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ABSTRACT

Wireless communication systems transferring broadband data in high mobility

situations encounter fading channels which are both time and frequency selective. In

the noncoherent scenario, the time varying impulse response of the doubly selective

channel (DSC) is not available at both the transmitter and the receiver. In this dis-

sertation, we consider the problem of communications over such noncoherent doubly

selective channels. Our work has two main themes: to find the fundamental limits

on the information rates for reliable communication across noncoherent DSC and to

develop simple and efficient encoding/decoding techniques to achieve the promised

information rates. Towards this end, we consider block transmissions over DSC and

utilize complex-exponential (CE) basis expansion model (BEM) to characterize the

channel variation within a block.

For noncoherent CE-BEM DSC, we characterize the pre-log factor of the con-

strained ergodic channel capacity in the high SNR regime, when the channel inputs

are continuously distributed. Next, we consider the design of pilot aided transmissions

(PAT) for CE-BEM DSC, which embeds known pilot (i.e., training) signals that the

receiver uses to estimate the channel. For a given fixed pilot energy, we derive the nec-

essary and sufficient conditions on the pilot/data pattern to attain minimum mean

squared error (MMSE), uncover time-frequency duality of MMSE-PAT structures

and obtain novel MMSE-PAT patterns. We obtain bounds on the ergodic achievable
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rates of MMSE-PAT schemes and perform high signal to noise ratio (SNR) asymptotic

analysis which suggests that, a multi-carrier MMSE-PAT achieves higher rates than

a single-carrier MMSE-PAT when the channel’s delay spread dominates its Doppler

spread, and vice versa. We also establish that the pre-log factor of the ergodic rates

of all the MMSE-PAT patterns are strictly less than that of the constrained channel

capacity, for strictly doubly selective channels. We also design spectrally efficient

PAT schemes whose asymptotic achievable rates have the same pre-log factor as that

of the constrained channel capacity. Our results show that there are fundamental dif-

ferences between singly selective and doubly selective channels and provide insights

on how the DSC’s delay spread and Doppler spread influence the constrained channel

capacity and the PAT design.

We extend the MMSE-PAT design to multi-input multi-output (MIMO) CE-BEM

DSC. We establish that the spectral efficiency of MIMO-MMSE-PAT does not nec-

essarily increase even if the number of transmit and receive antennas are increased

simultaneously. We also present the optimal number of active antennas which maxi-

mizes the spectral efficiency.
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CHAPTER 1

INTRODUCTION

Transferring information reliably across a noisy channel is the fundamental prob-

lem in communication theory. Shannon’s seminal paper [1] showed that (almost)

error-free digital communication systems can be designed even across a noisy channel.

Key components in a digital communication system [2] are illustrated in Fig. 1.1. At

the transmitter, an encoder maps the information bits into a “suitable” signal which

is transmitted across the communication medium. The communication medium, com-

monly referred as the channel, usually distorts the signal based on its propagation

characteristics. The receiver observes the distorted version of the transmit signal and

decodes the information bits. Because of the distortion introduced by channel, there

is a possibility of decoding error, in which case, the decoded bits do not coincide with

the information bits the transmitter intended to transfer. For reliable communication,

one would like to keep the probability of decoding error very small. Two important

questions in designing a communication system are:

1. What is the maximum rate of information that can be reliably communicated?

2. How to design the encoder and decoder so that the information can be reliably

transferred?
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Transmitter Receiver

DecoderChannelEncoder 

Communication Medium

Information
  bits

transmit
signal

distorted
signal

Decoded bits

Figure 1.1: A digital communication system.

The answers to these questions depend heavily on the nature of the channel.

Intuitively speaking, if the distortion introduced by the channel is very high, then the

reliable information rate will be correspondingly less. Shannon introduced many new

concepts and tools to study the communication problem [1] and found answers to the

above questions for a class of memoryless channels. Since then, several researchers

have analyzed various other channels using the tools from Shannon’s original paper.

The maximum information rate which can be reliably communicated with arbitrarily

small decoding error across a channel is usually referred as its capacity.

1.1 Doubly Selective Channels

The rapidly evolving global information structure includes broadband wireless

communication as a key component. In wireless communications (for e.g., cell-phones,

satellite communication), the information bearing signal is transmitted across free

space. Two principal factors which influence the distortion of the signal transmit-

ted across the wireless (free space) medium are multipath fading and mobility [3],
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as illustrated in Fig. 1.2 1. Multipath is the phenomenon in which the transmit-

ted signal arrives at the receiver via multiple propagation paths at different delays.

Because of the multipath fading, the multiple signals arriving at the receiver may

add constructively or destructively at the receiver resulting in wide variations in the

signal strength. Mobility is the phenomenon in which the relative positions of the

different objects in the environment including the transmitter and th receiver change

with time, causing the nature of channel distortion to vary with time. Future wireless

links are expected to provide high data rate transfer of multimedia services in high

mobility situations.

Figure 1.2: Mobility and multipath in wireless channel.

1This figure is courtesy of Prof. Y. Liu.
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In digital communication systems, for most of the channels, the discrete informa-

tion bearing symbols are modulated (multiplied, in a sense) with a continuous pulse

shape and transmitted across the channel [2]. In most cases, the pulse shapes are lo-

calized in time and frequency so that transmission of each discrete symbol consumes a

small tile in the time-frequency plane. Across wireless channels, when the multipath

delay spread is comparable to the symbol duration, the signal encounters severe inter-

symbol interference and the channel’s response becomes frequency-selective. The rate

of variation of the channel response across time, due to mobility in the environment,

is characterized by the Doppler spread. If the channel response varies significantly in

the signaling duration, it becomes time-selective. Channels whose response are both

time and frequency selective are commonly referred as doubly-selective channels.

Doubly selective channels are typically modeled as linear time varying filters. The

received sequence y[n] (after match filtering and sampling) is related to the transmit

sequence x[n] (in the complex baseband) by

y[n] =
∑

l

h[n; l]x[n − l] + v[n], (1.1)

where h[n; l] denotes the channel’s impulse response at time instant n and v[n] is

additive noise term. The impulse response coefficients h[n; l] are typically modeled

as samples of a random process.

1.2 Motivation

When the channel’s fading coefficients h[n; l] are known apriori at the receiver, it

is referred as coherent scenario. But, in most of the practical scenarios, the channel

fading coefficients are not known apriori at the receiver. This situation is commonly

referred as noncoherent case. In wireless communications, several coherent coding
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and decoding techniques have been developed to combat fading for the case when the

receiver and/or transmitter know these fading coefficients [3, 4]. In the noncoherent

case, it is common to employ pilot aided transmission (PAT), whereby the transmitter

embeds known pilot (i.e., training) signals which the receiver can use to estimate the

channel. The estimated channel coefficients can then be used along with coherent de-

coding techniques. Cavers [5] authored one of the first analytical studies of PAT. Since

then, there has been a growing interest in PAT design. [6] provides comprehensive

overview of PAT design problems addressed in the literature. The achievable rates of

the PAT schemes are in general less than the channel capacity, since the power and

bandwidth spent in the transmission of training signals compromises the power and

bandwidth available for transmitting the information bearing symbols. Achievable

rates of a scheme usually refers to the rates which can be reliably communicated if

one employs that particular encoding/decoding scheme. Using information-theoretic

tools, some authors have worked on quantifying the achievable rates of PAT schemes

for certain fading models, for e.g., [7].

In this dissertation, we consider the problem of communications over noncoherent

doubly selective channels (DSC). One motivation to study DSC is that future wireless

systems transferring broadband data in high mobility situations encounter fading

channels which are both time selective and frequency selective. There are not many

studies in the literature on DSC although there exist many studies about the special

cases of DSC such as flat fading, time or frequency selective channels. Another

motivation to analyze DSC is that the results obtained can be easily applied to the

special cases of DSC. First, we find the fundamental limits on the information rates for

reliable communication across noncoherent DSC. Next, we develop simple and efficient
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encoding/decoding techniques to achieve the promised information rates. Since pilot

aided transmissions are simple and widely used in the noncoherent scenarios, we focus

on the PAT design for DSC.

1.3 Contributions and Outline

In Chapter 2, we present our single-input single-output (SISO) block transmis-

sion model and derive complex-exponential (CE) basis expansion model (BEM) to

characterize the channel variation withing a block, which is reasonably accurate and

tractable in the design and analysis of communication systems. We also present the

statement of problems addressed in the dissertation.

In Chapter 3, we characterize the pre-log factor of the constrained ergodic channel

capacity of CE-BEM DSC in the high signal to noise ratio (SNR) regime, when the

channel inputs are continuously distributed. We also present numerical results on the

rates achieved by i.i.d. Gaussian codes.

In Chapter 4, we design PAT schemes for CE-BEM DSC based on mean squared

error (MSE) criterion. Deriving the necessary and sufficient conditions on the pi-

lot/data pattern to attain minimal MSE (MMSE) for a given pilot energy, we uncover

time-frequency duality of MMSE-PAT structures and obtain novel MMSE-PAT pat-

terns. We obtain bounds on the ergodic achievable rates of MMSE-PAT schemes and

perform high-SNR asymptotic analysis which suggests that, the channel’s spreading

parameters should be taken into account when choosing among MMSE-PAT schemes.

Specifically, we establish that a multi-carrier MMSE-PAT achieves higher rates than

a single-carrier MMSE-PAT when the channel’s delay spread dominates its Doppler

spread, and vice versa.
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In Chapter 5 we consider the design of PAT schemes whose asymptotic achievable

rates have the same pre-log factor as that of constrained channel capacity. Referring

these PAT schemes as spectrally efficient (SE) PAT, we present their design conditions

and a novel pattern. Further analyzing the structure of MMSE-PAT schemes, we also

establish that they are spectrally inefficient over strictly doubly selective channels. We

also present numerical comparison of the rates achieved by SE-PAT and MMSE-PAT

schemes.

In Chapter 6, we extend the MMSE-PAT design to multi-input multi-output

(MIMO) CE-BEM DSC. We establish that the spectral efficiency of MIMO-MMSE-

PAT does not necessarily increase even if the number of transmit and receive antennas

are increased simultaneously. We also present the optimal number of active antennas

which maximizes the spectral efficiency.

In Chapter 7, we conclude by summarizing our original work and indicating future

research possibilities.

In order to enhance the flow of the dissertation, detailed mathematical derivations

and proofs are deferred to appendices.

Notation

Matrices (column vectors) are denoted by upper-case (lower-case) bold-face let-

ters. Hermitian is denoted by (·)H, transpose by (·)!, and conjugate by (·)∗. The

determinant and Frobenius norm are denoted by det(·) and ‖ · ‖F , respectively. The

expectation, trace, delta, Kronecker product, modulo-N and integer ceiling opera-

tions are denoted by E{·}, tr{·}, δ{·}, ⊗, 〈·〉N and '·(, respectively. The null space

and column space of a matrix are denoted by null(·) and col(·), respectively, and the
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dimension of a vector space is denoted by dim(·). The operation [·]n,m extracts the

(n, m)th element of a matrix, where the row/column indices n, m begin with 0, while

diag(·) denotes a diagonal matrix constructed from the vector-valued argument. The

N × N unitary discrete Fourier transform (DFT) and identity matrices are denoted

by F N and IN , respectively, and appropriately dimensioned identity and all-zero ma-

trices are denoted by I and 0, respectively. The union, intersection, and set-minus

operators are denoted by ∪, ∩, and \, respectively, while the empty set is denoted

by ∅. I(; ) and h(·) denote mutual information and differential entropy respectively.

Finally, the sets of integers, reals, positive reals, and complex numbers are denoted

by Z, R, R+, and C, respectively.
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AWGN Additive White Gaussian Noise
BEM Basis Expansion Model
CE Complex Exponential
CP Cyclic Prefix
CSI Channel State Information
CWGN Circular White Gaussian Noise
DFT Discrete Fourier Transform
DOF Degrees of Freedom
DSC Doubly Selective Channels
FDKD Frequency Domain Kronecker Delta
i.i.d. independent and identically distributed
LMMSE Linear Minimum Mean Squared Error
MIMO Multi Input Multi Output
MMSE Minimum Mean Squared Error
MSE Mean Squared Error
OFDM Orthogonal Frequency Division Multiplexing
PAT Pilot Aided Transmissions
SCM Single Carrier Modulation
SCP Streaming Cyclic Prefix
SE Spectrally Efficient
SISO Single Input Single Output
SNR Signal to Noise Ratio
SSC Singly Selective Channels
SZP Streaming Zero Prefix
TDKD Time Domain Kronecker Delta
ZP Zero Prefix

Table 1.1: List of abbreviations.

9



CHAPTER 2

SYSTEM MODEL & PROBLEM STATEMENT

In this chapter, we present our doubly selective channel model and PAT system

model for single antenna systems, which provide the mathematical setup for our anal-

ysis in Chapters 3-5. We also present detailed discussions on the problems addressed

in our work and their relations to the previous work in the literature.

2.1 Doubly Selective Channel Model

Starting with a continuous time fading channel model, using pulse shaping tech-

niques we obtain a discrete time baseband equivalent doubly selective channel model.

Using basis expansion model, we approximate the time variation of the channel and

analyze its accuracy.

Consider a baseband-equivalent wireless multipath channel which can be modeled

as a linear time-variant distortion plus an additive noise [8]:

y(t) =

∫

h(t; τ)x(t − τ)dτ + v(t). (2.1)

Say that, over the small time period Tsmall, the path lengths vary by at most a few

wavelengths, so that path gains and delays can be assumed to remain constant. Over

this small time period, it is reasonable to model h(t; τ) a stationary random process
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for which

E{h(t; τ)h∗(t− to; τ − τo)} = Rlag;delay(to; τ)δ(τo). (2.2)

Property (2.2) is commonly known as wide-sense stationary uncorrelated scattering

[2]. If we define

RDopp;delay(f ; τ) =

∫

Rlag;delay(t; τ)e
−j2πftdt, (2.3)

then the practical assumptions of finite path-length differences and finite rates of

path-length variation imply that

RDopp;delay(f ; τ) ≈ 0 for

{

f /∈ [−BDopp,BDopp]
τ /∈ [0, Tdelay]

(2.4)

In other words, the channel has a causal delay spread of Tdelay seconds and a single-

sided Doppler spread of BDopp Hz. From RDopp;delay(f ; τ), one can define the delay

power profile Pdelay(τ) =
∫

RDopp;delay(f ; τ)df and the Doppler power profile PDopp(f) =

∫

RDopp;delay(f ; τ)dτ .

We consider a communication system in which the information bearing discrete

symbols are parsed into transmission blocks of length N . For each transmission block,

the baseband-equivalent modulation of the discrete symbols of that block {x[n]}N−1
n=0 ,

is accomplished by x(t) =
∑

n x[n]ψ(t − nTs), where Ts is the sampling interval in

seconds and where ψ(t) is a unit-energy pulse that is (approximately) zero-valued

outside the time interval [−Ts

2 ,−Ts

2 ) seconds and the frequency interval [− 1
2Ts

, 1
2Ts

) Hz.

We assume that the block transmission duration Tburst ≈ NTs is less than the small

scale fading duration Tsmall. Baseband-equivalent demodulation is accomplished by

generating the received samples y[n] =
∫

y(t)ψ∗(t− nTs)dt for n ⊂ Z.
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The relationship between the discrete-time transmitted and received sequences is

y[n] =
∑

l

h[n; l]x[n− l] + v[n], (2.5)

where it is straightforward to show that v[n] =
∫

v(t)ψ∗(t− nTs)dt and

h[n; l] =

∫ ∫

ψ∗(t)h(t + nTs; τ + lTs)ψ(t− τ)dtdτ. (2.6)

The time support of ψ(t) implies that h[n; l] is a locally-averaged version of h(t; τ)

around the point (t; τ) = (nTs; lTs). Furthermore, it is shown in Appendix A.1 that,

when Rlag;delay(to; τ) varies slowly with respect to to and τ variations on the order of

Ts seconds, then

E{h[n; l]h∗[n− p; l − q]} ≈ Rlag;delay(pTs; lTs) δ[q]Cψ, (2.7)

where Cψ =
∫

|
∫

ψ(t)ψ∗(t− τ)dt|2dτ . In this case, the finite delay-spread of R(to, τ)

implies that h[n; l] ≈ 0 for l /∈ [0, . . . , Ndelay − 1], where Ndelay = Tdelay/Ts. If the

discrete delay spread of the channel Ndelay > 1, then the channel outputs {y[n]}Ndelay−1
0

depend on the past transmitted symbols {x[n]}−1
−Ndelay+1. To keep the block fading

model more general, we allow these symbols to be arbitrary including the possibility

of being zero.

Now, we obtain the basis expansion approximation. For one block fading duration,

the channel response is characterized by the channel coefficients h[n; l], n ∈ {0, ..., N−

1}, l ∈ {0, ..., Ndelay − 1}. These channel coefficients can be parameterized using the

basis expansion

h[n; l] =
1√
N

N−1
∑

k=0

λ[k; l]ej 2π
N

nk, (2.8)
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where it is shown in Appendix A.2 that

E{λ[k; l]λ∗[k − p; l − q]}

≈ Cψδ[q]δ[p]

∫

RDopp;delay(f
′ + k

NTs
; lTs)

(
sin(πf ′TsN)

sin(πf ′Ts)

)2

df ′ (2.9)

N→∞
= Cψδ[q]δ[p]RDopp;delay(

k
NTs

; lTs). (2.10)

The approximation in (2.9) follows from the use of (2.7). Note that, under the

mild assumptions of (2.9), the basis coefficients are uncorrelated over both indices.

Note furthermore that, under the additional assumption of large N , λ[k; l] ≈ 0

for k /∈ {−0BDoppTsN1, . . . , 0BDoppTsN1} as a consequence of the limited support

of RDopp;delay(f ; ·). In this case, it suffices to parameterize the channel (over the block

interval) as

h[n; l] ≈ 1√
N

(NDopp−1)/2
∑

k=−(NDopp−1)/2

λ[k; l]ej 2π
N

nk. (2.11)

where NDopp = 20BDoppTsN1+1 and where {λ[k; l]} are uncorrelated coefficients whose

variances are assigned by uniformly sampling RDopp;delay(f ; τ). We refer NDopp as the

discrete Doppler spread of the channel and the “normalized” product

γ =
NdelayNDopp

N
, (2.12)

as the channel’s spreading index. Our derivation of the complex-exponential basis

expansion model (CE-BEM) resembles that of [9] for time-selective channels. But

with mild restrictions on Rlag;delay(to; τ), we are able to establish that BEM coefficients

are uncorrelated.

The CE-BEM (2.11) has been widely used to model time-varying communication

channels (e.g., [9–13]) and can be interpreted as an NDopp-term truncated Fourier-

series approximation of each of the Ndelay coefficient trajectories {h[0; l], . . . , h[N −
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1; l]}Ndelay−1
l=0 . The application of truncated Fourier series can be motivated by the

bandlimited nature of coefficient trajectories that results from finite mobile velocities.

Specifically, path lengths which vary by at most vmax meters per second imply a

maximum single-sided Doppler spread of BDopp = 2vmaxfc/c Hz, where fc denotes

the carrier frequency [10] and where c denotes the speed of light. Since the use of

NDopp = 20BDoppTsN1 + 1 terms in the Fourier series yields a reasonably accurate

approximation to each trajectory, we assume this value of NDopp throughout. We

allow CE-BEM coefficients with possibly unequal variances in order to model arbitrary

delay profiles and Doppler spectra.

We emphasize that, like all models, this CE-BEM approximates the DSC; it does

not yield a “perfect” description. Alternative BEMs have been proposed that, in

some cases, yield “better” approximations (e.g., the polynomial [14], Slepian [15], and

oversampled-CE [16] BEMs). We adopt the CE-BEM (2.11) because it is reasonably

accurate and yields a tractable analysis with insightful results.

We restrict our focus to channels for which γ < 1, known as “underspread” chan-

nels [17], so that NdelayNDopp, the number of independent channel parameters per

block, is less than the block length N . The underspread assumption is standard for

radio-frequency channels [3] and for most underwater acoustic channels [18].

2.1.1 Block Fading Model

Now, we summarize our discrete doubly selective block fading model. The channel

output is given by

y[n] =
√
ρ

Ndelay−1
∑

l=0

h[n; l]x[n− l] + v[n], n ∈ {0, ..., N − 1}, (2.13)
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where v[n] is assumed to be circular white Gaussian noise of unit variance, x[n] is the

discrete channel inputs with power constraint

1

N + Ndelay − 1
E







N−1
∑

i=−Ndelay+1

|x[i]|2





≤ 1, (2.14)

and ρ denotes the SNR level. The channel coefficients in the block {h[n; l], n ∈

{0, ..., N − 1}, l ∈ {0, ..., Ndelay − 1}} obey the BEM (2.11). We assume that the

basis expansion coefficients {λ[k; l], k ∈ {−NDopp−1
2 , ...,

NDopp−1
2 }, l ∈ {0, ..., Ndelay −

1}} are zero-mean, Gaussian and uncorrelated with positive variance. We need to

address the issue of how to model the channel variation from block to block. We

assume independent and identical fading across blocks. This independent fading can

be justified for certain time-division or frequency-hopping systems in which the blocks

are separated sufficiently across time or frequency to undergo independent fading. We

can also obtain independent fading by interleaving the transmission blocks.

Now, we obtain the vector representation of our doubly selective channel model.

