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ABSTRACT

We consider a downlink DS-CDMA system in which multirate user signals are

transmitted via synchronous orthogonal short codes overlaid with a common scram-

bling sequence. The transmitted signal is subjected to significant time- and frequency-

selective multipath fading, e.g., a channel with delay spread potentially longer than

the bit interval of high-rate users.

In response to this scenario, a novel two-step receiver is proposed that com-

bines chip-rate adaptive equalization with error filtering. In the first step, a code-

multiplexed pilot is used to adapt the equalizer. Single-pole averaging of the chip-rate

error signal used in adaptation reduces MAI and implies third-order LMS, which has

advantages over standard LMS in tracking the time-varying channel. In the second

step, decision-direction is used to improve the error signal, resulting in improved

tracking performance. The performance of the adaptive receiver is studied through

analysis and simulation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Wireless communication has grown phenomenally in the last few years. Demand

for higher-bandwidth mobile applications is fuelling the current interest in develop-

ing new cellular systems. In third generation (3G) cellular systems, data rates in

the downlink (from base to mobile) are expected to be greater than in the uplink.

In other words, system designers are expecting people to use applications that con-

sume data faster than they produce data. Applications that fit this model include

internet browsing, downloading email with picture content, and viewing streaming

video. Traffic can be bursty or continuous. Due to the myriad of applications, their

sundry bandwidth and quality of service requirements, and the harsh mobile channel

conditions, direct sequence code division multiple access (DS-CDMA) has become

the physical-layer waveform of choice for 3G systems. Since this thesis studies the

DS-CDMA downlink, we assume a synchronous DS-CDMA system throughout (we

also shorten DS-CDMA to CDMA).

CDMA used in 3G systems solves the non-symmetric user-bandwidth problem by

allocating shorter spreading codes to higher-rate users, and longer spreading codes
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to lower-rate users, while keeping the chip rate constant. Hence, the transmitted

bandwidth is constant regardless of the bit-rate. Codes are chosen from an orthogonal

code-space defined by a Hadamard matrix so that all active codes are orthogonal.

Each user is assigned a code, and each bit is mapped onto the code. The downlink

code streams are summed to create a synchronous, aggregate, multi-user chip-rate

signal.

An assumption that makes this thesis different from much of the CDMA literature

is that a scrambling code sequence is applied to the transmitted chip-rate signal.

In 3G systems the base-station specific scrambling code separates cells to facilitate

dense frequency re-use. Inter-cell interference appears as background noise, and the

orthogonal codes may be re-used in neighboring cells (in the same frequency band).

However, the scrambling code destroys signal cyclo-stationarity, upon which usual

methods for multipath and multi-access interference (MAI) mitigation in CDMA are

based [2][3].

As previously suggested, the downlink traffic may be bursty or continuous. Be-

cause data can be received continuously, a perpetual pilot signal is multiplexed into

the transmitted chip-stream. Though block fading models are inappropriate, in some

derivations we assume that the channel is fixed, which is approximately true over

short time intervals.

The multiuser signal passes through a frequency- and time-selective channel en

route to the mobile receiver. Frequency-selective fading arises when channel memory,

due to echoes, causes past chips to interfere with present chips. Channel memory

occurs in rich scattering environments, e.g., urban environments. Frequency selec-

tivity destroys the orthogonality between user codes, which introduces MAI into bit
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estimates from the matched filter receiver. The matched filter receiver, standard in

CDMA systems, is known to suffer from MAI [4]. Time-selectivity is introduced when

there is relative motion between the base station and the mobile, or when objects in

the vicinity are moving. The rate of channel variation is directly proportional to the

relative velocity and to the carrier frequency. It is paramount for receivers to adapt

to changing channel conditions as quickly as possible, preferably at chip-rate.

The goal of this thesis is to design algorithms to adaptively equalize the chip-

rate frequency- and time-selective channel. By doing this the orthogonality of the

multiuser signal is restored and MAI can be removed by despreading. In conflict with

the greater demand on downlink performance is the requirement that mobile units

consume little power, thus algorithms must be computationally feasible.

1.2 Organization & Contributions

In this thesis we present adaptive solutions to equalize the received signal of

a CDMA downlink where scrambling has been applied to the transmitted signal.

The transmitted signal is subjected to frequency- and time-selective Rayleigh fading

and AWGN noise. We derive the optimal MMSE equalizer and give the signal to

interference plus noise ratio (SINR) expression.

1.2.1 Adaptive Equalizers

A novel averaged-error LMS algorithm is derived and shown to converge in the

mean to the optimal MMSE solution, and is shown to have superior tracking qualities

over the standard LMS algorithm. The averaged-error LMS algorithm is trained with

a continuous pilot channel, and updates come at chip rate.
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A chip-level decision-directed (DD) equalizer is suggested and shown, through

simulation, to approach the optimal performance of the theoretical MMSE equalizer

in frequency-selective time-varying channels. The DD algorithm is adapted with the

delayed received signal due to inherent delays in making symbol estimates in a CDMA

system, e.g., for a bit-stream with longest spreading factor N0, we must wait N0 chips

before making symbol decisions and re-spreading and scrambling. The DD algorithm

is shown to be robust to bit errors due to the presence of the pilot signal.
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CHAPTER 2

BACKGROUND

2.1 Multirate CDMA

t(i)×× + +bk

(
b i

Nk
c
)

ck

(
〈i〉Nk

)

s(i)

u(i) v(i)

b0√
N0

...

...

Figure 2.1: Synchronous Downlink Chip-Spaced Model

Variable Definition

K number of users
Nk kth user’s spreading gain

bk(n) kth user’s bit stream
ck(i) kth user’s short code
u(i) multiuser sequence
s(i) scrambling sequence
v(i) multiuser sequence plus pilot

t(i) or ti transmitted sequence

Table 2.1: Variable definitions for transmitted multirate CDMA signal
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We make the following assumptions about the transmitter:

A.1) Circular, i.i.d., zero-mean, PSK scrambling :

∀i, |s(i)| = 1; E{s(i)s∗(i+j)} = δj.

A.2) Multirate orthonormal Walsh codes:

∀k, ` s.t. N` ≥ Nk, m ∈ {0, . . . , N`

Nk
−1}, j :

δ`−k =

Nk−1∑

i=0

c∗k(i)c`(i+mNk), |ck(j)| =
1√
Nk

As an example, we might start with the N = 4 Walsh codes and combine the
latter two codes into a rate-2 code that is orthonormal in the sense above:

1

2

{
1
1
1
1
,

1
1

−1
−1

,
1

−1
−1

1

,
−1

1
1

−1

}

→ 1

2

{
1
1
1
1
,

1
1

−1
−1

,

0
0√

2
−
√

2

,

√
2

−
√

2
0
0

}

→ 1

2

{
1
1
1
1
,

1
1

−1
−1

,
√

2
−
√

2

}

A.3) Constant pilot at “user” index k=0:

∀n, b0(n) = b0; c0(i) =

{
1√
N0

0 ≤ i ≤ N0 − 1

0 else

A.4) Circular, independent, zero-mean user bits (k > 0):

∀n,m, k 6= 0, E{bk(n)b∗`(n+m)} = Pkδmδ`−k.

where Pk is the symbol power of the kth user.

A.5) Zero-mean, circular, white, Gaussian noise wm with variance σ2
w.

From Fig. 2.1 we write the transmitted signal as

t(i) = v(i)s(i) (2.1)

which from A.1)-A.4) is zero-mean uncorrelated with power

σ2
t = E |v(i)|2 E |s(i)|2 = E

∣
∣
∣
∣

b0√
N0

+ u(i)

∣
∣
∣
∣

2

E |s(i)|2 =
|b0|2
N0

+ σ2
u (2.2)
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where

v(i) :=
b0√
N0

+ u(i) (2.3)

u(i) :=
K∑

k=1

ck

(
〈i〉Nk

)
bk

(⌊
i

Nk

⌋)
(2.4)

and

σ2
u =

K∑

k=1

∣
∣ck

(
〈j〉Nk

)∣
∣
2
E

[∣
∣bk

(⌊
j

Nk

⌋)∣
∣
2]

=
K∑

k=1

Pk

Nk

Note that σ2
v = σ2

t .

