

ρeff =
(ρavgnT )2

4LK(L + ρavgnT )
(C.2)

When Td > L:

ρeff =
ρavgnTα(1 − α)

(Td − L)K
[

− α + L+ρavgnT

ρavgnT [1− L
Td

]

]

=
ρavgnTα(1 − α)

(Td − L)K[−α + γ]
, (C.3)

where γ := L+ρavgnT

ρavgnT [1− L
Td

]
> 1. Since dρeff

dα
|α=αopt

= 0,

αopt = γ −
√

γ(γ − 1). (C.4)
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Thus

ρeff =
ρavgnT

K(Td − L)
(
√

γ −
√

γ − 1)2. (C.5)

When Td < L: In this case, with γ = L+ρavgnT

ρavgnT [1− L
Td

]
< 0, following the previous steps,

αopt = γ +
√

−γ(1 − γ) (C.6)

and

ρeff =
ρavgnT

K(L − Td)
(
√−γ −

√

1 − γ)2. (C.7)

In summary,

αopt =







1
2

Td = L

γ −
√

γ(γ − 1) Td > L

γ +
√

γ(γ − 1) Td < L

(C.8)

and,

ρeff =







(ρavgnT )2

4LK(L+ρavgnT )
Td = L

ρavgnT

K(Td−L)
(
√

γ −√
γ − 1)2 Td > L

ρavgnT

K(L−Td)
(
√−γ −√

1 − γ)2 Td < L

(C.9)
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APPENDIX D

TRAINING PERIOD DESIGN

Under the condition Td ≤ T − L, and assuming for the moment, that Td is a

continuous variable, we now prove that E Ilb monotonically increases with Td, which

then holds for discrete Td too. If λi
j is the jth non-zero eigenvalue of the matrix Ḧ i∗

d Ḧ i
d,

then, from (5.11),

E Ilb =
T − Tτ

T
E log det(IM + ρeffḦ i∗

d Ḧ i
d)

=
Td

T
E log

min(K,M)
∏

j=1

(1 + ρeffλi
j)

=
Td

T
min(K, M) E log(1 + ρeffλ) (D.1)

where the expectation in the last equality is with respect to the non-zero eigenvalue

λ given by,

λ = λi
j w.p.

1

min(K, M)
, ∀j

Thus,

d E Ilb

dTd

=
min(K, M)

T
E log(1 + ρeffλ)

+
min(K, M)Td

T

dρeff

dTd

E
[ λ

1 + ρeffλ

]

(D.2)

45



When Td > L:

From (C.9),

dρeff

dTd

=
ρeff

(Td − L)

( L
√

γ

Td

√
γ − 1

− 1
)

(D.3)

with, γ = L+ρavgnT

ρavgnT [1− L
Td

]
. Hence,

L

Td

√
γ

γ − 1
=

√

L(L + ρavgnT )

Td(Td + ρavgnT )
. (D.4)

Therefore,

d E Ilb

dTd

=
min(K, M)

T
E

[

log(1 + ρeffλ)

− ρeffTd

(Td − L)

(

1 −
√

L(L + ρavgnT )

Td(Td + ρavgnT )

) λ

1 + ρeffλ

]

(D.5)

Since Td > L,

Td

Td − L

(

1 −
√

L(L + ρavgnT )

Td(Td + ρavgnT )

)

< 1. (D.6)

Also, since λ > 0,

log(1 + ρeffλ) − ρeffλ

1 + ρeffλ
> 0. (D.7)

Combining these, d E Ilb
dTd

> 0 when Td > L.

When Td < L:

dρeff

dTd

=
ρeff

(L − Td)

(

1 −
√

L(L + ρavgnT )

Td(Td + ρavgnT )

)

(D.8)

and

d E Ilb

dTd

=
min(K, M)

T
E

[

log(1 + ρeffλ)

− ρeffTd

(Td − L)

(

1 −
√

L(L + ρavgnT )

Td(Td + ρavgnT )

) λ

1 + ρeffλ

]

. (D.9)
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It can be proved that Td

Td−L

(

1 −
√

L(L+ρavgnT )

Td(Td+ρavgnT )

)

< 1 for Td < L too. Now, using the

same argument as in the previous case, d E Ilb
dTd

> 0 when Td < L. We proceed to prove

that E Ilb is continuous at Td = L, thus proving E Ilb monotonically increases with Td

for all Td.

Denoting ρeff by ρeff(Td) and defining tm as limm→∞ tm = L, using L’Hospital’s

rule, for both Td < L and Td > L regions, we can prove,

lim
m→∞

ρeff(tm) = ρeff(L). (D.10)

Since ρeff ≤ ρd, ∀Td (from (5.10)),

log(1 + ρeff(tm)λ)fλ(λ) ≤ log(1 + ρdλ)fλ(λ) (D.11)

where fλ(λ) is the p.d.f of λ. Also, since

∫

λ

log(1 + ρdλ)fλ(λ)dλ =
E(log det(IM + ρdḦ

i∗
d Ḧ i

d))

min(K, M)

≤ log det(IM + ρd E(Ḧ i∗
d Ḧ i

d))

min(K, M)

< ∞, (D.12)

using the Dominated Convergence Theorem [24],

lim
m→∞

E log(1 + ρeff(tm)λ) = lim
m→∞

∫

λ

log(1 + ρeff(tm)λ)fλ(λ)dλ

=

∫

λ

log(1 + lim
m→∞

ρeff(tm)λ)fλ(λ)dλ

= E log(1 + ρeff(L)λ) (D.13)

Thus E Ilb = Td

T
min(K, M) E log(1 + ρeffλ) is continuous at Td = L. Hence, from

our previous monotonicity results in Td < L and Td > L ranges, we conclude E Ilb

monotonically increases with Td, for all Td.
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