Collecting the output, input and noise samples in the vector form, y = [y[0], ..., y[N−

1]]!, v = [v[0], ..., v[N − 1]]! and x = [x[−Ndelay + 1], ..., x[N − 1]]!, we obtain the

following vector representation of the block fading model,

y =
√
ρHx + v, (2.15)

where H ∈ CN×(N+Ndelay−1) is given element-wise as [H ]p,q = h[p; p + Ndelay − 1 − q]

with the notation that h[n; l] = 0 ∀l ≥ Ndelay. The structure of matrix H is given

below.







h[0;−Ndelay + 1] · · · h[0; 0]
h[1;−Ndelay + 1] · · · h[1; 0]

. . . · · · . . .
h[N − 1;−Ndelay + 1] · · · h[N − 1; 0]
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Now, we define the diagonal matrix

X i =








x[i]
x[i + 1]

. . .
x[i + N − 1]








(2.16)

and

X =
(

X0 X−1 · · · X−Ndelay+1

)

. (2.17)

Collecting the channel coefficients of the block h[n; l], n ∈ {0, ..., N − 1}, l ∈

{0, ..., Ndelay−1} in a vector h = [h!
0 , ...,h!

Ndelay−1]
!, with hl = [h[0; l], ..., h[N−1; l]]!,

(2.15) can also be written as

y =
√
ρXh + v. (2.18)

Sometimes, in our analysis, we find it convenient to use (2.18). Also, defining λl =

[λ[−NDopp−1
2 ; l], ...,λ[NDopp−1

2 ; l]]!, λ = [λ!0 , ...,λ!Ndelay−1]
!, we have

h = Uλ, (2.19)

where U = INdelay
⊗ F̄ with F̄ ∈ CN×NDopp given element-wise as

[F̄ ]n,m =
1√
N

ej 2π
N

n(m−(NDopp−1)/2). (2.20)

From our assumptions on BEM coefficients, we have Rλ = E{λλH} is diagonal

and positive definite. We consider an energy preserving channel which satisfies

tr{Rλ} = N . Clearly, (2.19) gives Karhunen-Loeve expansion for the channel vec-

tor h. Combining (2.18) and (2.19), we have another representation of input-output

equation

y =
√
ρXUλ + v, (2.21)

which will also be frequently used in our analysis.
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2.2 Characterization of Asymptotic Channel Capacity

Recently, many researchers have been working on problems related to characteri-

zation of the capacity of wireless multipath channels under the practical assumption

that neither the transmitter nor the receiver has channel state information (CSI).

The problem becomes especially interesting in the high SNR regime, where the im-

pact of channel uncertainty on communication performance is most pronounced. The

high-SNR capacity of the noncoherent MIMO Gaussian flat-fading channel was char-

acterized by Marzetta and Hochwald [19] and Zheng and Tse [7] using the block-fading

approximation, whereby the channel coefficients are assumed to remain constant over

a block of N symbols and change independently from block to block. Later, Vikalo et

al. [20] characterized the high-SNR capacity of the noncoherent Gaussian frequency-

selective block-fading SISO channel under the assumption that the discrete block

length N exceeds the discrete channel delay spread Ndelay. Liang and Veeravalli [9]

characterized the high-SNR capacity of SISO Gaussian time-selective block-fading

channel, where, within the block, the channel coefficients vary according to a finite-

term Fourier series with NDopp ≤ N expansion coefficients with full rank covariance

matrix, but change independently from block to block. For these flat, frequency-

selective, and time-selective noncoherent block-fading Gaussian channels, the afore-

mentioned works have shown that the capacity C(ρ) obeys limρ→∞ C(ρ)/ log(ρ) = η,

where the prelog factor η decreases with the degree of channel uncertainty. For exam-

ple, η = N−1
N in the SISO flat-fading case, η = N−Ndelay

N in the SISO frequency-selective

case,2 η = N−NDopp

N in the SISO time-selective case.

2Assuming uncorrelated inter-symbol interference coefficients.
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Many authors have studied the capacity of noncoherent fading channels [21–27]

in the low-SNR regime. In most fading scenarios, it has been established that the

noncoherent capacity obeys limρ→0 C(ρ)/ρ = 1. Interestingly, the above result holds

for both additive white noise (AWGN) channel capacity and coherent fading channel

capacity. So, there is no significant penalty in the noncoherent channel capacity in the

low-SNR regime. However, the signal achieving noncoherent capacity is very “peaky”

[22, 24–27]. In general, the behavior of the channel capacity and optimal signaling

techniques in high-SNR regime and low-SNR regime are very different [3,7,9,22,23].

In our work, we consider the problem of characterizing the high-SNR capacity of

underspread SISO doubly selective block fading channel described in Section 2.1.1,

which uses a finite-length impulse response whose Ndelay Gaussian coefficients vary

according to a NDopp-term Fourier series within the block but change independently

from block to block. We show that the prelog factor of the constrained asymptotic

channel capacity with continuous inputs is
N−NdelayNDopp

N . Detailed discussion on the

results on the asymptotic channel capacity is given in Chapter 3.

Our work relies on the block-fading assumption, which can be justified in sys-

tems that employ block-interleaving or frequency-hopping. Other investigations have

circumvented the block-fading assumption through the use of time-selective channel

models whose coefficients vary from symbol to symbol in a stationary manner. For

these stationary models, it is necessary to make a distinction between non-regular

(e.g., bandlimited) fading processes and regular (e.g., Gauss-Markov) fading pro-

cesses; while non-regular fading channels have been shown to behave similarly to time-

selective block-fading channels, regular fading channels behave quite differently [28].
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Though similar results are expected for doubly-selective stationary channel models,

the details lie outside the scope of our work.

2.3 Pilot Aided Transmission Model

In this section, we give the details on the encoding and decoding techniques em-

ployed in PAT schemes analyzed in our work. Since one of the main advantages of

PAT schemes is the utilization of communication techniques developed for coherent

channels, we consider Gaussian codes and minimum distance decoding. The mathe-

matical details are given below.

2.3.1 PAT Encoder

We describe the general form of the encoder of the PAT schemes studied in our

work. Regarding the prefix portion, we restrict ourselves to cyclic-prefixed (CP) or

zero-prefixed (ZP) block transmissions so that,

[x[−Ndelay + 1], ..., x[−1]] =

{

0 ZP

[x[N −Ndelay + 1], ..., x[N − 1]] CP.
(2.22)

Since for both the CP and ZP schemes, the vector x̀ = [x[0], ..., x[N−1]]! determines

completely the entire transmit vector x, we focus our attention on the structure of

x̀. The input-vector x̀ is generated as

x̀ = p + d, (2.23)

where p is a deterministic pilot vector and d is zero-mean data. The data vector

d = [d[0], . . . , d[N − 1]]! is constructed via linear precoding as

d = Bs, (2.24)
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where s = [s[0], . . . , s[Ns − 1]]! is the information-bearing symbol vector and B ∈

CN×Ns is an arbitrary full-rank precoding matrix. Thus, our transmission strategy

coincides with the general case of affine precoding [29], i.e.,

x̀ = p + Bs. (2.25)

We refer to Ns = rank(B) as the “data dimension” of the PAT scheme. Our generic

transmission model allows us to analyze PAT for many modulation schemes under a

common framework. Notice that, for single carrier modulation (SCM) and orthogonal

frequency division multiplexing (OFDM) systems, the columns of B are chosen from

those of IN and F N , respectively. Defining Ep = ‖p‖2 and Ed = E{‖d‖2}, we require

that Ep ≥ 0, Ed > 0, and the total energy Etot = Ep + Ed ≤ N . Denoting the CP or

ZP mapper by M ∈ C(N+Ndelay−1)×N so that

x = Mx̀, (2.26)

the DSC output (2.15) for the PAT model can be written as

y =
√
ρH̀{p + Bs} + v, (2.27)

where we have

H̀ = HM . (2.28)

Constructing the transmit matrix X in the same manner as in (2.18), the pilot and

data components in X are given by P = E{X} and D = X − P . Using (2.19), it

follows that

y =
√
ρPUλ +

√
ρDUλ + v. (2.29)
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Since λ captures all the degrees of randomness in h, estimating λ is equivalent to

estimating h. We use the equation (2.29) in deriving the channel estimator and in

the design of pilot/data patterns.

2.3.2 PAT Decoder

Our PAT decoder has two parts; a channel estimator part followed by a data

detector part. The channel estimator obtains the linear MMSE (LMMSE) estimate

of h from the observation y, using the knowledge of p and the second order statistics

of h, v and s. Specifically, denoting Ry = E{yyH} and Ry,h = E{yhH}, the channel

estimate is obtained as

ĥ = RH
y,hR

−1
y y. (2.30)

Let Ĥ denote the matrix constructed from ĥ in the same manner as H̀ . The

data detector is a “mismatched” weighted minimum distance decoder which treats

the channel estimate Ĥ as though it is the true channel [30]. Specifically, ŝ =

argmins‖Q{y−√ρĤ(p+Bs)}‖. The choice of the weighting matrix Q is arbitrary,

at the moment. Our PAT decoder has a simple structure compared to a decoder which

does channel estimation and data detection jointly. Also, note that the weighted mini-

mum distance decoder is the maximum-likelihood decoder for coherent Gaussian noise

channels [2].

To achieve arbitrarily small probability of decoding error over block fading DSC,

the information has to be encoded into long codewords which span multiple blocks.

Let S denote the codebook with each of its codeword s spanning K blocks. So, we

have s = [s[0]!, ..., s[K−1]!]! where s[k] ∈ CNs×1 corresponds to the kth “segment” of

the codeword s transmitted during the kth block. For coding over multiple blocks,
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the data detector is modified as

ŝ = argmins∈S

K−1∑

k=0

‖Q{y[k] −√ρĤ [k]

(p + Bs[k])}‖2, (2.31)

where y[k] and Ĥ
[k]

denotes the observations and the estimated channel matrix of the

kth block. We consider the codebook generated according to Gaussian distribution

such that each codeword and its segments are generated independently with the

covariance of the each segment being Rs. Without loss of generality, we assume Rs is

full rank.3 Note that the Gaussian codes are capacity optimal for coherent Gaussian

noise channels [33]. The information rate in bits per channel-use of the PAT scheme

is given by R = 1
NK log |S|, where |S| denotes the size of the codebook. The rate R

is said to be achievable if the probability of detection error, i.e., Pe = Pr(ŝ 5= s) is

arbitrarily small.

2.4 PAT Design

The structure of the PAT scheme is governed mainly by the pilot vector p and the

data modulation matrix B. We are interested in the joint design of (p, B) pair which

meets some requirements. The criteria we will use are minimal channel estimation

error variance and maximal pre-log factor of the asymptotic achievable rates.

Minimizing mean squared error is a popular PAT design criterion and many au-

thors have studied it for different types of channels. For frequency selective channels,

MMSE PAT schemes were obtained in [34–36] for OFDM systems. For time se-

lective channels, MMSE-PAT schemes were obtained in [37] for SCM systems. For

3Noting that Gaussian codes are completely characterized by their covariance, it can be easily
seen that, for a given B and Rs, we can always choose a full rank B̆ and Gaussian vector s̆ with
positive definite covariance R̆s so that the modulated data vectors d = Bs and d̆ = B̆s̆ have the
same covariance.
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slowly time-varying frequency-selective channels, MMSE-PAT design for OFDM was

discussed in [38,39] and [40] for single-antenna and multiple-antenna systems, respec-

tively.

Since the bandwidth and power consumed by pilot symbols compromise the band-

width and power available for information-bearing data symbols, PAT schemes may

suffer a loss of information rate relative to noncoherent communication schemes that

do not explicitly transmit pilots. To address this issue, several authors have studied

the PAT design problem using information-theoretic tools (e.g., [13, 20, 41–44]). For

example, [13, 20, 41–43] optimized the location, power, and number of pilot symbols

by maximizing a lower bound on ergodic channel capacity, and, in doing so, uncovered

connections between MSE minimization and achievable-rate maximization. In fact,

for some channel models, MMSE-PAT and capacity-bound-maximizing PAT schemes

coincide [13, 20, 41–43]. Furthermore, in the high signal-to-noise ratio regime, some

of these MMSE-PAT schemes are first-order capacity-optimal, i.e., their achievable

rates exhibit the same growth-rate (versus SNR) as the noncoherent channel’s capac-

ity [7, 9, 20, 41].

We consider the PAT design problem for DSC. For singly (time or frequency)

selective channels (SSC), the channel matrix H̀ can be diagonalized with determin-

istic eigen vectors. For time selective channels, the standard basis vectors are the

eigen vectors and for frequency selective channels, the complex exponential functions

(columns of discrete Fourier transform matrix) are the eigen vectors. But, for DSC,

there are no deterministic eigen vectors for the channel matrix H̀ . This poses inter-

esting challenges in the PAT design problem and shows the fundamental differences

between SSC and DSC.
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Motivated by the information-theoretic optimality of MMSE-PAT schemes for

certain flat and frequency-selective channels [7, 20, 41], we start with the the design

and analysis of MMSE-PAT schemes for the CE-BEM DSC. While most studies on

MMSE-PAT [34,36,37,40] and achievable-rate-maximizing PAT [13,20,41–43,45] as-

sume a specific modulation scheme (e.g., OFDM or SCM), our study applies to the

general class of cyclic-prefixed affine precoding [29] schemes. Affine precoding sub-

sumes all schemes which transmit the sum of an energy-constrained pilot vector and

a linearly precoded data vector, where the choice of the precoding matrix is arbitrary.

For this setting, we derive necessary and sufficient conditions on the combination

of pilot vector and precoding matrix that yield MMSE channel estimates. These

conditions reveal the fundamental structure of all PAT schemes (i.e., irrespective of

modulation format) that are MMSE for this DSC, paving the way for the design of

novel MMSE-PAT schemes. Using these conditions, we then analyze the achievable

rate of generic MMSE-PAT transmission and propose pilot/data power-allocation

guidelines for it. The ergodic achievable rate is further analyzed in the high-SNR

regime, and the spectral efficiency of systems which transmit a stream of MMSE-

PAT blocks are characterized. This latter analysis provides insight into the roles of

delay- and Doppler-spread on MMSE-PAT performance. In [13,43], the authors inves-

tigated DSC PAT design for SCM with the goal of maximizing achievable rate. Due to

connections between achievable-rate maximization and MSE-minimization, the PAT

schemes proposed in [13, 43] turn out to be MMSE. However, as a consequence of

our more general affine-precoding framework, we are able to show that the MMSE-

PAT scheme obtained in [13] is but one of many MMSE-PAT schemes possible for

the DSC. Furthermore, our achievable-rate analysis provides a means of comparing
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among these different MMSE-PAT schemes and establishes that a particular multi-

carrier MMSE-PAT scheme achieves higher rates than the single-carrier MMSE-PAT

scheme from [13] when the DSC’s discrete delay spread dominates its discrete Doppler

spread. Numerical examples are also presented to illustrate the theoretical results.

Next, we consider the PAT design based on maximal pre-log factor of asymptotic

achievable rates. We refer such PAT schemes as spectrally efficient PAT. While previ-

ous studies on the MMSE-PAT schemes established that they are spectrally efficient

for the flat [7, 41], frequency-selective [20] and time-selective [9, 46–48] block fading

channels, we establish that all the MMSE-PAT schemes of block-fading (strictly) dou-

bly selective channels are spectrally inefficient [49]. We also provide guidelines for

the design of spectrally efficient PAT schemes and obtain a novel spectrally efficient

(non-MMSE) PAT scheme. We also present numerical and theoretical comparison of

SE-PAT and MMSE-PAT schemes in the moderate SNR regime.

Our analysis of achievable rates of PAT schemes is limited to the high-SNR regime.

As mentioned before, capacity optimal signaling techniques in the high-SNR regime

are fundamentally different from those of low-SNR regime [3]. The work [50] provides

insights on the PAT design for block-fading channels in the low-SNR regime.
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CHAPTER 3

ASYMPTOTIC CHANNEL CAPACITY

3.1 Pre-log Factor

Recall that the input-output relation for a single block of doubly-selective block

fading channel is

y =
√
ρHx + v, (3.1)

and the channel coefficients obey BEM (2.19). We study the ergodic capacity per-

channel-use of the doubly selective block fading channel, which is expressed as [51]

C = sup
x:E{‖x‖2}≤N+Ndelay−1

1

N
I(y; x), (3.2)

where I(y; x) is the mutual information between random vectors y and x and the

supremum is taken over all the input random vectors satisfying the power constraint.

The mutual information in (3.2) is obtained by averaging over all the channel real-

izations and all the rates below the ergodic capacity can be achieved by coding over

large number of block fading intervals [33].

We denote the pre-log factor in the high-SNR expression for the channel capacity

by η. Precisely, we have

η = lim
ρ→∞

C(ρ)

log ρ
. (3.3)

26



For Rayleigh-fading SISO channels (flat, frequency-selective, or time-selective), in

the coherent case, i.e., perfect receiver CSI, the pre-log factor η is unity. But in the

noncoherent case, the pre-log factor is generally less than unity. The loss in pre-log

factor has been shown to be proportional to the channel’s discrete delay spread Ndelay

and discrete Doppler spread NDopp for frequency-selective and time-selective channels,

respectively [9,20]. For the doubly selective block fading model, the ergodic coherent

capacity, i.e., when the channel fading matrix H is available at the receiver, is given

by [33]

Ccoh(ρ) =
1

N
sup

Rx≥0,tr{Rx}≤N+Ndelay−1
E{log det[IN + ρHRxH

H]} (3.4)

where Rx = E{xxH} and the expectation in (3.4) is taken over the random matrix

H . It easily follows that

1

N
E{log det[IN + ρHHH]} ≤ Ccoh ≤ 1

N
E{log det[IN + ρ(N + Ndelay − 1)HHH]}

(3.5)

and since HHH is full rank (almost surely) with continuously distributed eigen values,

we have

lim
ρ→∞

Ccoh(ρ)

log ρ
= 1.

So, the pre-log factor η of coherent DSC is unity. Now, we establish that, for the

constrained capacity of noncoherent DSC with continuous random vector inputs, the

pre-log factor is equal to 1− NdelayNDopp

N . So, the “loss” in pre-log factor is equal to the

channel’s spreading index γ = NDoppNdelay/N . To prove the result, first we obtain

an upper bound on the pre-log factor of the mutual information between the input

(with continuous distribution) and output of the block fading DSC in Theorem 1 and

establish the achievability of the bound in Lemma 1.
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Theorem 1 (Pre-log Factor). For the block fading CE-BEM DSC, any sequence

of continuous random input vectors {xρ} indexed by SNR ρ, satisfying the power

constraint E{‖x‖2} ≤ N + Ndelay − 1, and converging in distribution to a continuous

random vector x∞, yields

lim sup
ρ→∞

1
N I(y; xρ)

log ρ
≤ N −NDoppNdelay

N
. (3.6)

Proof of Theorem 1 appears in Appendix B.1. The following lemma specifies a

fixed input distribution which achieves equality in (3.6).

Lemma 1 (Achievability). For the block fading CE-BEM DSC, i.i.d. inputs chosen

from the zero-mean circular Gaussian distribution, i.e., x ∼ CN(0, I), yield

lim
ρ→∞

1
N I(y; x)

log ρ
=

N −NDoppNdelay

N
. (3.7)

See Appendix B.2 for proof of the above Lemma.

Since γ ≈ 2BDoppTdelay, larger γ implies more time-frequency channel dispersion.

Our result, which shows that channel dispersion limits the pre-log factor, is intuitively

satisfying. For relatively small γ, the pre-log factor will be close to unity, i.e., that

of the coherent case. A channel with small γ could be interpreted as one with few

unknown parameters, and thus one which does not demand much training overhead.

It has been established in [52] that, for overspread channels (i.e., γ ≥ 1), the capacity

grows only double logarithmically with SNR so that the pre-log factor is 0. The effect

of the spreading index on the pre-log factor of the constrained capacity is illustrated

in Fig. 3.1. The pre-log factor of the constrained capacity of block-fading DSC with

continuous inputs coincides with the pre-log factor of the capacity its special cases:

block fading - flat channels (i.e., Ndelay = 1, NDopp = 1) [7,19], time selective channels

(i.e., Ndelay = 1) [9], frequency selective channels (i.e., NDopp = 1) [20].
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Figure 3.1: Effect of spreading index on the constrained channel capacity.

The loss in pre-log factor of noncoherent channel capacity can be intuitively seen

as follows. The mutual information is expressed as I(y; x) = h(y)−h(y|x), where h(·)

denotes differential entropy. In both the coherent and noncoherent cases, the variance

of elements of y bounds the entropy of y. In the coherent case, the uncertainty in

y given x is only noise. So, h(y|x) is the entropy of noise. But, in the noncoherent

case, the uncertainty in y given x is due to both channel and noise. Since the channel

gets scaled by
√
ρX (from (2.18)), h(y|x) scales with ρ and hence results in a loss.