2.2 Fading Channel Model

In this thesis we make the standard wide-sense stationary uncorrelated-scattering

Rayleigh-fading channel model assumptions [5]. In the following, the channel hm is the

combined response of the time-varying scattering channel and the transmitter pulse-

shaping filter. Fig. 2.2 shows a 1/2-chip spaced square-root raised-cosine pulse-shape

with 0.22 excess bandwidth. Fig. 2.3 shows the result of convolving the pulse-shape

with a typical scattering channel. The channel is considered to be continuously time-

varying; however, in some derivations we assume that the channel is fixed, which

is approximately true over short time intervals. (see Appendix A for discussion of

time-varying channel realizations and simulation duration)

2.3 Multichannel Received Signal

In this section we define notation of the multichannel received chip-rate signal.

Multiple channels can be formed by either oversampling the received signal or by

adding extra antennas to the receiver. Throughout this thesis, we borrow the notation

for multiple channels from the book chapter by Johnson et al. [6].
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Figure 2.2: Square-root raised cosine pulse-shape and magnitude spectrum.
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Figure 2.3: Pulse-shape convolved with channel.
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+

rm
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(1)
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ri
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f ∗
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↑P ↓P

h
(1)
i

h
(P )
i

f
∗(1)
i

f
∗(P )
i

w
(1)
i

w
(P )
i

(a)

(b)

(c)

Figure 2.4: Fractional rate and multichannel representations.
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Fig. 2.4(a) describes a discrete-time fractionally spaced channel model with sub-

sampling of P samples per chip. The fractional-rate output rm is written

rm =
∑

`

t`hm−`P + wm (2.5)

Assume hm is finite duration, then we can write the channel in vector form:

h = (h0, h1, . . . , h(Lh+1)P−1)
T (2.6)

where Lh denotes length of channel in chip intervals. We now sub-sample the channel

and collect the phases into vectors in order to show equivalence to a multichannel

model (Fig. 2.4(b)). Defining the pth subchannel (p ∈ {1, . . . , P}) quantities as

h
(p)
i := h(i+1)P−p, τ

(p)
i := τ(i+1)P−p, r

(p)
i := r(i+1)P−p, w

(p)
i := w(i+1)P−p, (2.7)

The vector-valued channel response at chip index i is

hi :=






h
(1)
i
...

h
(P )
i




 (2.8)

and we can write the following equations for the received chip-rate signal

τ i =

Lh∑

`=0

h` ti−`, ri = τ i + wi (2.9)

Using the above notation, the vector-valued multichannel block diagram (Fig. 2.4(c))

closely resembles a single-channel diagram.

2.4 Multichannel Chip-Rate FIR Linear Receiver

Given the past Lf+1 multichannel observations ri, a specially chosen finite impulse

response (FIR) linear receiver produces a desired output. The goal of this thesis is
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to devise algorithms to learn and track optimal filter coefficients. The chip-rate

multichannel FIR receiver is defined

fi :=






f
(1)
i
...

f
(P )
i




 i ∈ {0, 1, . . . , Lf} (2.10)

where f
(p)
i are the coefficients of the pth sub-filter in Fig. 2.4(b). The fractional-rate

and multichannel FIR coefficients are connected by the relationship

fiP+p−1 = f
(p)
i (2.11)

The FIR filter output x(i) is given by

x(i) =
∑

`

fH
` ri−` = fHr(i) (2.12)

where

f :=






f0
...

fLf




 and r(i) :=






ri

...
ri−Lf






(2.13)

The vector-valued received signal can be written





ri

...
ri−Lf






︸ ︷︷ ︸

r(i)

=






h0 · · · hLh

. . .
. . .

h0 · · · hLh






︸ ︷︷ ︸

H






ti
...

ti−Lh−Lf






︸ ︷︷ ︸

t(i)

+






wi

...
wi−Lf






︸ ︷︷ ︸

w(i)

(2.14)

r(i) = Ht(i) + w(i) (2.15)

Thus the chip-rate multichannel FIR filter output is written

x(i) = fHHt(i) + fHw(i) (2.16)

= qHt(i) + w̃(i) (2.17)

=

Lf+Lh∑

`=0

q∗` ti−` + w̃(i) (2.18)

where q = HHf is the system response, and w̃(i) is the filtered noise.
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2.5 Literature Survey

In this section we provide a background of previous research that exploits proper-

ties of the scrambled CDMA downlink to design improved sub-optimal, low-complexity

receivers. We have found that few papers contribute adaptive solutions. We stress

once again that adaptive MAI-reducing receivers tailored for the un-scrambled (short-

code, cyclo-stationary) CDMA system are not applicable to our problem, hence, will

not be covered in this section. The notation of this section is self-contained.

Anja Klein [7] makes three basic assumptions downlink:

(A.1) All users’ signals travel through the same channel to the receiver.

(A.2) Only the desired user’s code is known by the receiver.

(A.3) Computational complexity should be low at the mobile.

Other papers assumed that all active codes are known at the receiver.

Using assumptions (A.1) and (A.2) she derives a minimum mean squared error

(MMSE) equalizer. Her solution is simpler than the optimal multiuser detector, but

the large matrix inversions required are still too complex for practical implementation

in the near future.

Klein assumes a block-processing model. In her notation, users’ data symbols

are stacked into a tall vector, b =
[
b(1)T , . . . ,b(K)T

]T
, where b(k) is a vector of the

kth user’s symbols; and users’ multi-rate spreading code sequences are lined up into a

very wide matrix, C =
[
C(1), . . . ,C(K)

]
, where each user’s spreading matrix is column

12



diagonal

C(k) =







c
(k)
1

c
(k)
2

. . .
c

(k)
N







and where c
(k)
n is the spreading code of the kth user’s nth bit. Thus, the transmitted

signal t is

t = Cb

and the received vector r is written

r = Ht + w

where w is the additive noise; H is a convolution matrix,

H =














h0
... h0

hLh

...
. . .

hLh
h0

. . .
...

hLh














K is the number of users and Lh +1 is the number of paths in the channel multipath.

The matrix equalizer of the received multiuser chip signal, r, according to the

zero-forcing criterion is

FZF =
(
HHH

)−1
HH (2.19)

and the matrix equalizer of the received multiuser signal, r, according to the minimum

mean squared error (MMSE) criterion is

FMMSE =
(
HHH + σ2R−1

t

)−1
HH (2.20)

where Rt = E[ttH ]. The derivation of (2.19) and (2.20) can be found in any standard

text on parameter estimation (e.g., [8] pg. 155-157). The estimate of the desired
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user’s symbols is computed by multiplying the received vector by the equalizer matrix

(zero-forcing (2.19) or MMSE (2.20)), and match filtering with the desired user’s code

matrix

b̂(k) =
(
diag

(
C(k)HC(k)

))−1

︸ ︷︷ ︸

normalization

C(k)HFr (2.21)

Klein simplifies the inversion of Rt in (2.20) by assuming Rt = σ2
t I, which is true

when a random scrambling code is applied at the transmitter; however, computing

the inverses in (2.19) or (2.20) to form the block equalizer matrix for large block

lengths is overtaxing and requires knowledge of the channel.

Klein’s work is different from previous work in that she suggests to equalize the

received chips prior to the despreading operation. In her work no attempt is made

to form a channel estimate or to design an adaptive solution; all simulations assume

perfectly known channel state information (CSI). The block equalizer was extensively

studied with turbo and convolutional coding and decoding by Darwood et al. [9].

Ghauri and Slock state explicitly that the downlink signal is spread by orthog-

onal codes and scrambled by a long overlay sequence and that orthogonality of the

Walsh-Hadamard short codes is destroyed when the signal passes through a multipath

channel [10]. Their equalizers are multichannel and retain the goal of restoring the

orthogonality of the users’ signals so that MAI may be removed by despreading with

the desired user’s short code. They also determine the minimum equalizer length

necessary to satisfy the zero-forcing criterion.

Slock is co-author of several subsequent papers relating to equalizing the CDMA

downlink. Topics include the following: an intracell interference cancelling rake re-

ceiver [11], a semi-blind inter-cell interference canceller [12], a blind maximum SINR
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receiver [13], an intercell interference canceller exploiting excess codes [14], a compar-

ison of downlink transmit diversity schemes for rake and SINR maximizing receivers

[15], and a rake structured SINR maximizing receiver [16].

Researchers associated with Nokia have contributed several papers to WCDMA

downlink equalization. Werner and Lilleberg [17] make essentially the same assump-

tions as Ghauri and Slock [10] on the WCDMA downlink, but consider chip-spaced,

rather than fractionally-spaced, equalizers. Werner and Lilleberg are first to sug-

gest an adaptive solution, which is very similar to RLS. Nevertheless, their equalizers

operate on blocks of received samples (identical to Klein [7]) and their numerical

simulations consider only static channels. Several subsequent papers addressing sim-

pler adaptive solutions emerged from Nokia with the following topics: chip-spaced

Griffith’s algorithm [18]; chip-spaced chip separation [19]; multichannel Griffith’s al-

gorithm and multichannel adaptive chip separation [20]; and modified Griffith’s al-

gorithm [21]. The Griffith’s algorithm is a simple modification to LMS that relies on

channel estimation.

Previous to their first long-code paper [17], researchers associated with Nokia had

analyzed short-code CDMA downlink receivers [22], [23].

Frank and Visotsky (Motorola) independently introduced a paper on CDMA down-

link equalization [24]. They also make assumptions (A.1)-(A.3) in presenting their

equalizer, and analyze the SINR performance gains of the MMSE receiver with re-

spect to the matched filter receiver. They suggest descrambling and despreading the

equalizer output prior to generating the error signal, however, no adaptive simulations

are performed.
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Frank and Visotsky [25] extend their work in a paper coauthored with U. Madhow,

in particular, they derive the scrambling-code dependent MMSE equalizer, and then

average to obtain the average MMSE equalizer, which is the same theoretical equalizer

studied in this thesis. Comparisons are made between equalizers for random and

orthogonal spreading sequences, both with long overlay code, with the result that the

average MMSE equalizer is identical for both cases. The MMSE equalizer is shown to

suppress non-white additive noise, e.g., intercell interference, and extensive numerical

simulations show the advantages of equalization over rake reception. It is shown that

despreading the pilot using a shortened spreading factor, i.e., updating faster than

symbol rate, is beneficial to tracking, which motivates us to look at methods to update

at chip-rate. USPTO 6175588, which patents CDMA downlink equalizers, was filed

by Frank, Visotsky, and Madhow prior to presenting their results of [24].

Krauss and Zoltowski, researchers at Purdue University, also contributed several

papers on synchronous long-code CDMA equalization. They give zero-forcing con-

ditions for a two channel equalizer and provide simulation studies comparing the

zero-forcing equalizer to the rake receiver [26]. Later, they essentially combine the

work of Ghauri and Slock [10] and Frank et al. [25], by presenting a multichannel

MMSE equalizer, and compare the theoretical MMSE equalizer to the zero-forcing

receiver and the rake receiver [27]. By the use of the matrix inverse lemma, they show

that the average MMSE equalizer

f∗ = σ2
t

[
σ2

t H
HH + σ2

wI
]−1

HHeν (2.22)

can be written as

f∗ = σ2
t H

H
[
σ2

t HHH + σ2
wI

]−1
eν (2.23)
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At low SNR the MMSE equalizer behaves like the matched filter receiver

f∗ ≈ HHeν (2.24)

and at high SNR it looks like the zero-forcing equalizer

f∗ ≈ HH
[
σ2

t HHH
]−1

eν (2.25)

The previous work at Purdue assumes that the channel is known at the receiver,

but does not show how to determine the channel. A blind channel identification

method based on the cross-relation method of Xu, Liu, Tong, and Kailath [28] is

proposed, which makes use of multiple channels at the receiver [29]. Simulation stud-

ies, nevertheless, show that the performance of the channel identifier, when used to

calculate the zero-forcing solution, is 15 dB away from the ideal zero-forcing solution;

hence, better channel estimation is necessary to approach the ideal performance.

Krauss and Zoltowski compare multichannel diversity schemes obtained by either

fractionally spaced sampling or by employing dual receive antennas [30]. They per-

form simulations of ideal rake, zero-forcing, and MMSE receivers on static channels

and show that dual antenna diversity is superior to fractionally spaced diversity.

The MMSE and zero-forcing equalizers [30] are studied in the soft hand-off sit-

uation, which is characterized by the mobile simultaneously receiving data symbols

from two base-stations, thus the receiver is subject to severe out-of-cell interference.

The MMSE equalizer is shown to be robust in such cases due to its ability to sup-

press non-white interference. Simulations are performed with ideal MMSE and rake

receivers [31] [32].

Chip-level, symbol-level, and subspace-constrained symbol-level MMSE equalizers

are derived [33] [34]. The chip-level MMSE equalizer minimizes the mean squared
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error (MSE) between the transmitted and received-equalized signal, the symbol-level

MMSE equalizer minimizes the MSE between the bit estimate and the desired bit, and

the subspace-constrained equalizer first projects the received signal prior to equaliza-

tion onto a subspace spanned by shifted versions of the scrambling code, multiplied

by the time-reversed desired user’s code. Since the bit estimate is a function of

the scrambling code, the symbol-level and subspace-constrained equalizers change

from bit to bit. A few assumptions are made in order to simplify the computation

of the symbol-level equalizer, however, simulations show that the symbol-level and

subspace-constrained equalizers gain little in performance over the well known chip-

level equalizer.

Chowdhury and Zoltowski study sparse equalization [35] [36] [37]. A block adap-

tive multistage nested wiener filter (MSNWF) is suggested and shown to have good

convergence properties in the static channel case [35] [36]. Also, a method of project-

ing the observed signal onto a lower dimensional subspace prior to the MSNWF is

shown to improve convergence. This method is called “semi-blind structured equal-

ization.” The sparsity of the channel implies that the channel/pulse-shape response

lies in a space that is spanned by few columns of the pulse-shape convolution matrix.

Knowledge of channel peak locations is required to determine the subspace. The semi-

blind structured equalizer outperforms the pilot trained RLS and LMS equalizers on

time-varying sparse channels [37].

L. Mailaender of Lucent studies efficient computation techniques of the MMSE

equalizer assuming channel knowledge [38]. Mailaender assumes that the MMSE

equalizer must be computed at the rate of the inverse of the time it takes the mobile
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to traverse one-tenth wavelength. The computation techniques include the following:

Block-Toeplitz, Polyphase, and Gauss-Seidel iterations. No fading simulations were

performed.

Since practical calculation of the MMSE filter relies on channel estimates, and

these estimates are likely to be very noisy, error effects on the calculation of the

zero-forcing equalizer are studied [39]. It is found that pulse-shape mismatch at the

receiver can have drastic effects on the calculation of the equalizer, and solutions are

given to counter the mismatch.

A blind equalizer was developed by Li and Liu that satisfies the following criterion

[40]:

f̂ = arg min
f

E
∥
∥CH

o Y(n)f
∥
∥

2

subject to E
∥
∥cH

1 Y(n)f
∥
∥

2
= 1 (2.26)

where Co is the subspace orthogonal to the user codes, i.e., the excess codes; c1

is the desired user’s code; and Y(n)f is the equalized-received signal. An adaptive

algorithm for training f is given. It is important to note that this algorithm works for

short codes as well as for long codes because the chip-rate signal is equalized prior to

the projection. The scrambling code used at the transmitter rotates the code-space

from symbol to symbol, but the codes remain orthogonal because the scrambling

operation is unitary. The blind equalizer (2.26) pushes the received energy back into

the orthogonal code space in the direction of the desired user’s code, so despreading

can remove MAI. Slock and Ghauri show that the blind equalizer (2.26) maximizes

SINR in the case of random scrambling codes [13].
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A number of papers were produced by researchers at Interuniversity Micro-Electronics

Center (IMEC) in Belgium. The same bit-rate updated pilot-trained RLS equalizer

as Frank and Visotsky [25] is proposed, and fractionally-spaced equalization is shown

to perform much better than baud-spaced equalization [41]. Later, a semi-blind ap-

proach is taken where an equalizer is found such that when the equalized-received

signal is projected onto the subspace orthogonal to the users’ codes, the projection is

close to the pilot signal in a least squares sense [42]. Block processing and adaptive

algorithms are derived that rely on a model with at least two receive channels. If pi-

lot symbols are present in the desired user’s bit stream then the semi-blind equalizer

can be extended to this case [43]. The semi-blind equalizer was also studied in the

context of soft hand-off mode [44], and extensive explanation of adaptive solutions

were also undertaken [45]. The semi-blind methods are also generalized to the case

of transmit-diversity in the downlink [46].