The evaluation of the mutual information for Gaussian codes in the following section

gives the mathematical details behind the intuition.
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3.2 Performance of Gaussian Codes

To illustrate the effect of spreading index, using i.i.d. Gaussian codes, we study

the mutual information between the channel input and output of DSC. For zero-

mean i.i.d. Gaussian codes, i.e., x ∼ CN(0, I), we first obtain an upper bound on the

mutual information I(y; x). Since the channel is energy preserving, it easily follows

that E{|y[i]|2} ≤ ρ + 1. So, applying independent Gaussian bound for differential

entropy [51], we have

h(y) ≤ N log(ρ+ 1). (3.8)

Given x, the uncertainty in y is due to both channel and noise. Recall that (2.21),

the channel output can be written as

y =
√
ρXUλ + v. (3.9)

Given x, y is Gaussian with covariance ρXURλ(XU)H + I and hence

h(y|x) = E{log det[I + ρXURλ(XU)H]}. (3.10)

Using (3.8) and (3.10), we numerically evaluate the upper bound on I(y; x) and plot

the results in Fig. 3.2. The numerical results coincide with Theorem 1, illustrating

the “degrading” effect of spreading factor. We see that the “slope” of the rate versus

SNR plot decreases with the increase of spreading index.

For comparison, we plot the lower bound on the mutual information with i.i.d.

Gaussian codes in Fig. 3.3. The lower bound is obtained as follows,

I(y; x) = I(y; x, H)− I(y; H|x) (3.11)

≥ I(y; x|H)− I(y; H|x). (3.12)
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Figure 3.2: Upper bound on the mutual information for Gaussian codes.
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Now, I(y; x|H) corresponds the coherent case of known channel and with i.i.d. Gaus-

sian codes,

I(y; x|H) = E{log det[I + ρHHH]}. (3.13)

Similarly, we have

I(y; H|x) = I(y; λ|X) (3.14)

= E{log det[I + ρXURλ(XU)H]}. (3.15)

Using (3.13) and (3.15) in (3.12), we evaluate the lower bound on I(y; x) and plot

the results in Fig. 3.3, which shows similar effects of the spreading factor.
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Figure 3.3: Lower bound on the mutual information for Gaussian codes.
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CHAPTER 4

MINIMUM MEAN SQUARED ERROR - PAT

In this chapter, we consider cyclic prefixed PAT schemes over the single-antenna

block fading DSC (Section 2.3), where a CE-BEM is used to characterize the channel

variation over the block duration (Section 2.1.1). We outline a procedure for de-

signing minimum mean squared error PAT schemes for this DSC and provide several

novel MMSE-PAT examples. We derive the achievable rates of MMSE-PAT schemes

and compare their rates in the high-SNR regime. Though we restricted our analysis

to Rayleigh fading channels (Section 2.1.1), the MMSE-PAT design results in Sec-

tions 4.1-4.3 are valid for non-Gaussian fading scenarios as well. Throughout this

chapter, we assume modulo-N indexing, i.e., z[i] = z(〈i〉N).

4.1 MSE Lower Bound

In the MMSE-PAT design, we restrict ourselves to CP block transmissions so that

x[−i] = x[N − i], i ∈ {−1, ...,−Ndelay +1}. Recall the DSC block transmission model

(2.21),

y =
√
ρXh + v, (4.1)

where X ∈ CN×NNdelay and h ∈ CNNdelay×1. Recall that (Section 2.3.1), for PAT

schemes, the transmitted signal is constructed as x[i] = p[i] + d[i], where {p[i]} is the
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pilot sequence and {d[i]} is the zero-mean data sequence. We also recall that (2.29)

the output of CE-BEM DSC for a PAT scheme is written as

y =
√
ρPUλ +

√
ρDUλ + v. (4.2)

As we will see, the channel estimate MSE is a direct function of the pilot energy

‖p‖2 = Ep. (4.3)

The linear-MMSE estimate of h given the knowledge of {y, P } and the knowledge of

the second-order statistics of {h, D, v} is [53]

ĥ = RH
y,hR

−1
y y, (4.4)

where Ry,h = E{yhH} and Ry = E{yyH}. With our transmission and channel

models, we have

Ry,h =
√
ρPURλU

H

Ry = ρPURλU
HP H + ρE{DURλU

HDH} + IN .

Our channel estimator is pilot-aided, non-iterative and non-decision-aided. The chan-

nel estimation error h̃ = h− ĥ has variance σ2
e = E{‖h̃‖2} given by [53]

σ2
e = tr{URλU

H −RH
y,hR

−1
y Ry,h}. (4.5)

We are interested in finding PAT schemes which minimize the MSE (4.5) of the

LMMSE channel estimate (4.4) subject to a pilot power constraint Ep. Specifically,

we are interested in finding the combination of Ep-constrained pilot vector p and

precoding matrix B which minimize the estimation MSE σ2
e . We refer to such com-

binations of (p, B) as MMSE-PAT schemes. We shall see later that there are many
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(p, B) combinations which lead to minimal MSE. We now proceed to the design of

MMSE-PAT schemes.

Theorem 2 (MSE Lower Bound). For N-block CP affine PAT over the CE-BEM

DSC with the pilot-aided channel estimator (4.4), the channel estimate MSE (4.5)

obeys

σ2
e ≥ tr

{
(

R−1
λ +

ρEp

N
INDoppNdelay

)−1
}

, (4.6)

where equality in (4.6) occurs if and only if the following two conditions hold:

1. Pilot-Data Orthogonality:

(PU)HDU = 0, ∀D. (4.7)

2. Optimal Excitation:

(PU)HPU =
Ep

N
INDoppNdelay

. (4.8)

When (4.7)-(4.8) are met, Rh̃ = E{h̃h̃
H} and Rĥ = E{ĥĥ

H
} are given by

Rh̃ = U

(

R−1
λ +

ρEp

N
INDoppNdelay

)−1

UH, (4.9)

Rĥ = U

[

Rλ −
(

R−1
λ +

ρEp

N
INDoppNdelay

)−1
]

UH. (4.10)

Proof. See Appendix C.1.

Condition (4.7) says that pilots and data should be multiplexed in a way that

preserves orthogonality at the channel output, while condition (4.8) says that pilots

should be constructed so that the channel modes are independently excited with equal
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energy. Defining bq[i] = [B]i,q, we rephrase the MSE optimality requirements (4.7)-

(4.8) in terms of the pilot sequence {p[i]} and modulation sequences {bq[i]}, using the

index sets

Ndelay = {−Ndelay + 1, ..., Ndelay − 1},

NDopp = {−NDopp + 1, ..., NDopp − 1}.

Lemma 2 (Time Domain Conditions). For N-block CP affine PAT over the CE-BEM

DSC, the pair (4.11)-(4.12) form necessary and sufficient conditions for equality in

(4.6).

N−1
∑

i=0

p[i]p∗[i− k]e−j 2π
N

mi = Epδ[k]δ[m] ∀k ∈ Ndelay, ∀m ∈ NDopp, (4.11)

N−1
∑

i=0

bq[i]p
∗[i− k]e−j 2π

N
mi = 0∀k ∈ Ndelay, ∀m ∈ NDopp, ∀q ∈ {0, ..., Ns − 1}. (4.12)

Proof. See Appendix C.2.

We are not aware of previous results which specify the relationship, between pilots

and general forms of linearly modulated data, that is necessary and sufficient to

minimize the MSE of LMMSE DSC estimates (4.4). Previous work on DSC PAT

design [13, 43] was based on the maximization of a channel-capacity lower bound for

the specific case of SCM. Requirements on pilot-data orthogonality to minimize the

least squares (LS) estimation error variance were discussed, for frequency selective

channels, in [35]. Our pilot-data orthogonality requirement (4.12) establishes that,

for DSC MMSE-PAT, the data modulation basis must be orthogonal to certain time-

and frequency-shifts of the pilot vector.
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Geometric interpretation

The MMSE-PAT design requirements in Theorem 2 has intuitive geometric inter-

pretation. The received observation y is the sum of pilot component PUλ and the

data component DUλ corrupted by additive white Gaussian noise. Notice that the

pilot component lies in the column space of PU while data component lies in the

subspace
⊕

D col(DU), where
⊕

denotes direct sum of vector spaces. Note that D

corresponds to random data which takes values from finite set of possibilities.

In general, the random undetected data (D) causes interference in the estimator

(4.4) and this interference will contribute to increase in the estimation error σ2
e given

in (4.5). Our first MMSE-PAT design condition (4.7) requires that the pilot subspace

and the data subspace have to be orthogonal as illustrated in Fig. 4.1. When the

orthogonality condition is satisfied, the pilot component and the data component in

y can be “linearly separated” without changing the statistics of the noise. To see this,

let the columns of Bp ∈ CN×K and Bd ∈ CN×N−K form an orthonormal basis for the

column space of PU and the left null space of PU respectively. Now, the unitary

rotation [BpBd]Hy separates the pilot and data components since BH
d PU = 0 and

BH
p DU = 0, ∀D. This corresponds to the projection of observation into the pilot

and the data subspaces. Also, the unitary rotation does not result in any loss of

pilot energy or the data energy and the noise statistics remain the same. Because of

this linear separability property, the interference of the data component in the linear

MMSE channel estimator is eliminated when the orthogonality requirement (4.7) is

met.

Only the observation component in the pilot subspace col(PU) is “useful” for the

channel estimation since the data component DUλ is uncorrelated with the channel
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Figure 4.1: Geometric interpretation of MMSE-PAT design requirements.
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λ since data D is zero-mean. Now, the pilot subspace component is corrupted by

the white noise component in that subspace vp = BH
p v. The uncorrupted pilot

observation PUλ corresponds to the sum of columns of PU weighted by uncorrelated

BEM coefficients. If say, two columns of PU are closely aligned, it is difficult to

differentiate the effect of weighting by the corresponding BEM coefficients. Intuitively,

the best possible choice is that the columns of PU are orthogonal (as illustrated in

Fig. 4.1). Because of the columns of PU have equal norm for any pilot vector p

due to the structural constraints imposed by the channel, we arrive at the optimal

excitation requirement (4.8).

4.2 MMSE-PAT Design

Now, we outline a two-step DSC MMSE-PAT design procedure based on the

necessary and sufficient conditions (4.11)-(4.12). In the first step, one obtains a p

which satisfies (4.11). A procedure for doing so is outlined in Appendix C.3. In

the second step, an admissible p is used to construct a B ∈ CN×Ns which satisfies

(4.12). This can be done as follows. Defining F̆ ∈ C2NDopp−1×N element-wise as

[F̆ ]n,m = 1√
N

e−j 2π
N

(n−NDopp+1)m, and then defining P i = diag(p[i], ..., p[i + N − 1]) and

W i = F̆ P H
i (4.13)

W = [W!
−Ndelay+1 · · ·W!

Ndelay−1]
!, (4.14)

we see that (4.12) can be written as Wbq = 0, implying that each bq must lie in

the null space of W . This latter condition is achieved by choosing B such that its

columns form a basis for null(W ). Clearly, Ns, the number of columns in B, must

obey Ns ≤ dim(null(W )). For the case when Ns = dim(null(W )), we can bound

the data dimension Ns as follows. Notice from (4.14) that the NDoppNdelay rows of
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(PU)H are contained within the (2NDopp − 1)(2Ndelay − 1) rows of W . To satisfy

(4.8), the rows of (PU)H must be orthogonal. Thus, NDoppNdelay ≤ rank(W ) ≤

(2NDopp − 1)(2Ndelay − 1), and so (4.11)-(4.12) imply

N − (2NDopp − 1)(2Ndelay − 1) ≤ Ns ≤ N −NDoppNdelay. (4.15)

From (4.15), we see that MMSE-PAT dedicates at least NdelayNDopp, but no more

than (2Ndelay−1)(2NDopp−1), signaling dimensions to pilots. The implication is that

the PAT schemes which achieve equality in (4.6) obey Ns ≤ N − NDoppNdelay. This

result is intuitive, because, to minimize MSE, the pilot symbols must estimate all

NDoppNdelay independent BEM coefficients, consuming at least NDoppNdelay signaling

dimensions. Our analysis also shows that PAT schemes can support a data dimension

of at least N − (2NDopp − 1)(2Ndelay − 1) without sacrificing MSE.

The design procedure for MMSE-PAT (p, B) for the DSC can be summarized as

follows.

1. Find a pilot sequence p which satisfies (4.11). One such procedure is given in

Appendix C.3.

2. Using p, construct W from (4.13)-(4.14).

3. Find an orthonormal basis for the null space of W and create B column-wise

from this basis.

This constructive MMSE-PAT design procedure establishes the achievability of the

lower bound in (4.6). We give four examples of MMSE-PAT in Section 4.3.

Time-frequency duality is a well-known and fundamental concept in communi-

cation theory (see, e.g., [17]). While it has recently been applied to the design of
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space-time codes (e.g., [56]), we now demonstrate that it can be applied to the design

of affine MMSE-PAT schemes for the DSC. We refer to (p̆, B̆), for p̆ = F Np and

B̆ = F NB by taking DFT, as the “frequency-domain counterpart” of (p, B). Using

this notation, Lemma 3 gives the frequency-domain analogy of Lemma 2.

Lemma 3 (Frequency Domain Conditions). For N-block CP affine PAT over the

CE-BEM DSC, the pair (4.16)-(4.17) form necessary and sufficient conditions for

equality in (4.6).

N−1
∑

i=0

p̆[i]p̆∗[i− k]e−j 2π
N

mi = Epδ[k]δ[m] ∀k ∈ NDopp, ∀m ∈ Ndelay, (4.16)

N−1
∑

i=0

b̆q[i]p̆
∗[i− k]e−j 2π

N
mi = 0∀k ∈ NDopp, ∀m ∈ Ndelay, ∀q ∈ {0, ..., Ns − 1}. (4.17)

Proof. Plugging p[i] = 1√
N

∑N−1
r=0 p̆[r]ej 2π

N
ir into (4.11), we have

N−1∑

i=0

p[i]p∗[i− k]e−j 2π
N

mi =
N−1∑

i=0

(
1√
N

N−1∑

r1=0

p̆[r1]e
j 2π

N
ir1)(

1√
N

N−1∑

r2=0

p̆∗[r2]e
−j 2π

N
(i−k)r2)e−j 2π

N
mi

=
1

N

N−1
∑

r1=0

N−1
∑

r2=0

p̆[r1]p̆
∗[r2]e

j 2π
N

kr2

N−1
∑

i=0

ej 2π
N

(r1−r2−m)i

︸ ︷︷ ︸

Nδ[r1−r2−m]

= e−j 2π
N

mk
N−1
∑

r1=0

p̆[r1]p̆
∗[r1 −m]ej 2π

N
r1k,

and since {k ∈ Ndelay, m ∈ NDopp} ⇔ {−k ∈ Ndelay,−m ∈ NDopp}, the conditions

(4.11) and (4.16) are equivalent. In a similar manner, the equivalence between the

conditions (4.12) and (4.17) can be established.

Note that the conditions in Lemma 3 mirror those in Lemma 2, except that the

discrete delay spread Ndelay and discrete Doppler spread NDopp have interchanged their

roles. Our duality result can be stated concisely as follows.
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Lemma 4 (Duality). If (p, B) parameterizes N-block CP MMSE-PAT over the

CE-BEM DSC with discrete delay spread N1 and discrete Doppler spread N2, then

(F Np, F NB) parameterizes N-block CP MMSE-PAT for the CE-BEM DSC with dis-

crete delay spread N2 and discrete Doppler spread N1 and vice versa.

To our knowledge, the application of time-frequency duality to the design of DSC

MMSE-PAT schemes is novel. Similarities between the structure of MMSE-PAT

schemes for SCM over time-selective channels [57] and OFDM over frequency selective

channels [35] have been previously noted in [57]. However, our result on the duality

of DSC MMSE-PAT is more general, and applies to any affine modulation scheme

(including, but not limited to, SCM and OFDM), as illustrated by the MMSE-PAT

examples given in Section 4.3.

4.3 Examples of MMSE-PAT

Here we give several examples of N -block CP affine MMSE-PAT schemes for

the CE-BEM DSC with discrete delay spread Ndelay and discrete Doppler spread

NDopp, using the (p, B) parameterization. The proofs for the MMSE-optimality of

the following examples are given in Appendix C.4.

Example 1 (TDKD). Assuming N
NDopp

∈ Z, define the pilot index set P [#]

t and the

guard index set G [#]

t :

P [#]

t = {*, *+ N
NDopp

, ..., *+ (NDopp−1)N
NDopp

}

G [#]

t =
⋃

k∈P [#]
t

{−Ndelay + 1 + k, ..., Ndelay − 1 + k}.

An N-block CP MMSE-PAT scheme for the CE-BEM DSC is given by

p[k] =

{√
Ep

NDopp
ejθ[k] k ∈ P [#]

t

0 k /∈ P [#]

t

(4.18)

43



and by B constructed from the columns of IN with indices not in the set G [#]

t . Both

* ∈ {0, . . . , N
NDopp

− 1} and θ[k] ∈ R are arbitrary. The corresponding data dimension

is Ns = N −NDopp(2Ndelay − 1).

Example 1 specifies a PAT scheme in which the data and pilot sequences are non-

overlapping in the time domain, where the pilot pattern consists of periodic time-

domain bursts, and where each burst has a truncated Kronecker-delta structure, with

* controlling the time-offset of the first burst. (See Fig. 4.2). Note that the burst

period N
NDopp

≈ 1
2BDoppTs

satisfies a Nyquist-sampling criterion. This “time-domain

Kronecker delta” (TDKD) scheme bears similarity to the PAT scheme proposed in

[58] (heuristically) and later in [13], with the difference that [13] focused on zero-

padded (ZP) block transmission, which allows for efficient concatenation of blocks.

We undertake a detailed comparison of CP and ZP schemes in Section 4.6.

Example 2 (FDKD). Assuming N
Ndelay

∈ Z, define the pilot index set P [#]

f and the

guard index set G [#]

f :

P [#]

f = {*, *+ N
Ndelay

, ..., *+ (Ndelay−1)N
Ndelay

}

G [#]

f =
⋃

k∈P [#]
f

{−NDopp + 1 + k, ..., NDopp − 1 + k}.

An N-block CP MMSE-PAT scheme for the CE-BEM DSC is given by p = F H
N p̆ and

B = F H
NB̆ with

p̆[k] =

{√
Ep

Ndelay
ejθ[k] k ∈ P [#]

f

0 k /∈ P [#]

f

, (4.19)

and by B̆ constructed from the columns of the IN with indices not in the set G [#]

f . Both

* ∈ {0, . . . , N
Ndelay

− 1} and θ[k] ∈ R, are arbitrary. The corresponding data dimension

is Ns = N −Ndelay(2NDopp − 1).
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Example 2 specifies a PAT scheme in which the data and pilot sequences are

non-overlapping in the frequency domain, where the pilot pattern consists of periodic

sub-carrier clusters, and where each cluster has a truncated Kronecker-delta struc-

ture, with * controlling the offset of the first cluster. (See Fig. 4.2). Note that the

cluster spacing N
Ndelay

satisfies a frequency-domain Nyquist-sampling criterion. This

“frequency-domain Kronecker delta” (FDKD) scheme is the time-frequency dual of

TDKD and bears similarity to the heuristic PAT schemes proposed in [58] and [59].

For the special case of frequency-selective channels (i.e., NDopp = 1), FDKD coincides

with the MSE-optimal OFDM system identified in [34, 35], where the pilot clusters

reduce to pilot tones.

TDKD block

FDKD block

time

freq

data

data datadata data

datadata data

(a)

(b)

0

0

N − 1

N − 1
Ndelay − 1

NDopp − 1
*

*

Figure 4.2: (a) Structure of TDKD with Ndelay = 5 and NDopp = 3. (b) Structure of
FDKD with Ndelay = 3 and NDopp = 5.
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Example 3 (Time domain Chirps). Assuming even N , an N-block CP MMSE-PAT

scheme for the CE-BEM DSC is given by

p[k] =

√

Ep

N
ej 2π

N

NDopp
2 k2

(4.20)

[B]k,q =
1√
N

ej 2π
N

(q+NDoppNdelay)kej 2π
N

NDopp
2 k2

, (4.21)

for k ∈ {0, . . . , N − 1} and q ∈ {0, . . . , Ns − 1}, where the data dimension Ns =

N − 2NDoppNdelay + 1.

Example 4 (Frequency domain Chirps). Assuming even N , an N-block CP MMSE-

PAT scheme for the CE-BEM DSC is given by p = F H
N p̆ and B = F H

NB̆, with

p̆[k] =

√

Ep

N
ej 2π

N

Ndelay
2 k2

(4.22)

[B̆]k,q =
1√
N

ej 2π
N

(q+NDoppNdelay)kej 2π
N

Ndelay
2 k2

, (4.23)

for k ∈ {0, . . . , N − 1} and q ∈ {0, . . . , Ns − 1}, where the data dimension Ns =

N − 2NDoppNdelay + 1.

To our knowledge, the “chirp” schemes specified in Examples 3 and 4 are novel

DSC MMSE PAT schemes. We refer to examples 3 and 4 as “chirp” schemes because

the pilot and data waveforms are linear chirps, as evidenced by the k2 term in the

complex exponentials. Though a chirp-based PAT scheme was suggested in [60], it

was not MMSE. With our chirp schemes, the pilots and data are superimposed in

both the time and frequency domains, though still linearly separable at the channel

output, as required by (4.7). Note that the PATs in Example 3 and Example 4 are

time-frequency duals. Other novel MMSE-PAT schemes can be obtained from the

design procedure outlined in Section 4.2.
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4.4 Achievable-Rate Analysis of MMSE-PAT

We now calculate bounds on the ergodic achievable rate of affine precoded MMSE-

PAT schemes for the CE-BEM DSC. Lemma 2, which distills the fundamental proper-

ties of these MMSE-PAT schemes, allows this achievable-rate analysis to be conducted

in an unified manner. We deepen our analysis in the high-SNR regime and compare

the MMSE-PAT examples from Section 4.3.

As before, we consider the transmitter and channel models discussed in Section 4.1.

Suppose that the MMSE-PAT scheme (p, B) has pilot energy Ep [recall (4.3)] and

yields data dimension Ns. It will be convenient to write the input-output relation

(4.1) as

y =
√
ρH̀p +

√
ρH̀Bs + v. (4.24)

where H̀ ∈ CN×N is defined element-wise as

[H̀ ]n,m = h[n; 〈n−m〉N ], (4.25)

with h[n; l] = 0 for l 5= {0, ..., Ndelay − 1}. We also define Ĥ and H̃ in the same

way as H̀ , but from ĥ and h̃, respectively. It can be verified that E{H̀H̀
H} = I,

E{ĤĤ
H
} = I tr{Rĥ}/N and E{H̃H̃

H} = I tr{Rh̃}/N , where Rh̃ and Rĥ were

given in (4.9) and (4.10), respectively.

For Section 4.4, we make an additional assumption on our model. We assume

that the columns of precoding matrix B are orthonormal (whereas earlier B was

specified as full rank). Note that, for the purpose of ergodic achievable-rate analysis,

this assumption can be made w.l.o.g., since the mutual information between s and

y remains unaffected by invertible transformations of s. We then define the data
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energy Es,

Es = E{‖d‖2} = E{‖s‖2}, (4.26)

the total energy Etot = Ep + Es. To meet the average power constraint, We require

that Etot ≤ N . We have the average SNR of the system equals ρ, due to our energy-

preserving channel model. Finally, we define the normalized data power σ2
s = Es/Ns.

Note that these energy and power definitions do not take the CP into account; the

effects of the CP will be discussed in Section 4.6.

Now, we obtain achievable-rate bounds for the MMSE-PAT schemes using Gaus-

sian codes and minimum distance decoding (Section 2.3.2). To present the bounds,

we use the normalized channel estimate H̄ = Ĥ
√

N/ tr{Rĥ}, where E{H̄H̄
H} = I.

Theorem 3 (Achievable-Rate Bounds). For the N-block CP affine MMSE-PAT

scheme (p, B) with zero-mean i.i.d. Gaussian s ∈ CNs over the CE-BEM DSC, the

per-block ergodic achievable rate Rmmse-blk obeys Rmmse-blk-lb ≤ Rmmse-blk ≤ Rmmse-blk-ub,

where

Rmmse-blk-lb = E{log det[INs + ρlbB
HH̄

H
H̄B]} bits/block (4.27)

Rmmse-blk-ub = E{log det[INs + ρubB
HH̀

H
H̀B]} bits/block (4.28)

ρlb =
ρσ2

s tr{Rĥ}
ρσ2

s tr{Rh̃} + N
(4.29)

ρub = ρσ2
s . (4.30)

Proof. See Appendix C.5.

The lower bound (4.27) describes the “worst case” scenario of channel estimation

error acting as additive Gaussian noise. This concept was previously used in, e.g., [41]

and [61]. The upper bound (4.28) describes the “best case” scenario of perfect channel
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estimates. In Section 4.6, we consider the effects of the CP and write the achievable

rate in units of bits/sec/Hz.

It is insightful to compare Rmmse-blk, the achievable rate of MMSE-PAT, to Rcsi-blk,

the achievable rate of a system with perfect receiver-CSI, under equal transmission

power. (With perfect CSI, there is, of course, no need for pilots.) With i.i.d. Gaussian

data, the achievable rates are known to be [33]

Rcsi-blk = E{log det[IN + ρcsiH̀
H
H̀ ]} bits/block (4.31)

ρcsi = ρ. (4.32)

Two principle factors separate Rcsi-blk from Rmmse-blk. First, MMSE-PAT suffers from

channel estimation error, which degrades Rmmse-blk by affecting the “effective SNR”

(4.29). Second, MMSE-PAT uses only Ns out of N total signaling dimensions for data

transmission. Note, from (4.24), (4.27) and (4.28), that MMSE-PAT communicates

the data s through the “effective channel” H̀B ∈ CN×Ns , which offers only Ns degrees

of freedom. The perfect-receiver-CSI system, on the other hand, communicates data

through the effective channel H̀ ∈ CN×N , which offers N degrees of freedom. Our

asymptotic achievable rates in Theorem 4 provides further insight on these issues.

Theorem 4 (High-SNR Achievable Rate). For the N-block CP MMSE-PAT scheme

(p, B) with data dimension Ns over the CE-BEM DSC, the per-block ergodic rate is

given by

Rmmse-blk = Ns log ρ+ O(1) bits/block (4.33)

as ρ→∞.

Proof. See Appendix C.6.
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In the case of N -block transmission under perfect receiver-CSI, it was shown in

Chapter 3 that the asymptotic capacity obeys

Ccoh-blk = N log ρ+ O(1) bits/block (4.34)

as ρ → ∞. Notice that, in the high-SNR regime, Rmmse-blk and Ccoh-blk increase lin-

early in log ρ with slopes Ns and N , respectively. Recalling the range of Ns from

(4.15), it is evident that MMSE-PAT suffers a pre-log factor penalty relative to the

perfect-receiver-CSI system. In fact, at high SNR, the loss in pre-log factor becomes

the dominant cost of imperfect receiver-CSI, since there the MMSE-PAT channel

estimates will be accurate and losses due to channel estimation error will be insignif-

icant. For channels with low spreading index (i.e., γ : 1), Ns will be close to N

(recall γ = NDoppNdelay

N ), and hence the pre-log factors of Rmmse-blk and Ccoh-blk will be

similar. Thus, for low spreading indices and moderately high SNR, the rates achieved

by MMSE-PAT should not be far from those of a perfect-receiver-CSI system. This is

intuitively satisfying, since smaller γ implies relatively few unknown channel param-

eters and thus relatively small pilot overhead. On the other hand, for channels with

high spreading index (γ close to 1), Ns will be significantly less than N [recall (4.15)].

In this case, Rmmse-blk can deviate significantly from Ccoh-blk, even at moderately high

SNR. These trends are confirmed by the numerical results in Section 4.7.

4.5 Pilot/Data Power Allocation

Until now, the MMSE-PAT schemes were designed using fixed pilot energy Ep.

Now we consider the problem of judiciously allocating a fixed energy Etot between

pilots and data. Notice the inherent tradeoff: increasing the pilot power decreases the

channel estimation error but also decreases the data power, which in turn increases
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the sensitivity to noise and channel estimation error. Intuitively, power should be

allocated to maximize an “effective SNR” which takes into account both the noise

and channel estimation errors. The approach we take is to maximize ρlb.

Let α ∈ (0, 1) denote the fraction of energy allocated to the data symbols, i.e.,

Es = αEtot and Ep = (1− α)Etot. We are interested in finding α! = arg maxα ρlb(α).

Recall that α! must satisfy ∂ρlb(α)
∂α

∣
∣
α=α$

= 0, which is equivalent to satisfying

(ϕ(α!) + 1)

(
ρEtot

Ns
− ϕ′(α!)

)

=

(
α!ρEtot

Ns
− ϕ(α!)

)

ϕ′(α!), (4.35)

ϕ(α) =

NDoppNdelay−1
∑

i=0

αρEtot

NNs[Rλ]
−1
i,i + (1− α)ρEtotNs

,(4.36)

where ϕ′(α) = ∂ϕ/∂α. Numerical techniques can be used to find the roots, within

the interval (0, 1), of the polynomial (4.35). Among these roots, α! is the one which

maximizes ρlb.

In the case of identically distributed BEM coefficients, i.e., Rλ = N
NDoppNdelay

INDoppNdelay
,

it can be shown that the maximizer of ρlb(α) is

α!,iid =








β −
√

β2 − β if Ns > NdelayNDopp

β +
√

β2 − β if Ns < NdelayNDopp

1
2 if Ns = NdelayNDopp

(4.37)

β =
1 +

NDoppNdelay

ρEtot

1− NDoppNdelay

Ns

. (4.38)

Furthermore, it can be shown that α!,iid maximizes the achievable-rate lower bound

given in (4.27). To see this, note that the channel h and the normalized channel

estimate h̄ = ĥ
√

N/ tr{Rĥ} have the same covariance, and hence H̀ and H̄ have

the same distribution, so that the power allocation fraction affects the Rmmse-blk-lb

only through ρlb. Since Rmmse-blk-lb is an increasing function of ρlb, maximizing ρlb is

equivalent to maximizing Rmmse-blk-lb.
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For the case of general Rλ, closed-form solutions for αmax are possible in the high-

SNR and low-SNR asymptotic cases. It can be shown that arg maxα limρ→0 ρlb = 1
2

and arg maxα limρ→∞ ρlb = limρ→∞ α!,iid, where α!,iid is calculated from (4.37) using

β = (1−NDoppNdelay/Ns)
−1. Note that all affine precoding MMSE-PAT schemes with

data dimension Ns have ρlb maximized by the same pilot/data power allocation.

4.6 Streaming MMSE-PAT

In this section, we analyze the spectral efficiency of systems which transmit a

stream of blocks, where each block is constructed according to the MMSE-PAT prin-

ciples discussed earlier and separated from its neighbors by time-domain guard in-

tervals. We consider guards based on CP (as assumed in Section 4.1) as well as

ZP (as assumed, e.g., in [13]). In particular, we examine the time-bandwidth re-

sources consumed by these systems and analyze their achievable rates in units of

bits/sec/Hz. To quantify time-bandwidth consumption, we consider the use of an

arbitrary continuous-time baseband-equivalent pulse. The analysis in this section fa-

cilitates a direct comparison between the MMSE-PAT schemes in Section 4.3 and the

zero-padded SCM scheme from [13].

Let {x[m][i]}N−1
i=0 denote the discrete-time transmitted sequence within the mth

block. We assume that {x[m][i]}N−1
i=0 is constructed in the manner of {x[i]}N−1

i=0 from

(2.25), but with pilot and data that satisfy the MMSE-PAT conditions in Lemma 2.

Recall from Section 2.1 that the baseband modulation is accomplished by a time-

limited and band-limited pulse ψ(t). The streaming cyclic-prefixed (SCP) modulator

generates the continuous-time transmitted waveform as,

x(t) =
∑

m∈Z

N−1
∑

i=−Ndelay+1

x[m][i]ψ
(

t− iTs −m(N + Ndelay − 1)Ts

)

, (4.39)
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where modulo-N indexing is assumed for x[m][i] in (4.39). We refer to SCP with

{x[m][i]}N−1
i=0 constructed according to the FDKD example from Example 2, with * =

N/Ndelay−NDopp and arbitrary θ[k], as “SCP-FDKD.” Similarly, we use “SCP-Chirp”

to refer to the corresponding schemes constructed from either the time- or frequency-

domain Chirp examples from Section 4.3. (See Fig. 4.3.) Because of the CP, the SCP

block period equals (N +Ndelay− 1)Ts seconds. For the streaming zero-padded (SZP)

PAT scheme from [13], the modulator generates

x(t) =
∑

m∈Z

N−1
∑

i=0

x[m][i]ψ
(

t− iTs −mNTs

)

. (4.40)

We refer to SZP with {x[m][i]}N−1
i=0 constructed according to the TDKD example from

Example 1, with * = N/NDopp − Ndelay and arbitrary θ[k], as “SZP-TDKD.” (See

Fig. 4.3.) Noting that the TDKD samples {x[m][i]}N−1
i=N−Ndelay+1 are zero-valued for this

choice of *, it can be seen that SZP-TDKD takes advantage of a “built in” ZP, which

permits efficient concatenation of blocks (Fig. 4.3) at a block period of NTs seconds.

The continuous-time channel output is

y(t) =

∫

h(t; τ)x(t− τ) + v(t), (4.41)

where h(t; τ) denotes the (time-varying) continuous-time DSC impulse response and

v(t) denotes the noise waveform.

We now compute the spectral efficiencies of SZP-TDKD, SCP-FDKD and SCP-

Chirp schemes in bits/sec/Hz by quantifying the per-block time-bandwidth resources

consumed by these systems. To do this, we examine the continuous time channel out-

put signal y(t). The decision to examine the channel output rather than the channel

input is somewhat arbitrary, but results in cleaner expressions. In addition, channel

output properties are more relevant than channel input properties when analyzing
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egress onto adjacent frequency bands. In the sequel, we make the approximation

2BDopp ≈ NDopp−1
NTs

, which is accurate for large N .4

As illustrated in Fig. 4.3, each block of SCP-FDKD and SCP-Chirp schemes con-

sumes (N + Ndelay − 1)Ts seconds while that of SZP-TDKD consumes NTs seconds.

To find the bandwidth consumption of these systems, we assume uncorrelated in-

formation symbols {s[m][k]} (e.g., from an i.i.d. Gaussian codebook). SZP-TDKD

is an SCM system and its transmit signal occupies a bandwidth of 1
Ts

Hz. Be-

cause of the frequency dispersion of DSC, the channel output has bandwidth of

1
Ts

+ 2BDopp = N+NDopp−1
NTs

Hz, so that SZP-TDKD consumes N + NDopp − 1 Hz sec

per block. SCP-FDKD is a multi-carrier system transmitting pilots and data in

the frequency domain, where each sub-carrier consumes a bandwidth of 1
NTs

Hz.

Because of the zero-valued pilot sub-carriers at the edge of the band (with the

choice of * = N
Ndelay

− NDopp), the SCP-FDKD output signal consumes a bandwidth

of
N−NDopp+1

NTs
+ 2BDopp = 1

Ts
Hz. Thus, SCP-FDKD consumes N − Ndelay + 1 Hz

sec per block. Notice that SCP-FDKD consumes more time resources, but less fre-

quency resources, (per block) than SZP-TDKD. This follows from the fact that SCP-

FDKD contains built-in frequency-domain guard intervals while SZP-TDKD contains

built-in time-domain guard intervals. Both the SCP-Chirp schemes consume a band-

width of 1
Ts

+ 2BDopp = N+NDopp−1
NTs

Hz, so that their time-bandwidth consumption is

(N + Ndelay − 1)(N + NDopp − 1)/N Hz sec per block.

For CP-based systems, we have assumed throughout that the receiver discards the

samples corresponding to the CP. (Recall Section 4.1.) In contrast, the SZP-TDKD

4By writing NDopp = 20BDoppTsN1 + 1 = 2BDoppTsN − ε + 1 where ε ∈ [0, 1), we see that

2BDopp = NDopp−1

NTs
+ ε

NTs
. We desire that the approximation error satisfies ε

NTs
: 1

Ts
, or equivalently

N ; ε, and this is guaranteed when N ; 1.
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SZP-TDKD:

SCP-FDKD:

SCP-Chirp:

one SZP-TDKD block

one SCP-FDKD block

one SCP-Chirp block

NTs sec

(N + Ndelay − 1)Ts sec

(N + Ndelay − 1)Ts sec

1
Ts

Hz

(N −NDopp + 1) 1
NTs

Hz

1
Ts

Hz

BDopp HzBDopp Hz

BDopp HzBDopp Hz

BDopp Hz BDopp Hz
1

NTs
Hz

data

data data data

datadata

Ts sec Tdelay sec
built-in ZP

CPCP
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data &
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data &
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data &
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data &
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data &
pilots

time

time

time
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. . .
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Figure 4.3: Time and bandwidth occupation for several streaming MMSE-PAT sys-
tems designed for Ndelay = 3 and NDopp = 3. Lightly shaded shows channel input and
darkly shaded shows channel output. Note the use of a time-frequency concentrated
modulation pulse ψ(t).

receiver does not discard samples. Thus, when comparing these systems, we must be

careful when defining SNR.

Consider SNR defined as the ratio of signal power to noise power observed at the

output of the receiver’s pulse-shaping filter. Because we assume an energy preserving

discrete-time channel {h[i; l]}, this SNR can be equivalently described as the ratio of

transmitted signal power to received noise power. Since SZP-TDKD has a built-in

ZP, the transmitted signal power is σ2
zp = ρ 1

N

∑N−1
i=0 E{|x[m][i]|2} = ρEtot

N . For SCP

schemes, the transmitted signal power is σ2
cp = ρ 1

N+Ndelay−1

∑N−1
i=−Ndelay+1 E{|x[m][i]|2}

taking the cyclic prefix into account. However, since it is easily verified that SCP-

FDKD and SCP-Chirp both guarantee that

1

N + Ndelay − 1

N−1
∑

i=−Ndelay+1

E{|x[m][i]|2} =
1

N

N−1
∑

i=0

E{|x[m][i]|2},
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we find that σ2
zp = σ2

cp for these schemes. In other words, SZP-TDKD, SCP-FDKD,

and SCP-Chirp all have the same average transmitted power, and thus have the same

SNR, which is ρ.

Now, we combine the per-block achievable rates (from Section 4.4) with the per-

block time-bandwidth consumption of streaming systems (from Section 4.6) in order

to write the achievable rates in units of bits/sec/Hz. As shown in Section 4.6, SZP-

TDKD, SCP-FDKD, and SCP-Chirp schemes have same SNR of ρ and can be fairly

compared. In addition, the channel matrix definition (4.25) holds for SZP-TDKD

as well as SCP schemes because, as evident from Fig. 4.3, the ZP portion of each

SZP-TDKD block acts as if it were a CP for the next SZP-TDKD block. Thus, with

i.i.d. Gaussian input, upper and lower bounds on the achievable rate of the streaming

schemes under consideration are

Rmmse-ub = ζ Rmmse-blk-ub bits/sec/Hz (4.42)

Rmmse-lb = ζ Rmmse-blk-lb bits/sec/Hz (4.43)

respectively, where

ζ =











1
N+NDopp−1 SZP-TDKD

1
N+Ndelay−1 SCP-FDKD

N
(N+Ndelay−1)(N+NDopp−1) SCP-Chirp

, (4.44)

and where Rmmse-blk-ub and Rmmse-blk-lb were defined in Theorem 3. Using similar

arguments, the achievable rate of an SCP system with i.i.d. Gaussian inputs and

perfect receiver-CSI (and no pilots) is

Rcsi = N
(N+Ndelay−1)(N+NDopp−1)Rcsi-blk bits/sec/Hz. (4.45)
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The asymptotic achievable rates can then be written as

RSZP-TDKD =

(
N − (2Ndelay − 1)NDopp

N + NDopp − 1

)

︸ ︷︷ ︸

ηSZP-TDKD

log(ρ) + O(1) bits/sec/Hz (4.46)

RSCP-FDKD =

(
N − (2NDopp − 1)Ndelay

N + Ndelay − 1

)

︸ ︷︷ ︸

ηSCP-FDKD

log(ρ) + O(1) bits/sec/Hz (4.47)

RSCP-Chirp =

(
(N − 2NDoppNdelay + 1)N

(N + NDopp − 1)(N + Ndelay − 1)

)

︸ ︷︷ ︸

ηSCP-Chirp

log(ρ) + O(1) bits/sec/Hz,

(4.48)

as ρ → ∞. For integer Ndelay and NDopp, it easily follows that Ndelay ≥ NDopp ⇔

ηSCP-FDKD ≥ ηSZP-TDKD and vice versa. Thus, in the high-SNR regime, SCP-FDKD

dominates SZP-TDKD (from [13]) when Ndelay > NDopp, while SZP-TDKD dominates

SCP-FDKD when Ndelay < NDopp.

4.7 Numerical Results

In this section, we present numerical examples of the spectral efficiencies of several

streaming MMSE-PAT schemes. For this purpose, we evaluate the achievable rate

bounds of streaming MMSE-PAT (in units of bits/sec/Hz) for the SZP-TDKD, SCP-

FDKD, and SCP-Chirp schemes, using the power allocation procedure described in

Section 4.5. In all cases, we consider block size N = 120 and plot the bounds over

the SNR range of practical interest. As discussed in Section 4.6, ρ is the SNR of all

the PAT schemes. We used a Monte-Carlo approach to evaluate the expectation in

the bounding expressions (4.27)-(4.28).
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In Fig. 4.4, we show results for a channel with i.i.d. BEM coefficients (i.e., Rλ =

N
NDoppNdelay

I) such that Ndelay = NDopp = 3. These discrete spreading parameters cor-

respond to a spreading index of γ ≈ 0.07, as results from, e.g., carrier frequency

fc = 80 GHz, sampling interval Ts = 1 µsec, maximum mobile velocity vmax = 150

km/hr, and a channel delay spread Tdelay of 3 µsec. These physical channel param-

eters are related to BDopp via BDopp = fcvmax/c, where c denotes the speed of light.

Both the SCP-Chirp schemes yield identical bounds since they have the same spec-

tral efficiency. Also, as can be seen from Fig. 4.4, SZP-TDKD and SCP-FDKD yield

identical bounds on achievable rate, which is expected since Ndelay = NDopp. The

bounds for SCP-Chirp schemes are uniformly lower than those for SZP-TDKD and

SCP-FDKD, which is also expected since NDopp 5= 1 5= Ndelay. For reference, Fig. 4.4

also plots the performance of an SCP system with perfect receiver CSI (and no pilots)

via (4.45).