As early as 1993, Bottomley of Ericcson Inc. noticed that the rake receiver is sub-

optimal in a CDMA downlink because the intercell interference is colored by the same

channel as the desired user [4]. The rake receiver (matched filter) is optimal only

in single-symbol communications with additive white gaussian noise (AWGN). By

assuming that the intracell interference is colored Gaussian noise, Bottomley derives

a generalized rake receiver, which maximizes the SINR [47]. The rake-finger weights

are precisely the solution to the MMSE equalizer. The generalized rake receiver is

shown to also suppress colored intercell interference [48].

Monisha Ghosh of Phillips Research shows that the MMSE equalizer trained by

despreading the pilot signal is suboptimal in the sense of maximizing the SINR in the
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bit estimate of the desired user, but is reasonably close to optimal [49]. She suggests

that multiplexing the pilot power over several codes instead of increasing the pilot

power of a single code is better for tracking. An extension of her method would be to

use decision directed equalization on all active codes, i.e., treat each user as a pilot.

A few decision feedback equalizer (DFE) methods have been proposed. The DFE

of Roessler et al. (Fig. 2.5) first equalizes then decodes the received signal in order

to provide reliable multiuser bit estimates to be re-spread and input into a delayed

chip-level DFE for re-processing [1]. The decoding operation prior to re-spreading

is necessary due to the unreliable bit estimates provided by a pilot-trained equal-

izer, which inadequately tracks the optimal equalizer. This work is similar to our

delayed decision-directed scheme (Chapter 4), but their equalizer has disadvantages:

each equalizer must be trained separately; twice must the data be decoded, hence,

deep interleavers imply significant delays in final data output; and they consider

chip-spaced–rather than fractionally-spaced–equalization. We suspect that adaptive

implementations of the first (linear) equalizer stage will more than remove the 1 dB

advantage of their delayed DFE, and we stress that Roessler et al. ignore issues of

adaptivity in their work.

Yang and Li propose a DFE that exploits the finite alphabet of the desired user’s

transmitted symbols [50]. A single feedforward filter is used in conjunction with

several feedback filters. In the case of BPSK, the possible values of the current

symbol can only be either +1 or −1. There are two feedback paths. For one of these

paths, the input is the code chips of the current symbol. For the other path, the input

is the sign-inverted code chips of the current symbol. The outputs of these two paths
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Figure 2.5: DFE block diagram of Roessler et al [1].

are further de-spread separately. A minimum distance decoder is used that decides

in favor of +1 if the despread signal corresponding to the first path is closer to +1

than the output of the despread second path is to −1. No adaptive solution is given

and the channel is assumed to be perfectly known. Their method does not scale well

since the number of feedback paths is MN , where M is the number of symbols in the

alphabet and N is the number of desired bit-streams. The simulations are performed

with static known channels and the DFE performs better than the linear MMSE

receiver. However, as the number of users increases the performance gap decreases

between the DFE and the linear receiver.

It has been shown that many researchers have tackled the problem of improving

the CDMA downlink. Adaptive blind, semi-blind, and trained methods have been

studied. However, we are unaware of previous work that mirrors the adaptive solutions

set forth in this thesis.
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CHAPTER 3

LINEAR EQUALIZATION

3.1 Bit Estimates

The purpose of this section is to derive bit estimates and show that equalizing

the signal reduces multi-access interference (MAI) with respect to the matched filter

(rake) receiver. We advance the received-equalized signal x(i) by ν (the forced system

delay) for notational convenience in writing the bit estimates. Fig. 3.1(a.) shows the

familiar coherent rake receiver, which linearly combines several fingers using com-

bining weights fH . Fig. 3.1(b.) is equivalent to Fig. 3.1(a.) assuming the equalizer

coefficients fH are held constant over bit intervals. From Fig. 3.1(b.), we see that

ν can be thought of as the forced delay of the combined channel-equalizer response

and the choice of ν will affect equalizer performance. In rake combining, ν = Lh + 1,

fi = hLh−i and Lf = Lh.

If we define the system response {qi} and filtered noise w̃(i) by (2.18), then using

(2.1), the equalizer output can be written

x(i + ν) = w̃(i+ν) +

Lh+Lf∑

`=0

q∗` t(i+ν−`)

= w̃(i+ν) +

Lh+Lf∑

`=0

q∗` s(i+ν−`)v(i+ν−`) (3.1)
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Figure 3.1: Equivalent structures of (a) rake and (b) equalizer for detection of dth user’s
bits.
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From Fig. 3.1(b.) and A.1), the descrambled signal {yν(i)} can be written as

yν(i) = s∗(i)w̃(i + ν) + q∗νv(i) (3.2)

+
∑

6̀=ν

q∗` s
∗(i)s(i+ν−`)v(i+ν−`)

The first term on the right of (3.2) is additive noise, the second term the desired

signal plus “coherent” MAI and pilot, and the third “randomized” interference.

From Fig. 3.1 and A.2), the bit estimates for user d (desired) are obtained by

despreading (3.2) with the dth user’s short code and downsampling by Nd.

b̂d(n) =
∑

j

c∗d(−j)yν(nNd−j)

=

Nd−1∑

i=0

c∗d(i)yν(nNd+i)

=

Nd−1∑

i=0

c∗d(i)s
∗(nNd+i)w̃(nNd+i+ν) + q∗νbd(n)

+
∑

6̀=ν

q∗`

Nd−1∑

i=0

s∗(nNd+i)s(nNd+i+ν−`)

· c∗d(i)v(nNd+i+ν−`) (3.3)

From (3.3) we see that b̂d(n) is composed of a noise term, a signal term, and an

interference term. The interference term vanishes if and only if the channel is perfectly

equalized, i.e., qi = δi−ν for some ν. From this observation we conclude:

• For non-trivial channels, a matched filter produces MAI-corrupted estimates.

• For perfectly-equalized or trivial channels qi = δ(i − ν), the MAI vanishes.

The drawback of equalization is the potential for noise gain, i.e., increase in the

variance of w̃(i) relative to wm, as might occur if the channel has a deep spectral null.

This can be ameliorated through the use of minimum mean-squared error (MMSE)
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rather than zero-forcing (ZF) equalization, thus compromising MAI reduction for

noise amplification. In the end, if we assume that the MAI power is much greater

than the noise power, the MAI-reduction potential of equalization should outweigh

the loss incurred by noise gain. These issues have been explored in detail (for various

channels and user loadings) throughout the literature (see [27]).

3.2 Theoretical MMSE Chip Equalizer

3.2.1 Multiuser-Trained Equalizer

The optimal fractionally spaced equalizer (FSE) according to the minimum mean

squared error (MMSE) criterion is the filter, f , which minimizes the cost

J
(ν)
t = E

∣
∣fHr(i+ν) − t(i)

∣
∣
2

and is given by (derivation inAppendix B)

f
(ν)
t,∗ = σ2

t

(
σ2

t HHH + σ2
wI

)†
Heν (3.4)

where r(i), H, and f are defined in Section 2.4; eν =
[
0 . . . 0, 1, 0 . . . 0

]T
, i.e., eν is the

unit vector with a one in the νth position, (ν ≥ 0); and (·)† denotes the Moore-Penrose

pseudo-inverse [51].

If the total transmitted signal t(i) is available for training, we may use the standard

LMS algorithm to adaptively learn and track (3.4) in time-varying channel conditions.

In the CDMA systems under consideration, however, training comes in the form of

a code-multiplexed pilot signal. In other words, the transmitted signal consists of a

continuously-transmitted training signal superimposed with unknown user signals.
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3.2.2 Pilot-Trained Equalizer

Due to A.3), a chip-rate error signal is readily constructed as the difference between

the descrambled equalizer output and a constant reference value, say γ

J (ν)
p = E

∣
∣s∗(i)fHr(i+ν) − γ

∣
∣
2

(3.5)

which has MMSE solution (derivation inAppendix B)

f (ν)
p,∗ = γ∗ b0√

N0

(
σ2

t HHH + σ2
wI

)†
Heν (3.6)

Hence choosing

γ =
σ2

t

b∗
0√
N0

(3.7)

sets f
(ν)
t,∗ = f

(ν)
p,∗ , i.e., proper choice of γ implies that a pilot-trained adaptive LMS

equalizer will converge in the mean to the MMSE equalizer given by (3.4).

3.3 SINR Calculation

In this section we calculate the signal to interference plus noise ratio (SINR) of the

equalized bit estimate (3.3), given the equalizer weights and channel state information.

We assume that the channel is static, which would be the case over short periods of

time, in which case the SINR calculation may be thought of as instantaneous average

SINR. Expectations are taken over the user bits, the scrambling code, and the additive

noise.

Without loss of generality, the bit estimate of the 0th bit of the dth user is

b̂d(0) =

Nd−1∑

i=0

c∗d(i)s
∗(i)w̃(i+ν) + q∗νbd(0)

+
∑

6̀=ν

q∗`

Nd−1∑

i=0

s∗(i)s(i−`+ν)c∗d(i)v(i−`+ν)
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Thus, the average SINR may be written

E |q∗νbd(0)|2

E

∣
∣
∣
∣

∑Nd−1
i=0 c∗d(i)s

∗(i)w̃(i+ν) +
∑

6̀=ν q∗`
∑Nd−1

i=0 s∗(i)s(i−`+ν) · c∗d(i)v(i−`+ν)

∣
∣
∣
∣

2 (3.8)

The power in the equalized-descrambled-despread noise is

E

∣
∣
∣
∣

Nd−1∑

i=0

c∗d(i)s
∗(i)w̃(i+ν)

∣
∣
∣
∣

2

=

Nd−1∑

i=0

Nd−1∑

i=0

c∗d(i)cd(j) E[s∗(i)s(j)]
︸ ︷︷ ︸

=0, i6=j

·E[w̃(i+ν)w̃(j+ν)]

=

Nd−1∑

i=0

1

Nd

E |w̃(i+ν)|2

where the equalized noise power is found from A.5) to be

E |w̃(i+ν)|2 = E
∣
∣fHw(i+ν)

∣
∣
2

= fH E
[
w(i+ν)wH(i+ν)

]
f

= σ2
w‖f‖2

therefore, the equalized-descrambled-despread noise power is

σ2
w‖f‖2 (3.9)
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Next, we find the power of the interference

E

∣
∣
∣
∣

∑

6̀=ν

q∗`

Nd−1∑

i=0

s∗(i)s(i+ν−`)c∗d(i)v(i+ν−`)

∣
∣
∣
∣

2

=

∑

6̀=ν

∑

n 6=ν

q∗` qn

Nd−1∑

i=0

Nd−1∑

j=0

E[s∗(i)s(i+ν−`)s(j)s∗(j+ν−n)]
︸ ︷︷ ︸

=







1 if ` = n, i = j

1 if ` = n = ν, i 6= j

0 else

· c∗d(i)cd(j) E [v(i+ν−`)v∗(j+ν−n)]

=
∑

6̀=ν

|q`|2
Nd−1∑

i=0

|cd(i)|2 E |v∗(j+ν−n)|2

= σ2
t

∑

6̀=ν

|q`|2 (3.10)

Since the noise and interference in the denominator of (3.8) are uncorrelated, we use

(3.9) and (3.10) to write

SINR =
Pd|qν |2

σ2
w‖f‖2 + σ2

t

∑

6̀=ν |q`|2
(3.11)

It is interesting to note that because of the random scrambling code, (3.11) de-

pends on the bit energy of the desired user–not on the desired user’s spreading factor.

3.4 Averaged-error LMS

In typical bit-rate equalizer update schemes, the equalized signal is descrambled

and then despread by the pilot code to generate soft pilot-bit estimates. Soft er-

rors can then be calculated (once per bit) and used for equalizer adaptation. When

perfectly equalized, the recovered user signals are orthogonal and hence the bit-rate

equalizer updates are free of MAI. Before equalizer convergence, however, the recov-

ered users signals are not orthogonal, hence the equalizer updates are corrupted by

MAI.
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Figure 3.2: Chip-rate equalizer adaptation using filtered error.

Relative to bit-rate updating, chip-rate updating increases the update rate but

employs an error signal corrupted by significantly higher levels of MAI. Nevertheless,

the error-signal MAI is zero-mean and can be attenuated through lowpass filtering as

shown in Fig. 3.2. The filter bandwidth should be optimized for a particular rate of

channel variation and user load since lowering the cutoff frequency reduces MAI but

slows the reaction of the error signal. From Fig. 3.2, the instantaneous error signal

can be written

Ĵav(i) = |zν(i) − γ|2 (3.12)

Stochastic gradient descent of (3.12) can be accomplished using the chip-rate equalizer

update

f(i+1) = f(i) − µ · ∇f(i)Ĵav(i−ν) (3.13)

where we have delayed the cost for reasons of causality. It is now left to find

∇f(i)Ĵav(i).

Frank et al. [25] despread the pilot prior to generating an error signal (at bit-rate)

in hopes of reducing MAI. They point out that tracking is enhanced when equalizer

update-rate is increased by despreading with shorter spreading factor. This is possible
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because the pilot bits are constant and spread with the all-ones code. We replace the

pilot-code despread-downsample operation with a variable-bandwidth chip-rate aver-

aging filter A(z) to maintain balance between MAI reduction and channel-tracking

performance. The averaging operation effectively despreads the received-equalized-

descrambled signal to remove MAI, and updates come at chip-rate to improve track-

ing. An averaging filter A(z) with very long impulse response (narrow bandwidth)

would suit a static channel environment, but would suffer tracking errors under a

time-varying channel. We suggest a recursive averaging filter structure to enable this

trade-off.

3.4.1 Recursive Averaging

Suppose A(z) = ζ

1−G(z)
where ζ is a constant, where A(z) and G(z) have real valued

coefficients, and where G(z) is strictly causal. Define z(i) := zν(i) and y(i) := yν(i)

and say z(i) is obtained recursively such that

z(i) = ζy(i) +

Lg∑

j=1

gjz(i−j)

= ζ

Lf∑

`=0

fH
` (i+ν)ri−`+νs

∗(i) +

Lg∑

j=1

gjz(i−j)

where we substituted from (2.12). To derive the gradient, we realize that

∇f`(i+ν)Ĵav(i) =
(
z(i) − γ

)∗∇f`(i+ν)z(i)

We define, for 0 ≤ ` ≤ Lf ,

α`(i+ν) := ∇f`(i+ν)z(i)

If we assume, due to small µ, that f∗` (i+ν) ≈ f∗` (i+ν−j), for j ∈ {1, . . . , Lg} then

∇f`(i+ν)z(i−j) ≈ ∇f`(i−j+ν)z(i−j) = α`(i+ν−j) j ∈ {1, . . . , Lg}
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and we obtain the recursion

α`(i+ν) = ζri+ν−` s∗(i) +

Lg∑

j=1

gj α`(i+ν−j) (3.14)

Note that α`(i) is obtained by delaying the multichannel received signal ri by `, then

de-scrambling and filtering with A(z).

Defining α(i) = [α0(i), . . . ,αLf
(i)]T , the equalizer update is

f(i+1) = f(i)−µ · α(i)
(
z(i−ν)−γ

)∗
(3.15)

where α(i) is computed from (3.14).

By using a single-pole lowpass filter, i.e., A(z) = 1−ρ

1−ρz−1 , the filter bandwidth can

be made readily adjustable, and the resulting algorithm takes the form

α(i) = (1 − ρ)r(i)s∗(i − ν)

+ρα(i − 1) (3.16)

e(i) = (1 − ρ)
(
fH(i)r(i)s∗(i − ν) − γ

)

+ρe(i − 1) (3.17)

f(i + 1) = f(i) − µα(i)e∗(i) (3.18)

As is evident from (3.16)-(3.18), the incorporation of single-pole “matched filter-

ing” is a form of filtered-error/filtered-regressor LMS [52]. This particular algorithm

can be described as a third-order dynamical system, which has known advantages

over standard (first-order) LMS in regards to tracking a Rayleigh-fading channel [53].