In Fig. 4.5, we show results for a channel with i.i.d. BEM coefficients such that

Ndelay = 15 and NDopp = 3. This channel is primarily time-spreading with spreading

index γ ≈ 0.37 and results from, e.g., the same physical channel parameters as before,

but with a channel delay spread Tdelay of 15 µsec. Note that, since Ndelay > NDopp,

the SCP-FDKD bounds dominate SZP-TDKD bounds, which in turn dominate the

SCP-Chirp bounds. Compared to Fig. 4.4, there is a much larger gap between the

MMSE-PAT bounds and the perfect-receiver-CSI bounds, as a consequence of the

higher spreading index.

In Fig. 4.6, we compare SZP-TDKD to SCP-FDKD on two channels with Ndelay =

15 and NDopp = 3. One has i.i.d. BEM coefficients (i.e., E |λ[k; l]|2 = N
NDoppNdelay

for

k ∈ {−NDopp−1
2 , . . . , NDopp−1

2 } and l ∈ {0, . . . , Ndelay−1}), and the other has independent
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but non-identically distributed BEM coefficients, as would result from a non-uniform

delay profile and a non-uniform Doppler spectrum. In particular, we consider a

channel with a “Jakes” Doppler spectrum and an exponential delay profile, for which

E{|λ[k; l]|2} = χe−0.1l(B2
Dopp − k2(NTs)−2)−0.5 for k ∈ {−NDopp−1

2 , . . . , NDopp−1
2 } and

l ∈ {0, . . . , Ndelay−1}, and where χ is chosen such that tr{Rλ} = N . For the channel

with i.i.d. BEM coefficients, we allocate pilot/data power according to the procedure

in Section 4.5, while, for the non-i.i.d. channel, we allocate equal power between pilots

and data. In both cases, we see that the achievable rate bounds grow (asymptotically)

linearly in log ρ with slopes proportional to the pre-log factors in the asymptotic rate

expressions (4.46)-(4.47). Since, for this channel, Ndelay > NDopp, SCP-FDKD’s higher

pre-log factor translates into significant rate gains over SZP-TDKD at high SNR.
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Figure 4.4: Bounds on ergodic achievable rates for Ndelay = NDopp = 3.
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Figure 4.5: Bounds on ergodic achievable rates for Ndelay = 15 and NDopp = 3.
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CHAPTER 5

SPECTRALLY EFFICIENT PAT

Recall that a rate R of a PAT scheme is said to be achievable if the probability

of decoding error for that rate can be made arbitrarily small. Since our PAT schemes

use Gaussian codes, based on Theorem 1, which gives the bound on the pre-log factor

of the constrained capacity of noncoherent DSC with continuous inputs, we make the

following definition about the PAT schemes.

Definition 1. A PAT scheme is called spectrally efficient if its per-channel-use

achievable rate R(ρ) over the CE-BEM DSC satisfies limρ→∞
R(ρ)
log ρ = N−NDoppNdelay

N .

For the case of flat or frequency-selective channels, PAT schemes designed to

minimize the channel estimation error variance have been shown to be spectrally

efficient [7, 20, 41]. We study the MMSE-PAT schemes for DSC and establish that

they are spectrally inefficient. We also derive design conditions for spectrally efficient

PAT and present a novel spectrally efficient PAT.

5.1 Is any MMSE-PAT Spectrally Efficient?

From the asymptotic rates of MMSE-PAT schemes (Theorem 4), the prelog factor

of the per-channel-use achievable rates of TDKD, FDKD and the chirp schemes are
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N−(2Ndelay−1)NDopp

N , N−(2NDopp−1)Ndelay

N and N−2NdelayNDopp

N respectively. Note that, for singly

selective channels, some MMSE-PAT schemes are spectrally efficient. For example,

for time selective channels (Ndelay = 1), the TDKD scheme is spectrally efficient.

Similarly, for frequency selective channels (NDopp = 1), the FDKD scheme is spectrally

efficient. For strictly doubly selective channels (i.e., Ndelay > 1 and NDopp > 1), the

four MMSE-PAT Examples from Section 4.3 yield Ns < N − NDoppNdelay, and are

clearly not spectrally efficient. The ZP-MMSE-PAT scheme from [13] which resembles

TDKD is also spectrally inefficient. But does there exist some other MMSE-PAT

scheme which is spectrally efficient over the CE-BEM DSC? The answer is given in

the following theorem.

Theorem 5. In CE-BEM DSC with Ndelay > 1 and NDopp > 1, the data dimension

Ns of any CP-MMSE-PAT scheme (p, B) satisfying the necessary requirements given

in Lemma 2 is strictly bounded as Ns < N −NDoppNdelay.

Proof. See Appendix D.1.

Combining the achievable rates of MMSE-PAT from Theorem 4 and the result

from Theorem 5, we have the following result.

Corollary 1 (Spectral Inefficiency). No CP-MMSE-PAT scheme is spectrally efficient

over the strict CE-BEM DSC with Ndelay > 1 and NDopp > 1.

Our results show that there are some fundamental differences between singly se-

lective channels and doubly selective channels. The reason for spectral inefficiency of

MMSE-PAT schemes over DSC can be intuitively explained as follows. In the case

of the singly selective (time selective or frequency selective) channels, the “effective”

channel matrix H̀ for the PAT schemes (recall (2.27)) has deterministic eigen vectors
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and the unknown channel coefficients correspond to the eigen values. This property

allows the “optimal” estimation of the unknown channel parameters (in the MSE

sense) by sacrificing the signaling dimensions whose number equals the number of

unknown channel parameters. But channel matrix corresponding to DSC does not

have deterministic eigen vectors and the optimal estimation of the channel coeffi-

cients takes away more signaling dimensions than the number of unknown channel

coefficients.

Note on CP overhead: In calculating the spectral efficiency of MMSE-PAT schemes

in units bits per channel-use, we ignored the overhead due to CP. If the delay spread

Ndelay is small compared to the block size N , the fraction of CP overhead Ndelay−1
N

becomes negligible. Even if Ndelay : N , the MMSE-PAT schemes from Section 4.3

can be highly inefficient in terms of achievable rates, if NDoppNdelay is comparable to

N .

5.2 Design of Spectrally Efficient PAT

We proceed towards the design of spectrally efficient PAT. First, we note that for

our decoder in Section 2.3.2, if Ep = 0, then the LMMSE estimate of the channel from

pilots is Ĥ = 0. In that case, the mismatched minimum distance decoder in (2.31)

can not differentiate between any two distinct codewords and the achievable rate is

0. Since this case is not interesting, we restrict ourselves to the case of non-zero pilot

energy Ep, specifically lim infρ→∞ Ep > 0. Now, recalling (2.29), the output vector is

represented as,

y =
√
ρPUλ +

√
ρDUλ + v. (5.1)
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Since we are considering non-data-aided estimators, the pilot-data orthogonality at

the channel output is desirable; otherwise the channel estimation will suffer interfer-

ence from data and the channel estimates will not be perfect even in the absence of

noise (i.e., asymptotically as ρ → ∞). Using pilot data orthogonality criterion, we

introduce the notion of “linearly separable” PAT.

Definition 2. A PAT scheme is said to be linearly separable if the pilots and data

are orthogonal so that (PU)HDU = 0, ∀D.

Recall from Theorem 2 that all the MMSE-PAT schemes are linearly separable

since they satisfy the pilot-data orthogonality. Now, we present the achievable rates

of linearly separable PAT schemes with Gaussian codes of covariance Rs and the mis-

matched decoder specified in Section 2.3.2. To do so, we specify the weighting matrix

Q and use a result from [30]. To obtain the weighting matrix, first we “separate” the

pilots and data at the observation. Recalling (2.27), we have

y =
√
ρH̀(p + Bs) + v. (5.2)

Let the columns of Bd form an orthonormal basis for the left null space of PU . Due

to pilot-data orthogonality, the projection

yd = BH
d y (5.3)

= BH
d H̀B

︸ ︷︷ ︸

Hd

s + BH
d v

︸︷︷︸

vd

, (5.4)

does not result in any loss of data energy. Splitting Hd into estimate Ĥd and error

H̃d components, we have

yd = Ĥds + H̃ds + vd
︸ ︷︷ ︸

n

. (5.5)
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From [30], denoting Rn = E{nnH}, the optimal weighting factor to be applied to

yd in order to maximize the achievable rates is R−1/2
n , which can be thought of as

“whitening” filter. So, we apply the weighting factor

Q = R−1/2
n BH

d , (5.6)

in the decoder (2.31). Now, let the columns of Bp form an orthonormal basis for the

column space of PU and consider the projection

yp = BH
p y (5.7)

=
√
ρBH

p PUλ + BH
p v

︸︷︷︸

vp

, (5.8)

where (5.8) follows from the linear separability. Since the projection yp does not

result in any loss of pilot energy, LMMSE estimate of the channel from y and yp are

same. Now, since yp and λ are jointly Gaussian LMMSE estimate coincide with the

MMSE estimate. Because of this, our PAT decoder in Section 2.3.2 falls within the

hypothesis of [30] and we can use the result from [30] to find the achievable rates of

our PAT schemes. The result is given in the following lemma.

Lemma 5. For a linearly separable PAT scheme, with the weighting factor in (5.6)

applied in the decoder (2.31), the per-block achievable rates are given by

Rls-blk = E{log det[I + ρR−1
n ĤdRsĤ

H

d ]} bits/block. (5.9)

The above rate expression resembles that of coherent case [33] with n acting as “ef-

fective” Gaussian noise. Now, note that there are NDoppNdelay independent unknown

BEM coefficients in each N -length block. All the CP-MMSE-PAT schemes are shown

to sacrifice more than NDoppNdelay dimensions for pilots, leaving Ns < N−NDoppNdelay
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dimensions for data symbols, and hence are spectrally inefficient. To design a spec-

trally efficient PAT, we need to relax the MMSE requirements in Lemma 2. As noted

before, since we are considering non-data-aided estimators, the pilot-data orthogo-

nality at the channel output (4.7) is desirable. Thus, a PAT scheme which preserves

pilot-data orthogonality at the channel output, and which can yield perfect chan-

nel estimates in the absence of noise using only NDoppNdelay pilot dimensions, is a

candidate for spectrally efficient PAT. In the following, we establish the sufficient

conditions for a PAT scheme to be spectrally efficient.

Theorem 6. Suppose a PAT scheme parameterized by pilot vector p and data mod-

ulation matrix B satisfies following conditions;

1. PU is full rank.

2. rank(B) = N −NDoppNdelay.

3. It is linearly separable.

Then the PAT scheme is spectrally efficient.

Proof. See Appendix D.2.

First condition gives the requirement for the pilot vector. Second condition stipu-

lates the requirement of the precoder matrix. Third condition gives the joint require-

ment between the pilot vector and precoder matrix. A PAT scheme satisfying the

above requirements is given below.

Example 5 (SE-PAT). With the pilot index set Ps = {0, Ndelay, ..., (NDopp−1)Ndelay}

and the guard index set Gs = {0, ..., NDoppNdelay− 1}, an N-block ZP PAT scheme for
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the CE-BEM DSC is given by

p[k] =

{√
Ep

NDopp
ejθ[k] k ∈ Ps

0 k /∈ Ps

(5.10)

and by B constructed from the columns of IN with indices not in the set Gs. θ(k) ∈ R

is arbitrary.

In the above PAT, the first NDoppNdelay time slots are used by the pilots and the

remaining time slots are used for data transmission ensuring linear separability. The

structure of the PAT is illustrated in Fig. 5.1. Also the rank of the precoding matrix

is N −NDoppNdelay. It can also be easily verified that PU is full rank.

time

data

0 N − 1
Ndelay − 1

Figure 5.1: Structure of SE-PAT with Ndelay = 5 and NDopp = 3.

5.3 Comparison of PAT schemes

In this section, we compare the achievable rates of MMSE-PAT schemes from Sec-

tion 4.3 and the SE-PAT scheme from the previous section. We numerically evaluate

the achievable rates and also perform some approximate theoretical computations

for comparison. First, we numerically evaluate the achievable rates of SE-PAT and

MMSE-PAT schemes with i.i.d. Gaussian codes and equal energy allocation between
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pilots and data. With σ2
s = Es

Ns
, the per-channel-use achievable rates of SE-PAT and

MMSE-PAT schemes with i.i.d. Gaussian codes are given by (Lemma 5)

R =
1

N
E{log det[I + ρσ2

sR
−1
n ĤdĤ

H

d ]}, (5.11)

where Ĥd = BH
d H̀B and Rn is the covariance of BH

d

(√
ρH̃Bs + v

)

. Since BBH ≤

I, we have,

Rn = ρσ2
sB

H
d E

{

H̃BBHH̃
H
}

Bd + I (5.12)

≤ ρσ2
sB

H
d E

{

H̃H̃
H
}

Bd + I. (5.13)

For ease of computation, we evaluate the lower bound on the achievable rates (5.11)

by replacing Rn with its upper bound (5.13). In fact, for MMSE-PAT schemes, this

lower bound on achievable rates coincides with the lower bound in Theorem 3. For

different values of N , Ndelay and NDopp, with identically distributed BEM coefficients,

the plots of lower bound on the achievable rates (in bits per channel-use) versus SNR

are shown in Figures 5.2-5.4. For comparison, we also plot the rates of coherent

case of perfect receiver CSI apriori, with i.i.d. Gaussian codes. Since the asymptotic

achievable rates of SE-PAT scheme has higher pre-log factor than that of MMSE-

PAT schemes, we see that the rates of SE-PAT scheme grow faster with SNR than

the MMSE-PAT schemes, in the high SNR regime.

5.3.1 Effective SNR

In the decoder, since Ĥds corresponds to the signal component and since n =

H̃ds + vd acts as the effective noise (from Lemma 5), we define the effective SNR of

the PAT scheme as

ρeff =
ρσ2

s tr{Rĥ/N}
ρσ2

s tr{Rh̃/N} + 1
.
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Figure 5.2: Lower bound on achievable rates for N = 108, Ndelay = 9, NDopp = 3.
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Figure 5.3: Lower bound on achievable rates for N = 108, Ndelay = 12, NDopp = 3.
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Figure 5.4: Lower bound on achievable rates for N = 108, Ndelay = 18, NDopp = 3.
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We will see that the effective SNR is an important parameter of the PAT schemes

which gives insights on their achievable rates. For MMSE-PAT schemes, the covari-

ance of the channel estimate and the estimation error are given by (4.10) and (4.9)

respectively. For the spectrally efficient (SE) PAT, the pilot observations can be

written as

yp =

√

ρEp

N
Gλ + vp, (5.14)

for a suitably constructed G with unit-norm rows. From the structure of the SE-PAT

scheme, it follows that G is full rank. Now, the error covariance can be written as

Rse
h̃

= U

(

R−1
λ +

ρEp

N
GHG

)−1

UH, (5.15)

Rse
ĥ

= U

[

Rλ −
(

R−1
λ +

ρEp

N
GHG

)−1
]

UH. (5.16)

Denoting the minimum eigen value of GHG by µmin, we obtain the following bounds

on the covariance matrices,

Rse
h̃

≤ U

(

R−1
λ +

ρEpµmin

N
INDoppNdelay

)−1

UH = Rse-ub
h̃

, (5.17)

Rse
ĥ

≥ U

[

Rλ −
(

R−1
λ +

ρEpµmin

N
INDoppNdelay

)−1
]

UH = Rse-lb
ĥ

. (5.18)

Since G is full rank and tr{GHG} = NDoppNdelay, the minimum eigen value is bounded

as

0 < µmin ≤ 1. (5.19)

For the SE-PAT schemes, using (5.17), we have the following bound on the effective

SNR,

ρseeff ≥ ρse-lbeff =
ρσ2

s tr{Rĥ/N}
ρσ2

s tr{Rse-ub
h̃

/N} + 1
,
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which will be used in our theoretical computations. If the effective SNR of a PAT

scheme is high, i.e., ρeff ; 1, then it operates in degrees of freedom (DOF) limited

regime, i.e., the achievable rates are limited by the available DOF [3]. If the effective

SNR is small, i.e., ρeff : 1, then it operates in the noise limited regime. Now, we

make some approximate calculations to find the cutoff SNR value for the PAT schemes

at which they switch from the noise limited regime to the DOF limited regime. In

the DOF limited regime, SNR is high, i.e., ρ ; 1, since the effective SNR (which is

limited by both the estimation error and the additive noise) is high. For the case of

MMSE-PAT schemes, with ρ; 1, using Taylor approximation, we have

tr{Rh̃} = tr

(

R−1
λ +

ρEp

N
I

)−1

(5.20)

=

NDoppNdelay−1
∑

i=0

1

[Rλ]
−1
i,i + ρEp

N

(5.21)

≈ N

ρEp

NDoppNdelay−1
∑

i=0

1− N

ρEp[Rλ]i,i
(5.22)

≈ NNDoppNdelay

ρEp
, (5.23)

and hence tr{Rĥ} = N(1 − NDoppNdelay

ρEp
) ≈ N . Using these approximations, defining

σ2
p = Ep

NDoppNdelay
, we have

ρmmse
eff ≈

ρσ2
sσ

2
p

σ2
s + σ2

p

. (5.24)

Similar calculations for SE-PAT schemes yield,

ρse-lbeff ≈
ρµminσ2

eσ
2
p

σ2
s + µminσ2

p

. (5.25)

We define the SNR-cutoff for the MMSE-PAT schemes as

ρmmse
cut-off =

σ2
s + σ2

p

σ2
sσ

2
p

,
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while for SE-PAT schemes we define

ρsecut-off =
σ2

s + µminσ2
p

µminσ2
sσ

2
p

. (5.26)

Beyond this cutoff, the achievable rates of PAT schemes are not limited by effective

noise but are limited by the available DOF. For the SE-PAT scheme, in Fig. 5.5, we

plot the rates versus SNR curves for the two cases: (a) N = 135, Ndelay = 9 and

NDopp = 3, (b) N = 135, Ndelay = 15 and NDopp = 3. For these cases, theoretically

calculated ρsecut-off using (5.25) is 18 dB and 25 dB respectively. From Fig. 5.5, we see

that, after the cutoff SNR, the performance is limited by the available DOF, and the

rates grow linearly with SNR with a slope proportional to Ns.

5.3.2 Intersection Point

Since SE-PAT scheme has higher estimation error, its effective SNR might be

smaller than the MMSE-PAT schemes. So, in the moderate SNR regime, MMSE-

PAT schemes may support higher rates than the SE-PAT scheme. (See Figures 5.2,

5.3.) But as ρ increases beyond ρsecut-off, rates of SE-PAT increases with higher slope

and eventually beats the rates of MMSE-PAT schemes. (See Figures 5.2, 5.3.) We

now make some rough calculations on the SNR value for which the rates of the SE-

PAT intersects with that of the MMSE-PAT schemes. These SNR values provide

the thresholds for choosing between the SE-PAT and MMSE-PAT schemes. For

convenience, we define the normalized channel estimates H̄d = Ĥd

√

N/ tr{Rĥ},

and the normalized input covariance R̄s = Rs/σ2
s , Now, the per-block achievable

rates of MMSE-PAT schemes and SE-PAT schemes are bounded as,

Rmmse-blk ≥ Rmmse-blk-lb = E{log det[I + ρmmse
eff H̄

H

d R̄sH̄d]}, (5.27)

Rse-blk ≥ Rse-blk-lb = E{log det[I + ρse-lbeff H̄
H

d R̄sH̄d]}. (5.28)
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Figure 5.5: Achievable rates of SE-PAT: (a) N = 135, Ndelay = 9 and NDopp = 3, (b)
N = 135, Ndelay = 15 and NDopp = 3.
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We wish to compare the rates of an SE-PAT scheme with data dimension N se
s and

SNR cut-off ρsecut-off with the rates of MMSE-PAT scheme with data dimension Nmmse
s

and cut-off SNR ρmmse
cut-off. We approximately compute SNR value at which the rates of

those two schemes intersect. Specifically, we compute the SNR at which the Rse-blk-lb−

Rmmse-blk-lb ≈ 0. Let {αi}N se
s −1

0 and {βi}Nmmse
s −1

0 denote the non-zero eigen values of

the normalized effective channel H̄dR̄sH̄
H

d for MMSE-PAT and SE-PAT schemes

respectively. Now,

Rmmse-blk-lb = E{
Nmmse

s∑

i=0

log(1 + ρmmse
eff αi)}, (5.29)

Rse-blk-lb = E{
N se

s∑

i=0

log(1 + ρse-lbeff βi)}, (5.30)

and using the high SNR approximations of ρmmse
eff and ρse-lbeff , we have

Rmmse-blk-lb ≈ E{
Nmmse

s∑

i=0

log(1 +
ρ

ρmmse
cut-off

αi)}, (5.31)

Rse-blk-lb ≈ E{
N se

s∑

i=0

log(1 +
ρ

ρsecut-off

βi)}. (5.32)

Now,

Rse-blk-lb −Rmmse-blk-lb ≈ N se
s log(

ρ

ρsecut-off

)−Nmmse
s log(

ρ

ρmmse
cut-off

)

+ E{
∑

i

log(
ρmmse

cut-off

ρ
+ βi)− log(

ρsecut-off

ρ
+ αi)}

≈ N se
s log(

ρ

ρsecut-off

)−Nmmse
s log(

ρ

ρmmse
cut-off

)

and hence Rse-blk-lb − Rmmse-blk-lb ≈ 0 implies N se
s log( ρ

ρse
cut-off

) ≈ Nmmse
s log( ρ

ρmmse
cut-off

). So,

we compute the point of the intersection of the rates as

ρint =
N se

s log ρsecut-off −Nmmse
s log ρmmse

cut-off

N se
s −Nmmse

s

. (5.33)
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Note that, in calculating the intersection points, we made approximations that

ρeff ≈ ρ
ρcut-off

which is accurate when ρ ; 1. So, our intersection point SNR will

be accurate when the intersection of the rates occur in the high SNR regime. In

Fig. 5.6, we plot the rates of SE-PAT and FDKD scheme for the parameters N = 126,

Ndelay = 14 and NDopp = 3. For this case, ρint calculated from (5.33) is approximately

51 dB. From Fig. 5.6, we see that our theoretical intersection point is close to the

point obtained through simulations. For the parameters N = 96, Ndelay = 12 and

NDopp = 3, the achievable rates of SE-PAT and FDKD are plotted in Fig. 5.7 and the

theoretically calculated ρint, which is approximately 39 dB, is close to the value from

simulations.
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Figure 5.6: Intersection of achievable rates for N = 126, Ndelay = 14, NDopp = 3.
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Figure 5.7: Intersection of achievable rates for N = 96, Ndelay = 12, NDopp = 3.
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CHAPTER 6

MMSE-PAT FOR MIMO SYSTEMS

Multi-antenna systems are widely used in the wireless communications due to

their ability to provide high spectral efficiency by creating many “equivalent” par-

allel channels between the transmitter and the receiver. Several researchers have

analyzed the performance of MIMO systems under different fading assumptions, for

e.g. [7, 19, 28, 33, 42]. In this chapter, we extend the MMSE-PAT design for MIMO

doubly selective channels [62] and new intuitions are uncovered in the MIMO case.

For example, we show that, for independent fading between different antenna pairs,

the number of receive antennas does not affect the design of MIMO-MMSE-PAT for

DSC. We establish that the spectral efficiency of MIMO-MMSE-PAT does not nec-

essarily increase even if the number of transmit and receive antennas are increased

simultaneously. We also present the optimal number of active antennas which max-

imizes the spectral efficiency. Numerical examples are presented to illustrate the

theoretical results. The works [13, 43], while similar in direction, were restricted to

non-superimposed time-domain pilots. In fact, we show that a frequency-domain

MMSE-PAT scheme achieves higher rates than the time-domain MMSE-PAT scheme

from [43] when the MIMO doubly selective channel’s time spread dominates its fre-

quency spread.

82



6.1 MIMO System Model

We consider a MIMO system with T transmit and R receive antennas, cyclic-prefix

block transmission, and a DSC that satisfies a complex exponential basis expansion

model. Details are given below.

The sampled complex-baseband output signal {y[r][n]} at the rth receive antenna

is related to the transmitted signal {x[t][n]} from the tth transmit antenna via

y[r][n] =
√
ρ

T−1
∑

t=0

Ndelay−1
∑

+=0

h[r,t][n; l]x[t][n− l] + v[r][n], (6.1)

where {v[r][n]} is zero-mean unit-variance circular (spatially and temporally) white

Gaussian noise and h[r,t][n; l] is the time-n channel response at the rth receive an-

tenna to an impulse applied at time n − l on the tth transmit antenna. Here, Ndelay

denotes the channel’s maximum time spread normalized to the sampling interval Ts,

which is assumed equal for all (r, t) antenna pairs. The length-N transmission block5

{x[t][n]}N−1
n=0 is preceded by a cyclic prefix of length Ndelay − 1, whose contribution is

discarded in forming y[r] = [y[r][0], . . . , y[r][N − 1]]!. Throughout this chapter, we

5When we refer to a “transmission block of length N ,” we do not include the contribution from
the CP.
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assume modulo-N indexing, i.e., z[i] = z[〈i〉N ]. With the definitions

X = diag(X [0], ...,X [T−1])

X [t] = [X [t]

0 · · ·X [t]

−Ndelay+1]

X [t]

k = diag(x[t][k], ..., x[t][k + N − 1])

h[r] = [h[r,0]! · · ·h[r,T−1]!]!

h[r,t] = [h[r,t]!
0 · · ·h[r,t]!

Ndelay−1]
!

h[r,t]

k = [h[r,t][0; k], . . . , h[r,t][N − 1; k]]!

v[r] = [v[r][0], . . . , v[r][N − 1]]!,

the DSC model (6.1) can be rewritten as

y[r] =
√
ρ

T−1
∑

j=0

X [t]h[r,t] + v[r], (6.2)

=
√
ρ
(

X [0] · · ·X [T−1]
)

︸ ︷︷ ︸

X






h[r,0]

...
h[r,T−1]






︸ ︷︷ ︸

h[r]

+v[r]. (6.3)

Collecting the observations from different receive antennas in ȳ = [y[0]!, ...,y[R−1]!]!,

we have

ȳ =
√
ρX̄h̄ + v̄, (6.4)

with X̄ = IR ⊗X, h̄ = [h[0]!, ...,h[R−1]!]!, and v̄ = [v[0]!, ...,v[R−1]!]!.

The transmit signal is constructed as x[t][n] = p[t][n] + d[t][n], where {p[t][n]} is the

deterministic pilot sequence and {d[t][n]} is the zero-mean data sequence. Note the

superposition of pilots and data. Using {p[t][n]} and {d[t][n]} to construct P and D,

respectively, in the manner of X, we see that

X = P + D, (6.5)
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which again shows the superposition of pilots and data. Similarly, we have X̄ =

P̄ + D̄. Defining the pilot vector p[t] = [p[t][0], . . . , p[t][N − 1]]!, the pilot energy is

constrained as

T−1
∑

t=0

‖p[t]‖2 = Ep. (6.6)

The data vector d[t] = [d[t][0], . . . , d[t][N − 1]]! is obtained by linear modulation of Ns

information bearing symbols s[t] = [s[t][0], . . . , s[t][Ns − 1]]! according to

d[t] = B[t]s[t], (6.7)

where B[t] is the tth transmit antenna’s precoding matrix. We require that the columns

of B[t] are linearly independent.

We assume that the channel coefficients between different antenna pairs are inde-

pendent with identical second-order statistics. The following CE-BEM describes the

channel response between the rth receive and tth transmit antenna over the N -length

block duration. For n ∈ {0, . . . , N − 1} and l ∈ {0, . . . , Ndelay − 1},

h[r,t][n; l] =
1√
N

(NDopp−1)/2
∑

k=−(NDopp−1)/2

λ[r,t][k; l]ej 2π
N

kn, (6.8)

where CE-BEM coefficients {λ[r,t][k; l]} are assumed to be zero-mean uncorrelated

Gaussian with positive variance. We allow CE-BEM coefficients with possibly unequal

variances in order to model arbitrary delay profiles and Doppler spectra.

We define the N × NDopp matrix F̄ element-wise as [F̄ ]n,m = 1√
N

ej 2π
N

n(m−
NDopp−1

2 )

and notice that F̄
H
F̄ = INDopp

. With the definitions

U 0 = INdelay
⊗ F̄

λ[r,t]

l = [λ[r,t][−NDopp−1
2 ; l], . . . ,λ[r,t][NDopp−1

2 ; l]]!

λ[r,t] = [λ[r,t]!
0 · · · λ[r,t]!

Ndelay−1]
!,
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(6.8) becomes

h[r,t] = U 0λ
[r,t], (6.9)

which is the Karhunen-Loeve expansion of h[r,t], since UH
0 U 0 = INDoppNdelay

and since

R[r,t]

λ = E{λ[r,t]λ[r,t]H} > 0 is diagonal. Since we assume identical second-order statis-

tics for every transmit-receive antenna pair, we abbreviate R[r,t]

λ by Rλ. We assume

an energy preserving channel between each transmit-receive antenna pair such that

1
N E{‖h[r,t]‖2} = 1

N tr{Rλ} = 1. Now, with

U = IT ⊗U 0,

Ū = IR ⊗U ,

λ[r] = [λ[r,0]!, ...,λ[r,T−1]!]!,

λ̄ = [λ[0]!, ...,λ[R−1]!]!,

we have h[r] = Uλ[r], h̄ = Ū λ̄ and

ȳ =
√
ρ(P̄ + D̄)Ū λ̄ + v̄. (6.10)

From the channel independence assumptions between different antenna pairs, we have

Rλ̄ = E{λ̄λ̄
H} = IRT ⊗Rλ.

As in the SISO case, we refer to Ndelay as the discrete time spread and to NDopp

as the discrete frequency spread. In addition, we refer to BDoppTs as the normalized

Doppler spread and to γ = NdelayNDopp/N as the channel’s spreading index. We

restrict our focus to underspread channels for which γ < 1.
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6.2 MIMO-MMSE-PAT Design

In this section, we present the MMSE-PAT design requirements for the MIMO

DSC and provide several novel MIMO-MMSE-PAT schemes. Though we assume

Gaussian fading statistics, the results in this Section are valid for non-Gaussian fading

as well.

The LMMSE estimate of h̄ given knowledge of {ȳ, P̄ } and knowledge of the

second-order statistics of {h̄, D̄, v̄} is [53]

ĥ = RH
ȳ,h̄R

−1
ȳ ȳ, (6.11)

where Rȳ,h̄ = E{ȳh̄
H} and Rȳ = E{ȳȳH}. Given our assumptions,

Rȳ,h̄ =
√
ρP̄ ŪRλ̄Ū

H

Rȳ = ρP̄ ŪRλ̄Ū
H
P̄

H
+ ρE{D̄ŪRλ̄Ū

H
D̄

H} + INR.

The channel estimation error h̃ = h̄− ĥ has total MSE σ2
e = E{‖h̃‖2}, which is given

by [53]

σ2
e = tr{ŪRλ̄Ū

H −RH
ȳ,h̄R

−1
ȳ Rȳ,h̄}. (6.12)

We are interested in finding the combination of energy constrained pilot vectors {p[t]}

and data precoding matrices {B[t]} such that the resulting MSE σ2
e is minimal. We re-

fer to such combinations {p[t], B[t]}, t ∈ {0, ..., T −1} as MIMO-MMSE-PAT schemes.

Theorem 7 (MSE Lower Bound). For T -transmit R-receive antenna N-block CP

PAT over the CE-BEM DSC, with the non-data-aided channel estimator (6.11), the

channel estimate MSE (6.12) obeys

σ2
e ≥ tr

{
(

R−1
λ̄

+
ρEp

NT
INDoppNdelayRT

)−1
}

, (6.13)
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where equality in (6.13) occurs if and only if the following conditions hold:

1. Pilot-Data Orthogonality:

(PU)HDU = 0, ∀D (6.14)

2. Optimal Excitation:

(PU )HPU =
Ep

NT
I. (6.15)

When (6.14)-(6.15) are met, Rh̃ = E{h̃h̃
H} and Rĥ = E{ĥĥ

H
} are given by

Rh̃ = Ū

(

R−1
λ̄

+
ρEp

NT
INDoppNdelayRT

)−1

Ū
H

(6.16)

Rĥ = Ū

{

Rλ̄ −
(

R−1
λ̄

+
ρEp

NT
INDoppNdelayRT

)−1
}

Ū
H
. (6.17)

Proof. See Appendix E.1.

PU and DU are composed of blocks of the form P [t]U 0 and D[t]U 0, respectively,

corresponding to each transmit-receive antenna pair. An analysis of these blocks

using techniques similar to the SISO case (Chapter 4) can be used to re-state the

MSE optimality requirements (6.14)-(6.15) in terms of the pilot sequence {p[t][i]} and

data basis sequence {b[t]
q [i]}, where p[t][i] = [p[t]]i and b[t]

q [i] = [B [t]]i,q. We use the

following index sets in the sequel: Ndelay = {−Ndelay + 1, ..., Ndelay − 1}, NDopp =

{−NDopp + 1, ..., NDopp − 1}, T = {0, ..., T − 1} and Q = {0, ..., Ns − 1}.

Lemma 6 (Time Domain). For T -transmit R-receive antenna N-block CP PAT over

the CE-BEM DSC, the following are necessary and sufficient conditions for equality
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in (6.13). ∀k ∈ Ndelay, ∀m ∈ NDopp, ∀ti ∈ T , ∀q ∈ Q

N−1∑

i=0

b[t1]
q [i]p[t2]∗[i− k]e−j 2π

N
mi = 0 (6.18)

N−1
∑

i=0

p[t1][i]p[t2]∗[i− k]e−j 2π
N

mi =
Ep

T
δ[k]δ[m]δ[t1 − t2]. (6.19)

Similar to the SISO case, the MMSE optimality (6.18) requires that the pilot and

the data components of the received signal lie in orthogonal subspaces so that the

linear estimate (6.11) is impervious to interference from unknown data. With MIMO

systems, the MMSE optimality condition (6.19) requires that the received pilot com-

ponents corresponding to different transmit antennas lie in orthogonal subspaces.

This is intuitively satisfying since our channel independence assumptions imply that

the received pilot contribution from one transmit antenna is not useful for the estima-

tion of channel coefficients corresponding to other transmit antennas. We note also

that the number of receive antennas R does not affect the MIMO-MMSE-PAT design

requirements in Lemma 6, and hence the multiple receive-antenna MMSE-PAT de-

sign problem reduces to a single receive-antenna MMSE-PAT design problem. In fact,

the symmetry among different antenna pairs implies that the MMSE-PAT design for

a particular receive antenna suffices as the MMSE-PAT design for the other receive

antennas. Here again, cooperation among the estimators of channels for different

receive-antennas is ineffective due to the independence of these channels.

Next we establish the duality of time- and frequency-domain MIMO-MMSE-PAT.

Using the N -point unitary DFT matrix F N , we define the frequency-domain pilot vec-

tors and data precoding matrices, p̆[t] = F Np[t] and B̆
[t]

= F NB[t], respectively. The

MIMO-MMSE-PAT requirements (6.18)-(6.19) are rewritten in terms of {p̆[t], B̆
[t]}t∈T

in the following Lemma, using p̆[t][i] = [p̆[t]]i and b̆[t]
q [i] = [B̆

[t]

]i,q.
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Lemma 7 (Frequency Domain). For T -transmit R-receive antenna N-block CP PAT

over the CE-BEM DSC, the following are necessary and sufficient conditions for

equality in (6.13). ∀k ∈ NDopp, ∀m ∈ Ndelay, ∀ti ∈ T , ∀q ∈ Q

N−1
∑

i=0

b̆[t1]
q [i]p̆[t2]∗[i− k]e−j 2π

N
mi = 0. (6.20)

N−1
∑

i=0

p̆[t1][i]p̆[t2]∗[i− k]e−j 2π
N

mi =
Ep

T
δ[k]δ[m]δ[t1 − t2]. (6.21)

Since the conditions in Lemma 7 are same as those of Lemma 6, with the exception

of the time spread Ndelay and frequency spread NDopp interchanging their roles, we see

that every time-domain MIMO-MMSE-PAT has a frequency-domain dual. This result

is stated precisely as follows.

Lemma 8 (Duality). If {p[t], B[t]}t∈T specifies a T -transmit antenna MIMO-MMSE

N-block CP-PAT scheme for a CE-BEM DSC with time spread N1 and frequency

spread N2, then {F Np[t], F NB[t]}t∈T specifies a T -transmit antenna MIMO-MMSE

N-block CP-PAT scheme for a CE-BEM DSC with time spread N2 and frequency

spread N1.

Time-frequency duality is a well-known and fundamental concept (see, e.g., [17])

and its applicability to SISO-MMSE-PAT schemes for the DSC was demonstrated in

Chapter 4. Here we have established that the time-frequency duality also extends to

the more general case of MIMO-MMSE-PAT for the DSC.

For MIMO-MMSE-PAT, we now present bounds on the number of data symbols

that can be transmitted from each antenna, i.e., the rank of the data precoding

matrices {B[t]}t∈T . Given pilot vectors {p[t]}t∈T satisfying (6.19), precoding matrix

B[t] ∈ CN×Ns which satisfies (6.18) can be constructed as follows. Defining the
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(2NDopp − 1)×N matrix F̆ element-wise as [F̆ ]n,m = 1√
N

e−j 2π
N

(n−NDopp+1)m, and then

defining

P [t]

k = diag(p[t][k], ..., p[t][k + N − 1]),

W [t]

k = F̆P [t]H
k ,

W [t] = [W [t]!
−Ndelay+1 · · ·W

[t]!
Ndelay−1]

!,

W = [W [0]! · · ·W [T−1]!]!, (6.22)

condition (6.18) becomes Wb[t]

q = 0, implying that, for each q, the vector b[t]

q must lie

in the null space of W . This can be achieved by choosing the columns of B[t] as a basis

for null space of W , and hence data dimension Ns must obey Ns ≤ dim(null(W )).

For the case when Ns = dim(null(W )), Ns, the number of information symbols per

MIMO-MMSE N -block CP-PAT per transmit antenna, can be bounded as follows.

Note from (6.22) that the TNDoppNdelay rows of (PU)H are contained within the

T (2NDopp − 1)(2Ndelay − 1) rows of W . In order to satisfy (6.15), those rows must

be orthogonal. Thus, TNDoppNdelay ≤ rank(W ) ≤ T (2NDopp − 1)(2Ndelay − 1), which

means that (6.18)-(6.19) imply

N − T (2NDopp − 1)(2Ndelay − 1) ≤ Ns ≤ N − TNDoppNdelay. (6.23)

From (6.23), we see that MIMO-MMSE-PAT sacrifices at least TNdelayNDopp, but no

more than T (2Ndelay − 1)(2NDopp − 1), signaling dimensions per transmit antenna.

Recall that NDoppNdelay describes the number of degrees of freedom in the DSC per

each transmit-receive antenna pair and TNDoppNdelay denotes the number of (inde-

pendent) channel coefficients to be estimated at each receive antenna. Increasing T ,

increases the number of parameters to be estimated and thus reduces the number of

data symbols from each antenna.
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6.2.1 MIMO-MMSE-PAT Examples

Now, we present several examples of N -block CP MIMO-MMSE-PAT schemes for

the CE-BEM DSC using the {p[t], B[t]}t∈T parameterization.

Example 6 (MIMO-TDKD). Assuming N
NDopp

∈ Z, consider the pilot index sets P [t]

t

and the guard index set Gt:

P [t]

t = {*+ tNdelay, *+ tNdelay + N
NDopp

, ..., *+ tNdelay + (NDopp−1)N
NDopp

}

Gt =
⋃

t∈T

⋃

k∈P [t]
t

{−Ndelay + 1 + k, ..., Ndelay − 1 + k}.

An N-block CP MIMO MMSE-PAT scheme for the CE-BEM DSC is given by

p[t][q] =

{√
Ep

TNDopp
ejθ[q] q ∈ P [t]

t

0 q /∈ P [t]

t

(6.24)

and by B[t] constructed from the columns of IN with indices not in the set Gt. Both

* ∈ {0, . . . , N
NDopp

− 1} and θ[q] ∈ R, are arbitrary. The corresponding data dimension

per transmit antenna is Ns = N − (T + 1)NDoppNdelay + NDopp.

Example 7 (MIMO-FDKD). Assuming N
Ndelay

∈ Z, consider the (frequency-domain)

pilot index sets P [t]

f and the guard index set Gf :

P [t]

f = {*+ tNDopp, *+ tNDopp + N
Ndelay

, ..., *+ tNDopp + (Ndelay−1)N
Ndelay

}

Gf =
⋃

t∈T

⋃

k∈P [t]
f

{−NDopp + 1 + k, ..., NDopp − 1 + k}.

An N-block CP MIMO-MMSE-PAT scheme for the CE-BEM DSC is given by p[t] =

F H
N p̆[t], with

p̆[t][q] =

{√
Ep

TNdelay
ejθ[q] q ∈ P [t]

f

0 q /∈ P [t]

f

(6.25)
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and by B[t] constructed from the columns of inverse DFT matrix F H
N with indices

not in the set Gf . Both * ∈ {0, . . . , N
Ndelay

− 1} and θ[q] ∈ R, are arbitrary. The

corresponding data dimension per transmit antenna is Ns = N− (T +1)NDoppNdelay +

Ndelay.

Example 8 (MIMO-Time-Domain-Chirp). Assuming even N , an N-block CP MIMO-

MMSE-PAT scheme for the CE-BEM DSC is given by

p[t][q] =

√

Ep

NT
e

j 2π
N

“

NDopp
2 q2+tNDoppNdelayq

”

(6.26)

[B[t]]q,m =
1√
N

e
j 2π

N

“

NDopp
2 q2+(m+TNDoppNdelay)q

”

, (6.27)

for q ∈ {0, . . . , N−1} and m ∈ {0, . . . , Ns−1}, where the data dimension per transmit

antenna is Ns = N − (T + 1)NDoppNdelay + 1.

Example 9 (MIMO-Frequency-Domain-Chirp). Assuming even N , an N-block CP

MMSE-PAT scheme for the CE-BEM DSC is given by p[t] = F H
N p̆[t] and B[t] =

F H
NB̆

[t]

, with

p̆[t][q] =

√

Ep

NT
e

j 2π
N

“

Ndelay
2 q2+tNDoppNdelayq

”

(6.28)

[B̆
[t]

]q,m =
1√
N

e
j 2π

N

“

Ndelay
2

q2+(m+TNDoppNdelay)q
”

, (6.29)

for q ∈ {0, . . . , N−1} and m ∈ {0, . . . , Ns−1}, where the data dimension per transmit

antenna is Ns = N − (T + 1)NDoppNdelay + 1.