The tracking behavior of this algorithm is a function of two adjustable parameters,

µ and ρ. Simulation studies under various operating conditions suggest that fixing

ρ (within a suitable range) and adjusting µ yields performance very close to that
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obtained through joint optimization of both parameters. (See Fig. 3.3). Given the

operating conditions, a look-up table for determining the value of µ could be used

while keeping ρ fixed, or an adaptive step-size algorithm could track µ.

Choice of µ and ρ could also depend on the desired user’s spreading factor. If the

system response (2.18) is time varying, then another noise term, depending on the

amount of variation, will appear in the bit estimate (3.3). Users with short spreading

factors will be less affected by high variation, hence, can tolerate more variation (e.g.,

larger µ and smaller ρ) to ensure better channel tracking.
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Figure 3.3: BER of bit-estimates versus equalizer pole location and stepsize.
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3.4.2 Non-Recursive Averaging

Using arguments similar those in Section 3.4.1, it can be shown that, in the case of

an FIR low-pass filter {ai}, (3.15) defines the equalizer update recursion while (3.14)

becomes

α`(i) =
Ma−1∑

j=0

ajri+ν−j−`s
∗(i−j) (3.19)

As before, α`(i) is obtained by delaying the multichannel received signal by `, then

de-scrambling and filtering.

3.5 Equalizer Analysis

Now that we have determined the equalizer update equation (3.15), we are inter-

ested in studying its mean convergence behavior. We show that the averaged-error

LMS algorithm converges to the MMSE equalizer. BER and SINR performance of

(3.16)-(3.18) are shown in Section 4.2.

3.5.1 Steady-State Behavior

To find the stationary points of the algorithm, we take the expectation of (3.15)

and examine the limit as i → ∞

E{f(i + 1)} = E{f(i)} − µ E{α(i)(z(i − ν) − γ)∗} (3.20)
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Let {ai} be the impulse response of the averaging filter A(z) (see Fig. 3.2). Borrowing

from Section 2.4, we have the following quantities:

α(i) =
∑

j

ajr(i+ν−j)s∗(i−j)

z(i) =
∑

j

ajf
H(i+ν−j)r(i +ν−j)s∗(i−j)

r(i) = Ht(i) + w(i)

t(i) = diag{s(i)}v(i)

v(i) = u(i) +
b0√
N0

1 (3.21)

where u(i) = [u(i), u(i−1), . . . , u(i−Lh−Lf )]
T ; s(i) = [s(i), s(i−1), . . . , s(i−Lh−Lf )]

T ;

and 1 is the all ones vector. For a moment we concentrate on E
{
α(i+ν)z∗(i)

}
,

E
{
α(i+ν)z∗(i)

}

=
∑

j

∑

`

aja` E
[
r(i+ν−j)rH(i+ν−`)s∗(i−j)s(i−`)

]
E [f(i+ν−`)] (3.22)

where we have made the small µ assumption that the parameters change slowly

compared to the instantaneous input. Using A.1), A.4), and A.5),

E
[
r(i+ν−j)rH(i+ν−`)s∗(i−j)s(i−`)

]

= HE
[
t(i+ν−j)tH(i+ν−`)s∗(i−j)s(i−`)

]
HH

+ E
[
w(i+ν−j)wH(i+ν−`)

]
E [s∗(i−j)s(i−`)]
︸ ︷︷ ︸

=







1 if j = `

0 else

= HE
[
t(i+ν−j)tH(i+ν−`)s∗(i−j)s(i−`)

]
HH + σ2

wI δj−` (3.23)
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Now,

E
[
t(i+ν−j)tH(i+ν−`)s∗(i−j)s(i−`)

]

= E
[
diag{s(i+ν−j)}v(i+ν−j)vH(i+ν−`) diag{sH(i+ν−`)}s∗(i−j)s(i−`)

]

(3.24)

and the [a, b]th element of (3.24) is

E [v(i+ν−j−a)v∗(i+ν−`−b)] E [s(i+ν−j−a)s∗(i+ν−`−b)s∗(i−j)s(i−`)]
︸ ︷︷ ︸

=







1 if a = b, j = `

1 if a = b = ν, j 6= `

0 else

(3.25)

Hence, (3.24) can be written

σ2
t I δj−` + (1 − δj−`)eνe

H
ν E [v(i−j)v∗(i−`)] (3.26)

Substituting (3.26) into (3.23), and substituting (3.23) into (3.22), we obtain

E
{
α(i+ν)z∗(i)

}
=

∑

j

∑

`

aja`

{

σ2
t HHH δj−` + σ2

wI δj−`

+(1−δj−`)hνh
H
ν E [v(i−j)v∗(i−`)]

}

E [f(i+ν−`)](3.27)

where hν = Heν

Let us examine
∑

j

∑

` aja` E [v(i−j)v∗(i−`)]. Using A.3) and A.4)

∑

j

∑

`

aja` E [v(i−j)v∗(i−`)] =
∑

j

∑

`

aja`

P0

N0

+
∑

j

∑

`

aja` E [u(i−j)u∗(i−`)]

=
P0

N0

(
∑

j

aj

)2

+ E |ũ(i)|2
︸ ︷︷ ︸

σ2

ũ
(i)

(3.28)

36



where ũ(i) =
∑

j aju(i−j). The aggregate multiuser signal u(i) is non-white and

cyclostationary with period of the lowest spreading factor if the system is employing

non-random channelization codes such as Hadamard codes. However, averaging u(i)

with {ai} tends to remove the cyclostationarity, and we may approximate the gener-

ally time-varying quantity σ2
ũ(i) as static σ2

ũ. Furthermore, if the spreading factors of

the dominant users fit within the non-negligible portion of the impulse response {ai}

then u(i) is approximately despread, and the term σ2
ũ is small.

Next we find E {α(i+ν)}

E {α(i+ν)} =
∑

j

aj E [r(i+ν−j)s∗(i−j)]

=
∑

j

ajHE [t(i+ν−j)s∗(i−j)] + E [w(i+ν−j)] E [s∗(i−j)]
︸ ︷︷ ︸

0

=
∑

j

ajHE [diag{s(i+ν−j)}s∗(i−j)] E

[

u(i) +
b0√
N0

1

]

=
∑

j

ajH diag{eν}
b0√
N0

1

=
∑

j

aj

b0√
N0

hν (3.29)

Now let i → ∞ and denote f(∞) := limi→∞ E[f(i)]. Hence

lim
i→∞

E
{
α(i+ν)z∗(i)

}
≈

[
∑

j

a2
j

(
σ2

t HHH + σ2
wI

)

︸ ︷︷ ︸

B−1

+




b0√
N0

(
∑

j

aj

)2

+ σ2
ũ −

∑

j

a2
jσ

2
t





︸ ︷︷ ︸

β

hνh
H
ν

]

f(∞)

(3.30)

and

lim
i→∞

E
{
α(i+ν)

}
=

∑

j

aj

b0√
N0

hν (3.31)
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Now we are in a position to calculate (3.20) as i → ∞ and solve for f(∞)

f(∞) = f(∞) − µ lim
i→∞

E{α(i)(z(i − ν) − γ)∗}

≈ f(∞) − µ

[

(
B−1 + βhνh

H
ν

)
f(∞) − γ∗

∑

j

aj

b0√
N0

hν

]

(3.32)

which reduces to

(
B−1 + βhνh

H
ν

)
f(∞) ≈ γ∗

∑

j

aj

b0√
N0

hν (3.33)

Applying the matrix inversion lemma to (3.33), we arrive at (see Appendix B for

derivation)

f(∞) ≈ γ∗ b0√
N0

∑

j aj
∑

j a2
j

1

1 + βη

(
σ2

t HHH + σ2
wI

)−1
hν (3.34)

where

η =
1

∑

j a2
j

hH
ν

(
σ2

t HHH + σ2
wI

)−1
hν (3.35)

Hence, choosing

γ =

√
N0

b∗0

∑

j a2
j

∑

j aj

(1 + βη)σ2
t (3.36)

sets f(∞) = f
(ν)
t,∗ . Fig. 3.4 shows equalizer trajectory magnitudes converging to MMSE

equalizer.
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Figure 3.4: Trajectory of averaged-error LMS equalizer taps (magnitude).
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CHAPTER 4

DECISION-DIRECTED EQUALIZATION

4.1 Decision-Directed Adaptation
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Figure 4.1: Decision directed equalization.