It is straightforward to verify that the above examples satisfy the MIMO-MMSE-

PAT requirements (6.18)-(6.19). The structure of MIMO-TDKD is similar to the

MMSE-PAT scheme from [43], with the difference that [43] focused on zero-padded

(ZP) block transmissions. We undertake a detailed comparison of ZP and CP schemes
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in Section 6.5. For CP transmissions with (time) superimposed pilots, we see that

there exist other MMSE-PAT schemes, e.g., MIMO-FDKD and MIMO-Chirp schemes.

For the MIMO-TDKD scheme (illustrated in Fig. 6.1), the impulsive nature of the

equi-spaced pilot blocks yields direct estimates of the channel’s time varying im-

pulse response. The spacing between the pilot impulses of each transmit antenna

(i.e., N
NDopp

≈ 1
2BDopp

) is such that a time-domain Nyquist sampling criterion is satis-

fied, and the guard zeros in each pilot block are constructed to prevent interference

from data and pilot symbols transmitted by other antennas. MIMO-FDKD can be

recognized as the frequency-domain dual of MIMO-TDKD, where the pilot-impulse

spacing is chosen so that a frequency-domain Nyquist criterion is satisfied, and where

the roles of Ndelay and NDopp reverse. Though the MIMO-Chirp schemes has pilot

and data components that overlap in time and frequency, the pilots and data are still

linearly separable at the channel output, as required by (6.14). We note that the

MIMO-Chirp schemes may have advantages over MIMO-TDKD and MIMO-FDKD

in peak-to-average power ratio.

6.3 Achievable Rates of MIMO-MMSE-PAT

We now calculate bounds on the ergodic achievable rate of MIMO-MMSE-PAT

for the CE-BEM DSC from Section 6.2, paying special attention to the high-SNR

regime. As in the SISO case, we consider Gaussian codes and mismatched weighted

minimum distance decoding. Our unified achievable-rate analysis holds for an arbi-

trary {p[t], B[t]}t∈T MIMO-MMSE-PAT scheme, where the pilot vectors {p[t]}t∈T and

the data precoding matrices {B[t]}t∈T satisfy the requirements of Lemma 6.
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Figure 6.1: Structure of T = 2 MIMO-TDKD for DSC with Ndelay = 5 and NDopp = 3.

We consider MIMO-MMSE-PAT schemes for the model discussed in Section 6.1.

Now, we assume that the columns of precoding matrix B[t] are orthonormal (whereas

earlier B[t] was specified as full rank). Note that, for the purpose of ergodic achievable-

rate analysis, this assumption can be made without loss of generality, since the mu-

tual information between s and y remains unaffected by invertible transformations

of s. Suppose that the MIMO-MMSE-PAT scheme {p[t], B[t]}t∈T for the CE-BEM

DSC has total pilot energy Ep [recall (6.6)] and yields per-transmit-antenna data

dimension Ns. We define the data energy E{
∑T−1

t=0 ‖d
[t]‖2} = E{

∑T−1
t=0 ‖s[t]‖2} =

Es, the total transmit energy Etot = Ep + Es, the average transmit power σ2 =

1
N

∑T−1
t=0

∑N−1
n=0 E{|x[t][n]|2} = Etot

N . We require that Etot ≤ N and ρ is the signal-to-

noise ratio of the system. In addition, we define the normalized signal power σ2
s = Es

TNs
.
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In the sequel, we analyze the ergodic achievable rates of MIMO-MMSE-PAT schemes

{p[t], B[t]}t∈T over the CE-BEM-DSC.

It will be convenient to define H [r,t] ∈ CN×N element-wise as [H [r,t]]n,m = h[r,t][n; 〈n−

m〉N ], so that the input-output relation (6.3) becomes

y[r] =
√
ρ [H [r,0] · · ·H [r,T−1]]
︸ ︷︷ ︸

H [r]

(

p̄ + B̄s̄
)

+ v[r], (6.30)

where p̄ = [p[0]!, ...,p[T−1]!]!, s̄ = [s[0]!, ..., s[T−1]!]!, and B̄ = diag(B[0], ...,B[T−1]).

Then, defining H̄ = [H [0]!, ...,H [R−1]!]!, we collect the observations of all receive

antennas into ȳ = [y[0]!, ...,y[R−1]!]!, such that

ȳ =
√
ρH̄p̄ +

√
ρH̄B̄s̄ + v̄, (6.31)

with v̄ = [v[0]!, ...,v[R−1]!]!. Similar to H̄ , we construct Ĥ and H̃ using ĥ and h̃

respectively. To present the bounds, we use the normalized channel estimate

H̆ = Ĥ
√

NRT/ tr{Rĥ} so that E{H̆
H
H̆} = E{H̄H

H̄} = RINT .

Theorem 8 (Achievable-Rate Bounds). For the T -transmit R-receive antenna N-

block CP MIMO-MMSE-PAT scheme {p[t], B[t]}t∈T with i.i.d. Gaussian s̄ ∈ CNs over

the CE-BEM DSC, the per-block ergodic achievable rate Rmmse-blk obeys

Rmimo-mmse-blk-lb ≤ Rmimo-mmse-blk ≤ Rmimo-mmse-blk-ub, where

Rmimo-mmse-blk-lb = E{log det[I + ρlbB̄
H
H̆

H
H̆B̄]} bits/block (6.32)

Rmimo-mmse-blk-ub = E{log det[I + ρubB̄
H
H̄

H
H̄B̄]} bits/block (6.33)

ρlb =
ρσ2

s tr{Rĥ}
Tρσ2

s tr{Rh̃} + NRT
(6.34)

ρub = ρσ2
s . (6.35)

Proof. See Appendix E.2.
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The lower bound (6.32) describes the worst case scenario of channel estimation

error acting as CWGN. This concept was previously used in, e.g., [41]. The upper

bound (6.33) describes the best case scenario of perfect channel estimates. In the next

section, we study the time and bandwidth requirements of each block and rewrite

these rates in units of bits/sec/Hz.

Now, we characterize the high-SNR asymptotics of the achievable-rate Rmimo-mmse-blk

of MIMO-MMSE-PAT schemes.

Theorem 9 (Asymptotic Achievable Rate). For an N-block CP MIMO-MMSE-PAT

scheme operating over the CE-BEM DSC with T transmit and R receive antennas,

and with per-transmit-antenna data dimension Ns, the per-block ergodic achievable

rate Rmimo-mmse-blk obeys

Rmimo-mmse-blk(ρ) = min{R(N − TNDoppNdelay), TNs} log ρ+ O(1), bits/block

(6.36)

as ρ→∞.

Proof. See Appendix E.3.

The pre-log factor in Rmimo-mmse-blk can be interpreted as follows. Since each trans-

mit antenna is allocated only Ns data dimensions, the total number of data symbols

transmitted per block is TNs. At each receive antenna, the observations correspond-

ing to MIMO-MMSE-PAT pilot symbol PUλ[r] uses up TNDoppNdelay dimensions

[recall (6.15)], leaving only N − TNDoppNdelay data observations, due to the require-

ment for pilot-data orthogonality at the channel output [recall (6.14)]. Thus, at most

min{R(N − TNDoppNdelay), TNs} data symbols per N -block can be “resolved” at the

receiver.

97



Increasing the number of transmit antennas increases the total number of data

symbols that can be transmitted but also increases the number of channel parameters

that need to be estimated. For this reason, the asymptotic achievable rate of MIMO-

MMSE-PAT does not necessarily increase with the number of antennas. To see this,

with Q = min{R(N−TNDoppNdelay), TNs} denoting the pre-log factor, note that Q ≤

TNs ≤ T (N−TNDoppNdelay), using the bound (6.23) on Ns. As a continuous function

of t, t(N − tNdelayNDopp) is a parabola whose maximum attained at t = N
2NdelayNDopp

. It

follows that increase of number of receive and transmit antennas beyond ' N
2NdelayNDopp

(

does not increase the pre-log factor. In fact, increasing the number of transmit

antennas beyond ' N
2NdelayNDopp

( decreases the pre-log factor. Hence, it is worthwhile

to determine the number of active transmit and receive antennas, T! ∈ {1, . . . , T}

and R! ∈ {1, . . . , R}, which maximize the pre-log factor in Rmmse-blk. Note that T!

and R! depend on the choice of MIMO-MMSE-PAT scheme through data dimension

Ns. For the MIMO-MMSE-PAT examples from Section 6.2.1, we have

R! = R (6.37)

T! =








min
(

T,


 ξ
2NDoppNdelay

− R$

2





)

if ξ2 < 4R!NNdelayNDopp,

min

(

T,



ξ−
√

ξ2−4R$NNDoppNdelay

2NDoppNdelay





)

else.
(6.38)

ξ = N + (R! − 1)NDoppNdelay + κ (6.39)

where κ = 1, Ndelay, and NDopp for Chirp schemes, FDKD, and TDKD, respectively.

In (6.38),


·


 denotes rounding up or down to the nearest integer depending on

the which gives higher pre-log factor. Derivation details are given in Appendix E.4.

Note that, in some cases, the transmitter uses strictly less than T antennas. Similar

results were obtained for MIMO flat-fading and time-selective channels in [7] and [9],

respectively.
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6.4 Pilot/Data Power Allocation

Until now, the MMSE-PAT schemes were designed using fixed pilot energy Ep.

Now we consider the problem of allocating a fixed transmit energy Etot between pilots

and data in order to maximize ρlb. Letting α ∈ [0, 1] denote the fraction of energy

allocated to the data symbols, i.e., Es = αEtot and Ep = (1−α)Etot, we are interested

in finding α! = arg maxα ρlb(α). The value of α! is obtained by finding the value of

α which sets ∂ρl/∂α = 0.

For the general case of Rλ̄, it is difficult to obtain a closed-form expression for α!.

For the case of identically distributed coefficients, i.e., Rλ̄ = N
NDoppNdelay

I, the desired

value of α is given by

α!,iid =









β −
√

β2 − β if Ns > TNDoppNdelay

β +
√

β2 − β if Ns < TNDoppNdelay

1
2 if Ns = TNDoppNdelay

(6.40)

β =
1 +

TNDoppNdelay

ρEtot

1− TNDoppNdelay

Ns

. (6.41)

Furthermore, it can be shown that α!,iid maximizes the achievable rate lower bound

(6.32) for the i.i.d. BEM case. To see this, note that H̄ and H̆ have same distribu-

tion, so that the power allocation fraction α affects Rmimo-mmse-blk-lb only through ρlb.

Since Rmimo-mmse-blk-lb is an increasing function of ρlb, maximizing ρlb is equivalent to

maximizing Rmimo-mmse-blk-lb.

Returning to the case of general Rλ̄, closed-form solutions of α! are tractable

for the high-SNR and low-SNR asymptotic cases. In particular, it can be shown

that arg maxα limρ→0 ρlb = 1
2 and arg maxα limρ→∞ ρlb = limρ→∞ α!,iid, which can be

calculated from (6.40) with β = (1− TNDoppNdelay/Ns)−1.
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While achievable-rate bounds and pilot/data power allocation for a particular

MIMO-MMSE-PAT scheme was obtained in [43], the results here hold for arbitrary

MIMO-MMSE-PAT schemes.

6.5 Streaming MIMO-MMSE-PAT

In this section, we find the spectral efficiency of a system which transmits a stream

of blocks, where each block is constructed according to the MIMO-MMSE-PAT prin-

ciples discussed earlier and separated from its neighbors (by guards) to prevent inter-

block interference at the channel output. We pay attention to the MMSE-PAT ex-

amples from Section 6.2.1 and the zero-padded MMSE-PAT scheme from [43]. The

streaming of blocks is motivated from the requirement to code over many blocks to

achieve the ergodic rates described in Section 6.3. Streaming also makes clear the

inter-block guard requirements.

We assume that the continuous-time baseband pulse used for modulation is (ap-

proximately) time-limited to [−Ts

2 , Ts

2 ] seconds and band-limited to [− 1
2Ts

, 1
2Ts

] Hz,

where Ts denotes the system’s sampling interval. To compute the time consumed

in block transmission, we include the guard overhead. To compute the bandwidth

consumed in block transmission, we measure the bandwidth of the signal at the chan-

nel output, as would be relevant when considering the egress onto adjacent frequency

bands. We assume uncorrelated data symbols (e.g., from an i.i.d. Gaussian code-

book) and assume that N is large enough to make the approximation 1
2BDopp

≈ NDopp−1
NTs

accurate.

For the MIMO-TDKD scheme in Section 6.2.1 constructed with * = N
NDopp

−TNdelay,

the transmitted block (for every antenna) includes built-in zero-padding, eliminating
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the need for an explicit guard. (See Fig. 6.2.) This streaming zero-padded (SZP)

MIMO-TDKD scheme is identical to the scheme proposed in [43] and its per-block

time and bandwidth consumption are NTs seconds and 1
Ts

+ 2BDopp ≈ N+NDopp−1
NTs

Hz.

(See Fig. 6.2.) The streaming MIMO-FDKD scheme from Section 6.2.1 constructed

with * = N
Ndelay

− TNDopp, referred as SCP-MIMO-FDKD, has per-block time and

bandwidth consumption of (N +Ndelay−1)Ts seconds and N−NDopp−1
NTs

+2BDopp ≈ 1
Ts

Hz,

where the bandwidth is less than that of SZP-MIMO-TDKD due to null subcarriers.

(See Fig. 6.2.) Since the streaming-chirp schemes does not have a built-in time-

domain guard nor null subcarriers, it consumes (N + Ndelay − 1)Ts seconds per block

and N+NDopp−1
NTs

Hz. (See Fig. 6.2.) See Chapter 4 for more details on the time and

bandwidth consumption of streaming block transmissions over the DSC.

We define SNR as the ratio of signal power to noise power observed at the output

of the pulse-shaping filter associated with any receive antenna. Because the discrete-

time channels between all transmit-receive antenna pairs were assumed to be energy

preserving, SNR can be equivalently described as the ratio of total transmit power to

per-antenna received noise power. It can be easily verified that SZP-MIMO-TDKD,

SCP-MIMO-FDKD and SCP-MIMO-Chirp schemes have the same average transmit

power of ρEtot

N and hence can be fairly compared under the SNR ρ.

Dividing the per-block achievable rates (6.32), (6.33) and (6.36) by the factor ζ (in

units of sec Hz per block) gives the streaming MIMO-MMSE-PAT achievable rates in

units of bits/sec/Hz, where ζ = N + NDopp− 1, N +Ndelay− 1,
(N+Ndelay−1)(N+NDopp−1)

N

for SZP-MIMO-TDKD, SCP-MIMO-FDKD and SCP-MIMO-Chirp schemes respec-

tively. Denoting the pre-log factor of a bits/sec/Hz asymptotic-rate expression by η,

it is straightforward to show that for integer Ndelay and NDopp, Ndelay ≥ NDopp ⇔
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SCP-MIMO-FDKD:
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NTs sec

(N + Ndelay − 1)Ts sec
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Figure 6.2: Time and bandwidth occupation for several streaming T = 2 MIMO-
MMSE-PAT systems designed for DSC with Ndelay = 3 and NDopp = 3. Lightly
shaded shows channel input and darkly shaded shows channel output.
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ηMIMO−FDKD ≥ ηMIMO−TDKD and vice versa. In other words, the relative spectral ef-

ficiency of SCP-MIMO-FDKD and SZP-MIMO-TDKD (from [43]) depends on the

relative time-frequency spread of the channel. It is also easy to see that ηMIMO−Chirp is

less than both ηMIMO−TDKD and ηMIMO−FDKD for all integer pairs (Ndelay, NDopp) 5= (1, 1).

Clearly, a higher spectral efficiency translates into a higher achievable rate as SNR

grows.

6.6 Numerical Results

In this section, we present numerical examples of the achievable rate of several

streaming MIMO-MMSE-PAT schemes. For this purpose, we evaluate the achievable

rate bounds derived in Section 6.5 (in units of bits/sec/Hz) for the SZP-MIMO-

TDKD, SCP-MIMO-FDKD, and SCP-MIMO-Chirp schemes, using the power allo-

cation procedure described in Section 6.4. In all cases, we consider block size N = 126

and R = 2 receive antennas, and we plot the bounds over the SNR range of practical

interest.

In Figures 6.3 and 6.4, we show results for T = 2 and a CE-BEM DSC with

Ndelay = 9 and NDopp = 3. These discrete spreading parameters correspond to a

spreading index of γ ≈ 0.07, as would result from, e.g., carrier frequency fc = 80

GHz, sampling interval Ts = 1 µsec, maximum mobile velocity vmax = 150 km/hr,

and a channel delay spread of 9 µsec. Figure 6.3 corresponds to the case of uniform

decay and uniform Doppler profile such that Rλ = N
NDoppNdelay

I. There we employed the

power allocation fraction given in (6.40). Figure 6.4 corresponds to exponential decay

and Jakes Doppler profile such that E{|λ(k; *)|2} = χe−0.1+(B2
Dopp − k2(NTs)−2)−0.5,

where χ is chosen such that tr{Rλ} = N . There we employed equal power allocation
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between pilots and data. In both Fig. 6.3 and Fig. 6.4, we observe that SCP-MIMO-

FDKD achieves a higher rate than do SZP-MIMO-TDKD and SCP-MIMO-Chirp

schemes in the high SNR regime, since Ndelay > NDopp. In Fig. 6.5, for the same

channel parameters with i.i.d. BEM coefficients, we study the performance of SCP-

MIMO-FDKD with T ∈ {1, 2, 3} transmit antennas. We find that the high-SNR

achievable-rate is maximized when T = 2, coinciding with T! from (6.38).
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Figure 6.3: Achievable rates for T = 2, R = 2 MIMO system over a Ndelay = 9,
NDopp = 3 DSC with uniform decay and Doppler profile.
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Figure 6.4: Achievable rates for T = 2, R = 2 MIMO system over a Ndelay = 9,
NDopp = 3 DSC with exponential decay and Jakes Doppler profile.
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Figure 6.5: Achievable rates of SCP-MIMO-FDKD with T ∈ {1, 2, 3} transmit an-
tennas and R = 2 receive antennas.
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CHAPTER 7

CONCLUSIONS

In this dissertation, we considered the problem of designing communication sys-

tems for noncoherent doubly selective channels and analyzed their performance in the

high-SNR regime. In the high-SNR asymptotic regime, we characterized the prelog

factor of the channel capacity, when the channel input is constrained to be a continu-

ous random vector. We also addressed the design of pilot aided transmissions for this

channel based on two different criteria: minimize the MSE of channel estimates and

maximize the prelog factor of achievable rates. In this chapter, we present a summary

of the original work in this dissertation and also give possible directions for future

research.

7.1 Summary of Original Work

We characterized the noncoherent doubly selective channel’s capacity in the high

SNR regime under the constraint that the channel input is a continuous random vec-

tor. For CE-BEM DSC, we establish that the constrained capacity grows logarithmi-

cally with SNR with a slope of 1− γ where the spreading index γ = NDoppNdelay/N

is related to the delay spread and the Doppler spread of the DSC.
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We designed PAT schemes based on minimizing MSE criterion. We obtained

necessary and sufficient conditions for the pilot/data pattern to attain the minimal

MSE given a constraint on the pilot energy. The conditions require that the pilot and

data should not “interfere” at the channel output. Also, the pilot signal has to be

chosen to excite all the uncorrelated channel modes in an orthogonal manner. We also

established that the MMSE-PAT schemes occur in time-frequency dual pairs. Based

on these results, we designed novel MMSE-PAT structures for DSC. Analyzing the

ergodic achievable rates of MMSE-PAT schemes, we establish that a frequency domain

MMSE-PAT (FDKD) outperforms a time-domain MMSE-PAT (TDKD) from [13],

when the DSC’s discrete delay spread Ndelay dominates its discrete Doppler spread

NDopp. We proved that the prelog factor of the ergodic asymptotic achievable rates

of all the MMSE-PAT schemes is strictly less than that of constrained capacity, for

strictly doubly selective channels (i.e., Ndelay > 1, NDopp > 1).

We considered design of PAT schemes whose rates achieve the optimal prelog

factor 1−γ. We presented sufficient conditions on the pilot/data pattern to achieve the

optimal prelog factor and gave a novel spectrally efficient PAT scheme satisfying those

requirements. We also compared the performance of the SE-PAT and MMSE-PAT

schemes through simulations. Agreeing with our theoretical results, our numerical

results showed that the SE-PAT scheme achieves higher rates than the MMSE-PAT

schemes if the SNR is high enough. We also found that, in the moderate SNR

regime, MMSE-PAT schemes may achieve higher rates than SE-PAT. We theoretically

computed approximate thresholds on the SNR values to find the regions in which a

particular PAT scheme achieves rates higher than others.
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We also extended the MMSE-PAT design for MIMO doubly selective channels. In

the MIMO case, we showed that, for independent fading between different antenna

pairs, the number of receive antennas does not affect the design of MIMO-MMSE-

PAT for DSC. We also established that the spectral efficiency of MIMO-MMSE-PAT

does not necessarily increase even if the number of transmit and receive antennas are

increased simultaneously. We also presented the optimal number of active antennas

which maximizes the spectral efficiency, for the given values of system parameters

(block size N) and the channel parameters Ndelay and NDopp.

7.2 Possible Future Research

Previous works on characterization of the capacity of noncoherent channels focused

on low SNR or high SNR regime. The characterization of channel capacity in the

intermediate finite SNR regime is still an open problem even for simple flat fading

channel models.