Assuming reasonable SNR levels, the pilot-based adaptation scheme learns and

tracks the optimal equalizer reasonably well and provides an output signal from which
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reliable bit decisions can be obtained. Equalizer tracking could be significantly im-

proved, however, if we could somehow reduce the high level of MAI in the error

signal.1

With this in mind, we propose a two-stage adaptation scheme. The first stage

uses the averaged-error LMS algorithm, which is pilot trained, from Chapter 3 and is

intended for “cold start-up” conditions, i.e., when the channel is completely unknown.

The second stage uses bit decisions of all users (in addition to the pilot) to adapt the

equalizer, as shown in Fig. 4.1. The bit decisions are obtained by despreading and

detecting the output of the “tentative” equalizer f̂i, whose values can be predicted

from the decision-directed equalizer fi. Prediction of f̂i from fi is necessary because

fi is trained on a delayed version of the received signal ri. Joint detection requires,

in the worst case, a delay of N0 chips, where N0 is the spreading gain of the lowest-

rate user. Arguing that, for typical mobile velocities, the equalizer taps experience

relatively little change over a span of N0 chips, the prediction can be accomplished

by simply copying fi to f̂i. For best performance, final bit decisions should be made

from the output x(i − N0).

The DD equalizer update equations are standard LMS

e(i) = fH(i)r(i−N0) − t̂(i − N0 − ν)

f(i + 1) = f(i) − µr(i−N0)e
∗(i)

f̂(i + 1) = f(i + 1) (4.1)

Automatic adjustment of µ can be accomplished using an adaptive stepsize proce-

dure (e.g., [55]), implying that this scheme should work well under a wide range of

1The main results of this chapter also appear in the manuscript [54].
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conditions. The automatic step-size adjustment algorithm is

µ(i + 1) = µ(i) − ζ Re{ψH(i)r(i−N0)e
∗(i)}

ψ(i + 1) =
(
I − µ(i)r(i−N0)r

H(i−N0)
)
ψ(i) − r(i−N0)e

∗(i) (4.2)

It should be emphasized that our decision-directed (DD) scheme is quite robust

to decision errors. In the worst case–a bit error rate of 50%–the MAI power in the

DD training signal t̂(i−N0−ν) will be no more than twice that of the standard LMS

pilot-only training signal (assuming BPSK and equal user powers for simplicity); in

the DD case, decision errors of magnitude 2 are made half the time, while in the

pilot case, errors of magnitude 1 are present all the time (since we ignore the user

bits altogether). Using the same reasoning, the DD algorithm will have less MAI in

the error signal than the pilot only algorithm when the tentative BER is below 25%.

This implies that BER=0.25 is an appropriate threshold for switching from pilot to

DD.

4.2 Simulation Results

In all simulations we assume a 1/2-chip spaced, 1/2-loaded, synchronous DS-

CDMA downlink consisting of one user at each of the following spreading factors:

{4, 8, 16, 32, 64, 128, 256}. Users transmit with unit bit power, and the pilot power is

one percent of the total transmitted power, σ2
t . A Rayleigh-fading channel is used

where the chip-spaced rays have power profile {0,−3,−6,−9} dB and total power

equal to one. Velocity is 60 km/hr, chipping rate is 3.84 Mcps, carrier frequency is

2 GHz, and the square-root raised-cosine chip waveform has excess bandwidth 0.22.

The performances shown in Fig. 4.2 and Fig. 4.3 are averaged across users.
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Fig. 4.2 and Fig. 4.3 show that DD adaptation significantly increases SINR and

BER performance relative to pilot-only adaptation and approaches the performance

of MMSE-optimal (non-adaptive) equalization. From Fig. 4.3 we note that the DD

algorithm fails when SNR<0 dB. This is consistent with the reasoning in Section 4.1

since, for the first stage pilot-based algorithm, SNR<0 dB corresponds to BER>0.25.

Also shown in Fig. 4.2 and Fig. 4.3 are the performances of the optimal MMSE

equalizer and optimal rake receiver. Unlike the adaptive algorithms we have derived,

these optimal receivers assume perfect knowledge of the time-variant channel.

Fig. 4.2 and Fig. 4.3 demonstrate that the pilot-based adaptive scheme (3.16)-

(3.18) outperforms the classical adaptive rake receiver in time- and frequency-selective

multipath fading. The adaptive rake receiver uses a pilot-based estimation of channel

taps in which descrambled outputs were filtered using single-pole filters whose pole

locations were BER-optimized through simulation.

Fig. 4.4 shows a prototypical SINR trajectory. From cold start, the pilot-based

algorithm first converges to then tracks the time-varing channel. After the switch

to DD, the equalizer converges closer to the optimal solution and then continues to

track it.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis we considered a downlink DS-CDMA system in which multirate user

signals were transmitted via synchronous orthogonal short codes overlaid with a com-

mon scrambling sequence. Such systems are currently used in 3G cellular networks.

The transmitted signal was subjected to significant time- and frequency-selective mul-

tipath fading, e.g., a channel with delay spread potentially longer than the bit interval

of high-rate users.

In Chapter 3 we motivated use of a chip-rate equalizer, which restored orthogonal-

ity between the users so the de-spreading operation removed MAI in the bit estimates.

We derived the optimal MMSE equalizer and determined that the pilot-trained equal-

izer learned the optimal. Nevertheless, there was a significant level of MAI present

in the chip-rate LMS error signal. One could despread the pilot channel prior to

calculating the error signal (once per bit) in order to decrease MAI; however, equal-

izer updates occurred less often and tracking performance suffered. We proposed

recursively filtering the error signal, to provide chip-rate updates, and derived an
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averaged-error LMS algorithm with enhanced tracking properties. Theoretical analy-

sis showed that the adaptive averaged-error LMS algorithm converged to the optimal

MMSE equalizer. The proposed equalizer outperformed the standard chip-rate LMS

equalizer and the adaptive rake combiner.

In Chapter 4 we proposed a delayed decision-directed (DD) algorithm, which fur-

ther reduced the MAI in the chip-level update, which enhanced tracking performance.

The equalizer operated on the delayed received signal to allow for despread, detect,

and re-spread operations. Due to the presence of the pilot signal, the DD algorithm

was very robust to bit errors, and operated at a threshold of BER<0.25. It was shown

through simulation that the performance of the DD equalizer approached the optimal

MMSE equalizer.

Hence, an adaptive equalizer operated in two stages. First, a pilot-trained equal-

izer learned the optimal MMSE equalizer and provided reliable multiuser bit decisions.

Second, bit decisions were used to reduce MAI in the error signal in a DD equalizer.

5.2 Future Work

Simulations over a wider range of channel types, mobile speeds, and spread-

ing factors and system loads

Performance of the two-stage equalizer should be examined over a wider range

of channel types and mobile speeds. In the UMTS-WCDMA specification, at least

six channel types are specified over a wide range of velocities and delay spread [56].

Different spreading factors and systems loads should also be considered. A receiver

must perform well under all operating conditions.

Comparison to previous work
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As seen in the literature review (Section 2.5), many algorithms have been sug-

gested. A more detailed comparison of our work with other solutions should be

made.

Switch point to DD algorithm

We have suggested that the DD algorithm can operate at BER threshold of

BER<0.25. This claim should be studied in different fading conditions to determine

when to switch from the pilot-trained algorithm to DD.

Choice of µ and ρ in averaged-error LMS algorithm

We have taken for granted that the system uses optimal parameters for equalizer

update. Simulations show (Fig. 3.3) that if we fix ρ we can adjust µ to provide

performance near the optimal obtained by jointly optimizing both parameters. Hence,

an adaptive step-size algorithm suited to the averaged-error LMS algorithm should

be found.

Transient behavior

The transient behavior of the averaged-error LMS algorithm should be studied

and compared to standard LMS. Overshoot and oscillations of filter parameters may

be avoided by proper selection of parameters µ and ρ.

Sparse channel equalization

Simulations in this thesis have been performed on channels with relatively short

delay spread. Delay spread in 3G systems may span many tens of chips. It is well

known that excess mean squared error grows with the length of the equalizer; thus,

sparse channel equalization algorithms, derived from our proposed methods, should

be investigated.

Complexity reduction
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Complexity of equalizer algorithms remains a large issue for implementation of

mobile radio hand-sets. Experimentation with reduced complexity algorithms, such

as signed-error signed-regressor LMS, should be done.
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APPENDIX A

FADING CHANNEL SIMULATION LENGTH

In this section we answer the question: how long should a Rayleigh-fading simula-

tion run until its results are independent of the channel realization? This is important

to ask in the context of high BER simulations. Due excessive interference, the BER

may be very high, which would lead to the conclusion that relatively few bits must

be simulated. However, if few symbols are simulated, then the results may be too

dependent on the particular channel realization over which the simulation was run.

Simulations with slowly time-varying channels, i.e., channels with low doppler fre-

quency, must be run longer than simulations with quickly varying channels. Slowly

varying channels remain correlated in time much longer than quickly varying channels.

Another common performance measure is the signal to interference plus noise ratio

(SINR). Once again, simulations should run long enough to obtain channel realization

independent results.

The correlation function of a (unit power) channel tap with Jake’s spectrum is

zeroth order Bessel of the first kind [5]

r(τ) = J0(2πfdτ) (A.1)

It is easily seen in (A.1) that as the Doppler frequency fd increases, the Bessel function

compresses. The zero-mean Rayleigh-fading channel with correlation function given
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by (A.1) is stationary and ergodic. The ergodicity property of the channel gives us a

way to determine how long the simulation should run. Suppose a single-tap channel

has unit average power, then given a desired maximum error ε we would like to find

T ′ such that for T > T ′

E

∣
∣
∣
∣

1

T

∫ T

0

|h(t)|2 dt − 1

∣
∣
∣
∣

2

< ε (A.2)

We approximate the integral in (A.2) by discretely sampling realizations of h(t),

and we approximate the expectation by averaging the squared error over 10,000 chan-

nel realizations. Fig. A.1 shows a plot of MSE (defined by (A.2)) versus normalized

coherence time for a single tap channel; two least-squares curve fits are also shown.

We see that the MSE decreases slightly faster than inverse the simulation duration.

If we choose ε = 10−2, then from Fig. A.1 we see that the simulation must be

run at least 20 normalized coherence intervals. For example, a simulation with center

frequency of 2 GHz, symbol duration of 16µs, and vehicle speed of 60 km/hr (normal-

ized coherence time is Tcoh = 1/(fdT ) = 562.5) must have at least 20×Tcoh = 11, 250

symbols.

It is important to note that coherence time Tcoh is something of a misnomer. Tcoh

is defined as the inverse of the normalized maximum Doppler frequency, hence, it is

the period of a sinewave. The sinewave has cycled through 360◦ of phase, and it is

unreasonable to assume that the channel is constant over one coherence interval. A

better rule of thumb is to assume the channel is fairly constant over Tcoh

8
. This is

easily seen in Fig. A.2.
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Figure A.1: MSE versus coherence time.
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Figure A.2: Typical one-tap channel power versus normalized coherence time.
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APPENDIX B

DERIVATIONS

In this appendix we derive the MMSE solutions of (3.4) and (3.6).

B.1 Derivation of Multiuser-Trained MMSE Equalizer

Recall that the cost function (3.4) is

J
(ν)
t = E

∣
∣fHr(i+ν) − t(i)

∣
∣
2

Due to A.5), the additive noise w(i) is white. Substituting (2.15) into (B.1) and

taking the expectation using assumptions A.1), A.3), and A.5)

J
(ν)
t = E

∣
∣fH(Ht(i+ν) + w(i+ν) − t(i)

∣
∣
2

= E
∣
∣fHHt(i+ν) − t(i) + fHw(i+ν))

∣
∣
2

= fHH

(

E
[
t(i+ν)tH(i+ν)

]
+ E

[
w(i+ν)wH(i+ν)

]
)

HHf

−fHHE [t(i+ν)t∗(i)] − E
[
tH(i+ν)t(i)

]
HHf + E |t(i)|2

= fH
(
σ2

t HHH + σ2
wI

)
f − σ2

t f
HHeν − σ2

t e
H
ν HHf + σ2

t (B.1)

Taking the gradient of (B.1) with respect to f and setting to zero yields

∇fJ
(ν)
t =

(
σ2

t HHH + σ2
wI

)
f − σ2

t Heν = 0 (B.2)
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Solving (B.8) for f , we obtain

f
(ν)
t,∗ = σ2

t

(
σ2

t HHH + σ2
wI

)†
Heν (B.3)

where r(i), H, and f are defined in Section 2.4; eν =
[
0 . . . 0, 1, 0 . . . 0

]T
, i.e., eν is the

unit vector with a one in the νth position, (ν ≥ 0); and (·)† denotes the Moore-Penrose

pseudo-inverse [51].

B.2 Derivation of Pilot-Trained MMSE Equalizer

Recall the pilot-trained error function (3.6)

J (ν)
p = E

∣
∣s∗(i)fHr(i+ν) − γ

∣
∣
2

(B.4)

Once again, we assume that the additive noise w(i) is white, and we substitute (2.15)

into (B.4) and take the expectation using assumptions A.1), A.3), and A.5)

J (ν)
p = E

∣
∣s∗(i)fH(Ht(i+ν) + w(i+ν) − γ

∣
∣
2

= E
∣
∣fHHt(i+ν)s∗(i) − γ + fHw(i+ν))

∣
∣
2

= fHH

(

E
[
t(i+ν)tH(i+ν)|s(i)|

︸ ︷︷ ︸

1

2] + E
[
w(i+ν)wH(i+ν)

]
)

HHf

−γ∗fHHE [t(i+ν)s∗(i)] − γ E
[
tH(i+ν)s(i)

]
HHf + |γ|2 (B.5)

Now the `th component of E [t(i+ν)s∗(i)] is

E [t(i+ν)s∗(i)]` = E [t(i+ν−`)s∗(i)]

= E

[(
b0√
N0

+ u(i+ν−`)

)

s(i+ν−`)s∗(i)

]

=
b0√
N0

δν−` (B.6)

so (B.5) can be written

J (ν)
p = fH

(
σ2

t HHH + σ2
wI

)
f − γ∗ b0√

N0

fHHeν − γ
b∗0√
N0

eH
ν HHf + |γ|2 (B.7)
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Taking the gradient of (B.7) with respect to f and setting to zero yields

∇fJ
(ν)
p =

(
σ2

t HHH + σ2
wI

)
f − γ∗ b0√

N0

Heν = 0 (B.8)

Solving (B.8) for f , we obtain

f (ν)
p,∗ = γ∗ b0√

N0

(
σ2

t HHH + σ2
wI

)†
Heν (B.9)

B.3 Derivation of (3.34)

Equation (3.33) states

(
B−1 + βhνh

H
ν

)
f(∞) ≈ γ∗

∑

j

aj

b0√
N0

hν (B.10)

We must find the inverse of
(
B−1 + βhνh

H
ν

)
.

For C + vHAv 6= 0, the matrix inversion lemma states

(A−1 + C−1vvH)−1 = A − 1

C + vHAv
AvvHA (B.11)

Thus, letting A = B, v = hν , C−1 = β, and η = hH
ν Bhν , and using (B.11), we can

write

(
B−1 + βhνh

H
ν

)−1
= B − 1

1
β

+ η
Bhνh

H
ν B (B.12)

hence

f(∞) ≈ γ∗ b0√
N0

∑

j

aj

(

1 − η
1
β

+ η

)

Bhν

= γ∗ b0√
N0

∑

j

aj

1

1 + βη
Bhν

= γ∗ b0√
N0

∑

j aj
∑

j a2
j

1

1 + βη

(
σ2

t HHH + σ2
wI

)−1
hν (B.13)
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