Most of the results in multi-user wireless networks are based on the assumption

that the channel state information is available at either the transmitter or the receiver.

How does the lack of CSI affects the capacity and the achievable rates in those scenar-

ios is an interesting problem to investigate. In the single user case, we saw that there

is a “pre-log factor loss” proportional to number of unknown channel parameters. In

the multi-user scenario, with perfect apriori CSI, the performance of opportunistic

communication techniques (which allocates the time/bandwidth resources to the user

having the best channel) improves with the number of users. But, in the noncoherent

setting, how to design opportunistic communication schemes and how they perform

with the increase in the number of users is a possible research direction.
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In the high SNR regime, for SISO channels (flat, time selective, frequency selective

or doubly selective) the PAT schemes are required to sacrifice signaling dimensions

whose number is at least the number of unknown channel parameters to avoid the

error floor in the decoder which treats the channel estimation error as a part of

effective noise. But, in the moderate SNR regime, if some of the fading coefficients

have very small variance, then it might not be “worth” sacrificing some signaling

dimensions to estimate them. Analyzing the effect of SNR and the variance of the

unknown channel fading coefficients jointly is a possible future research.

All our results in this dissertation are based on the CE-BEM approximation of

doubly selective block fading DSC. In general, when the block size is relatively small,

due to the leakage effects of rectangular windowing, there will be some small variance

inter-carrier interference coefficients in the frequency domain. How does these small

coefficients affect our results is also a research possibility.
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APPENDIX A

DERIVATION OF CHANNEL FADING STATISTICS

A.1 Discrete-Time Channel Statistics

Equations (2.6) and (2.2) can be used to obtain

E{h[n; l]h∗[n− p; l − q]}

=

∫ ∫ ∫ ∫

ψ∗(t)ψ(t− τ)ψ(t′)ψ∗(t′ − τ ′)

E{h(t + nTs; τ + lTs)h
∗(t′ + nTs − pTs; τ

′ + lTs − qTs)}dtdτdt′dτ ′

=

∫ ∫ ∫ ∫

ψ∗(t)ψ(t− τ)ψ(t′)ψ∗(t′ − τ ′)

Rlag;delay(t− t′ + pTs; τ
′ + lTs)δ(τ − τ ′ + qTs)dtdτdt′dτ ′

=

∫ ∫ ∫

ψ∗(t)ψ(t− τ)ψ(t′)ψ∗(t′ − τ + qTs)

Rlag;delay(t− t′ + pTs; τ − qTs + lTs)dtdτdt′.

If we assume that the coherence time is larger than Ts, then the limited time-support

of ψ(t) implies that ψ(t)Rlag;delay(to + t; τ) ≈ ψ(t)Rlag;delay(to; τ), in which case

E{h[n; l]h∗[n− p; l − q]}

≈
∫ ∫ ∫

ψ∗(t)ψ(t− τ)ψ(t′)ψ∗(t′ − τ + qTs)Rlag;delay(pTs; τ − qTs + lTs)dtdτdt′

=

∫

A∗(τ)A(τ − qTs)Rlag;delay(pTs; τ − qTs + lTs)dτ
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for A(τ) =
∫

ψ(t)ψ∗(t − τ)dt such that A(0) = 1 and
∫

|A(τ)|2dτ = Cψ. Due to the

limited time-support of A(τ), we have

E{h[n; l]h∗[n− p; l − q]} ≈ δ[q]

∫

|A(τ)|2Rlag;delay(pTs; τ + lTs)dτ (A.1)

≈ Rlag;delay(pTs; lTs) δ[q]Cψ, (A.2)

where the second approximation holds when Rlag;delay(to; τ) is a smooth function of τ .

A.2 Basis-Expansion Statistics

From (2.8), we know λ[k; l] = 1√
N

∑N−1
n=0 h[n; l]e−j 2π

N
nk for k ∈ {0, . . . , N − 1}, so

that

E{λ[k; l]λ∗[k − p; l − q]}

=
1

N

N−1
∑

n=0

N−1
∑

n′=0

E{h[n; l]h∗[n′; l − q]}e−j 2π
N

[nk−n′(k−p)] (A.3)

≈ δ[q]
1

N

N−1
∑

n=0

N−1
∑

n′=0

CψRlag;delay((n− n′)Ts; lTs)e
−j 2π

N
[(n−n′)k+n′p)] (A.4)

= Cψδ[q]
N−1∑

m=−N+1

|N −m|Rlag;delay(mTs; lTs)e
−j 2π

N
mk 1

N

N−1∑

n′=0

e−j 2π
N

n′p (A.5)

= Cψδ[q]δ[p]
N−1
∑

m=−N+1

|N −m|Rlag;delay(mTs; lTs)e
−j 2π

N
mk (A.6)

where we have used (2.7) for the approximation in (A.4). Recalling that Rlag;delay(t, ·) =

∫

RDopp;delay(f ; ·)ej2πftdf ,

E{λ[k; l]λ∗[k − p; l − q]}

= Cψδ[q]δ[p]
N−1
∑

m=−N+1

(N − |m|)
∫

RDopp;delay(f ; lTs)e
j2πmTs(f− k

NTs
)df (A.7)

= Cψδ[q]δ[p]

∫

RDopp;delay(f
′ + k

NTs
; lTs)

(
sin(πf ′TsN)

sin(πf ′Ts)

)2

df ′. (A.8)

where for (A.8) we used
∑N−1

m=−N+1(N − |m|)ejmφ =
(

sin(φN/2)
sin(φ/2)

)2
.
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APPENDIX B

PROOFS OF ASYMPTOTIC CHANNEL CAPACITY
RESULTS

B.1 Proof of Theorem 1

Defining the two vectors

ys = [y[0], ..., y[NDoppNdelay − 1]]! (B.1)

yr = [y[NDoppNdelay], ...., y[N − 1]]!, (B.2)

and using the chain rule for mutual information [51], we have I(y; xρ) = I(ys; x
ρ) +

I(yr; x
ρ|ys). Using h(·) to denote the differential entropy, we have

I(yr; x
ρ|ys) = h(yr|ys)− h(yr|ys, x

ρ) (B.3)

≤ h(yr)− h(yr|ys, x
ρ, H) (B.4)

since conditioning reduces entropy. Because of the power constraint on the input,

the covariance of yr, Ryr can be bounded as Ryr ≤ (kρ + 1)IN−NdelayNDopp
for some

constant k ∈ R and k is independent of ρ. Since Gaussian distribution maximizes the

entropy for a given covariance matrix, we have h(yr) ≤ log det[(kρ+ 1)IN−NdelayNDopp
].

Now, h(yr|ys, x
ρ, H) is equal to the entropy of the unit variance white noise term
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in yr, which is bounded and independent of ρ. So, we have limρ→∞
I(yr ;xρ|ys)

log ρ =

N −NDoppNdelay.

What remains to be shown is that limρ→∞
I(ys;xρ)

log ρ = 0. Using the chain rule for

mutual information again, we have

I(ys; x
ρ) = I(y[0]; xρ) +

NDoppNdelay−1
∑

i=1

I(y[i]; xρ|y[0], ..., y[i− 1]) (B.5)

≤ I(y[0]; xρ) +

NDoppNdelay−1
∑

i=1

I(y[i]; xρ, y[0], ..., y[i− 1]). (B.6)

We shall analyze each term in (B.6) separately. We define the vectors xρ

i = [xρ[i], ..., xρ[i−

Ndelay + 1]]! and their “complements” x̄ρ

i , which are composed of elements of xρ not

in xρ

i . With these definitions, the first term in (B.6) can be written I(y[0]; xρ) =

I(y[0]; xρ

0)+I(y[0]; x̄ρ

0|xρ

0). Conditioned on xρ

0, the uncertainty in y[0] is due to channel

coefficients and additive noise which are independent of x̄ρ

0. Hence, I(y[0]; x̄ρ

0|x
ρ

0) = 0.

Now, I(y[0]; xρ

0) corresponds to a overspread channel (i.e., one observation with Ndelay

unknown channel coefficients) and, using the result from [52], we have I(y[0]; xρ

0) ≤

log log ρ+ O(1). Hence limρ→∞
I(y[0];xρ)

log ρ = 0. Now considering the general term inside

the summation of (B.6),

I(y[i]; xρ, y[0], ..., y[i− 1])

= I(y[i]; xρ

i )
︸ ︷︷ ︸

≤log log ρ+O(1)

+ I(y[i]; x̄ρ

i |x
ρ

i )
︸ ︷︷ ︸

=0

+ I(y[i]; y[0], ..., y[i− 1]|xρ)
︸ ︷︷ ︸

Ti

,

it remains to be shown that limρ→∞
Ti

log ρ = 0.

Recall that y and h are jointly Gaussian conditioned on xρ. In terms of differential

entropies, I(y[i]; y[0], ..., y[i− 1]|xρ) = h(y[i]|xρ)− h(y[i]|xρ, y[0], ..., y[i− 1]). It easily

follows that

h(y[i]|xρ) = E{log(1 + ρ

Ndelay−1
∑

+=0

E{|h[i; *]|2}|xρ[i− *]|2)}, (B.7)
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where the expectation is with respect to xρ. Now, given {y[0], ..., y[i−1]}, we split y[i]

into MMSE estimate and error as y[i] = E{y[i]|y[0], ..., y[i− 1]} + ỹ[i], and we have

h(y[i]|y[0], ..., y[i − 1], xρ) = E log(E |ỹ[i]|2). Defining hi = [h[i; 0], ..., h[i; Ndelay −

1]]! and denoting the covariance of hi − E{hi|y[0], ..., y[i − 1]} by R̃i, we have

E |ỹ[i]|2 = 1 + ρxρH
i R̃ix

ρ

i . Let µmax,i denote the maximum eigenvalue of R̃i and

qi denote the corresponding eigenvector. Now define κmax,i = infxρ∈CN µmax,i. For

i ∈ {1, ..., NDoppNdelay − 1}, all the elements of hi can not be estimated perfectly,

even in the absence of noise (ρ = ∞), since {y[0], ..., y[i− 1]} correspond to a pro-

jection of λ onto a subspace of smaller dimension, and hence κmax,i > 0. Now,

E |ỹ[i]|2 ≥ 1 + ρκmax,i|
∑Ndelay−1

k=0 qi[k]xρ[i− k]|2, and hence

h(y[i]|xρ, y[0], ..., y[i− 1]) ≥ E{log(1 + ρκmax,i|
Ndelay−1
∑

k=0

qi[k]xρ[i− k]|2)}. (B.8)

Combining (B.7) and (B.8), we have Ti ≤ E log
1+ρ

PNdelay−1

#=0 E{|h[i;+]|2}|xρ[i−+]|2

1+ρκmax,i|
PNdelay−1

k=0 qi[k]xρ[i−k]|2
. Since xρ

is a sequence of continuous random vectors converging to a continuous random vector,

limρ→∞ |
∑Ndelay−1

k=0 qi[k]xρ[i− k]|2 > 0 with probability 1, and limρ→∞
Ti

log ρ = 0.

B.2 Proof of Lemma 1

Using the chain rule for mutual information, we have

I(y; x) = I(y; x, H)− I(y; H|x) (B.9)

≥ I(y; x|H)− I(y; H|x). (B.10)

Now, I(y; x|H) corresponds to coherent case of perfect receiver CSI and since x is

i.i.d. Gaussian, we have

I(y; x|H) = E{log det[IN + ρHHH]}. (B.11)
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Since HHH is full rank with probability 1 with continuously distributed eigen values,

we have

lim
ρ→∞

I(y; x|H)

log ρ
= N. (B.12)

Recall that from (2.21), the output is written as y =
√
ρXUλ + v. Since λ cap-

tures all the degrees of freedom of DSC over a block, we have I(y; H|x) = I(y; λ|x) =

I(y; λ|X). Conditioned on X, y and λ are jointly Gaussian and using Jensen’s in-

equality, we have

I(y; λ|X) = E{log det[I + ρ(XU)HXURλ]} (B.13)

≤ log det E{[I + ρ(XU )HXURλ]} (B.14)

≤ NDoppNdelay log ρ+ O(1), (B.15)

and hence

lim
ρ→∞

I(y; H|x)

log ρ
≤ NDoppNdelay. (B.16)

The desired result follows from (B.10), (B.12) and (B.16).
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APPENDIX C

PROOFS OF MMSE-PAT RESULTS

C.1 Proof of Theorem 2

We begin with the singular value decompositions PU = V pΣpQ
H
p and DU =

V dΣdQ
H
d , where Σp and Σd are diagonal and full-rank [66]. Let K ≤ NDoppNdelay

denote the rank of Σp. Defining z = V H
p y and using (4.2),

z =
√
ρΣpQ

H
p

︸ ︷︷ ︸

Ap

λ +
√
ρV H

p V dΣdQ
H
d

︸ ︷︷ ︸

Ad

λ + V H
p v

︸ ︷︷ ︸

n

. (C.1)

Since projection onto col(V p) does not attenuate the pilot component of y, the pilot-

aided MMSE channel estimate given {y, P } is equal to that given {z, P }. With

Rz,λ = E{zλH} and Rz = E{zzH}, the MMSE estimate of λ given {z, P } is

λ̂ = RH
z,λR

−1
z z, (C.2)

Rz,λ =
√
ρApRλ, (C.3)

Rz = ρApRλA
H
p + IK

︸ ︷︷ ︸

∆

+ ρE{AdRλA
H
d }

︸ ︷︷ ︸

UdΛdU
H
d

, (C.4)

with diagonal Λd ≥ 0 and UH
d U d = I. Note that the MMSE estimate of h is ĥ = U λ̂

and that σ2
e = E{‖h− ĥ‖2} = E{‖λ− λ̂‖2}. We have Rλ̃ = E{(λ− λ̂)(λ− λ̂)H} =
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Rλ −RH
z,λR

−1
z Rz,λ and hence

σ2
e = tr{Rλ −RH

z,λR
−1
z Rz,λ}

= tr{Rλ −RH
λAH

p (∆ + U dΛdU
H
d )−1ApRλ}

= tr{Rλ −RH
λAH

p [∆−1 −∆−1U d(Λ
−1
d

+ UH
d ∆−1U d)

−1UH
d ∆−1]ApRλ}, (C.5)

≥ tr{Rλ −RH
λAH

p ∆−1ApRλ}, (C.6)

where we used the matrix inversion lemma in (C.5). The inequality (C.6) follows

since ∆ > 0 and Λd ≥ 0. Since Σp is full rank, Ap has full row rank, and so equality

in (C.6) is achieved if and only if

U dΛdU
H
d = 0 ⇔ E{AdRλA

H
d } = 0. (C.7)

Since Rλ > 0, (C.7) is satisfied if and only if Ad = 0, which is equivalent to (4.7),

since Σp and Σd are full rank square matrices. We proceed further assuming that

(4.7) is satisfied. With Ad = 0,

σ2
e = tr{Rλ −RH

λAH
p (ApRλA

H
p +

1

ρ
IK)−1ApRλ},

= tr{(R−1
λ + ρAH

p Ap)
−1} (C.8)

using the matrix inversion lemma [67]. With σ2
λm

= [Rλ]m,m, diagonal Rλ implies

σ2
e ≥

NDoppNdelay−1
∑

m=0

(
1

σ2
λm

+ ραm

)−1

, (C.9)

where αm = [AH
p Ap]m,m and equality in (C.9) is achieved if and only if AH

p Ap =

(PU)HPU is diagonal. (See [66, 68] for additional details.) Since all the columns

of PU have norm Ep

N , the bound (C.9) is written as (4.6). When (4.7) and (4.8)

are met, it follows straightforwardly that Rh̃ and Rĥ are given by (4.9) and (4.10),

respectively.

118



C.2 Proof of Lemma 2

(PU)HPU is composed of NDopp × NDopp blocks P̄ k2,k1 = F̄
H
P H

−k2
P−k1F̄ for

k1, k2 ∈ {0, . . . , Ndelay−1}. For these k1, k2 and for m1, m2 ∈ {0, . . . , NDopp−1}, (4.8)

becomes

[P̄ k2,k1]m1,m2 =
Ep

N
δ[k1 − k2]δ[m1 −m2]. (C.10)

The definitions of F̄ and P−i imply

[P̄ k2,k1]m1,m2 =
1

N

N−1
∑

i=0

p[i− k1]p
∗[i− k2]e

−j 2π
N

(m1−m2)i (C.11)

Setting k = k2 − k1 and m = m1 − m2, so that k ∈ Ndelay and m ∈ NDopp, (C.11)

becomes

[P̄ k2,k1]m1,m2 =
1

N

N−1−k1∑

q=−k1

p[q]p∗[q − k]e−j 2π
N

m(q+k1),

=
e−j 2π

N
mk1

N

N−1
∑

q=0

p[q]p∗[q − k]e−j 2π
N

mq (C.12)

where in (C.12) we exploited the fact that p[−q] = p[N − q] for 1 ≤ q < Ndelay.

Combining (C.10) and (C.12), we obtain (4.11). Similarly, we can show that (4.7) is

equivalent to

N−1
∑

i=0

d[i]p∗[i− k]e−j 2π
N

mi = 0 ∀k ∈ Ndelay, ∀m ∈ NDopp. (C.13)

Since any data vector d should satisfy (C.13), and since the information symbols s

are arbitrary, the requirements (4.12) and (C.13) are equivalent.
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C.3 Design of Optimal Pilot Sequence p

Say L = N
Ndelay

∈ Z and let q ∈ CL be arbitrary. Then if p = q ⊗ [1 0 · · · 0]!, we

have p[i]p∗[i− k] = 0 for k ∈ Ndelay \ 0, and hence

N−1
∑

i=0

p[i]p∗[i− k]e−j 2π
N

mi = 0 ∀m, ∀k ∈ Ndelay \ 0. (C.14)

Note that (C.14) partially satisfies (4.11); q can be chosen to satisfy the remaining

conditions:

∀m ∈ NDopp, Epδ[m] =
N−1
∑

i=0

p[i]p∗[i]e−j 2π
N

mi (C.15)

=
L−1
∑

i=0

|q[i]|2e−j 2π
L

mi (C.16)

With r[i] = |q[i]|2, r = [r[0], . . . , r[L− 1]]!, and the (2NDopp− 1)×L matrix F̄ L with

the elements [F̄ L]n,m = ej 2π
N

(n−NDopp+1)m, (C.16) becomes

F̄ Lr = EpeNDopp−1, (C.17)

where ep is the pth standard basis vector of C2NDopp−1. To find real non-negative r

that satisfies (C.17), we consider three cases.

I) L < NDopp: This indicates an over-spread channel, previously excluded from

consideration; no solution to (C.17) exists.

II) NDopp ≤ L ≤ 2NDopp − 1: Here it is easy to show that r = Ep

L [1 · · · 1]! is the

unique solution to (C.17).

III) 2NDopp − 1 < L: Here there exist many valid solutions to (C.17). Specifically,

the real non-negative r satisfying (C.17) are those that satisfy F H
Lr = g with
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g = [g[0], . . . , g[L− 1]]! such that g[0] = Ep√
L
, g[1] = · · · = g[NDopp− 1] = 0, and

g[i] = g∗[L − i]. Here F L denotes L × L unitary DFT matrix. Such r can be

generated via the following steps.

1) Choose any g ∈ CL with g[0] ∈ R+, g[i] = g∗[L − i] and g[1] = · · · =

g[NDopp − 1] = 0.

2) Compute the DFT r1 = F Lg.

3) Generate r2 element-wise as r2[i] = r1[i] + c for any c ∈ R such that

r2[i] ≥ 0.

4) Set r = αr2, where α = Ep
PL−1

i=0 r2[i]
.

Given r satisfying (C.17), we choose q element-wise by setting q(i) =
√

r[i]ejθ[i] for

arbitrary θ[i] ∈ [0, 2π). Finally, we set p = q ⊗ [1 0 · · · 0]!.

C.4 Proof of Optimality of MMSE-PAT examples

C.4.1 TDKD

First, we show that the pilot sequence given in (4.18) satisfies the excitation

criterion (4.11). Since the spacing between the non-zeros samples of the pilot pattern

N
NDopp

is greater than Ndelay (from the underspread assumption NDoppNdelay < N , we

have p[i]p∗[i− k] = 0 for k ∈ Ndelay \ 0, and hence

N−1
∑

q=0

p[i]p∗[i− k]e−j 2π
N

mi = 0 ∀m ∈ NDopp, ∀k ∈ Ndelay \ 0. (C.18)
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Now, for the case k = 0,

N−1∑

i=0

|p[i]|2e−j 2π
N

mi =

NDopp−1
∑

q=0

Ep

NDopp

e
−j 2π

N
m(q N

NDopp
+l)

=
Ep

NDopp

e−j 2π
N

ml

NDopp−1
∑

q=0

e
−j 2π

NDopp
mq

︸ ︷︷ ︸

NDoppδ[m]

= Epδ[m]. (C.19)

The equations (C.18) and (C.19) verify the optimal excitation requirement.

To verify the pilot data orthogonality requirement, we notice that the location

of non-zero elements in each column of B lies outside the set G [#]

f . Because of this,

the nonzero entries in {p[i]} never overlap with nonzero entries in {bq[i]}, nor with

nonzero entries of k-shifted {p[q − k]} for shifts k ∈ Ndelay. In other words, {i :

p[i− k] 5= 0∀k ∈ Ndelay} ∩ {i : bq[i] 5= 0} = ∅ and hence (4.7) follows.

C.4.2 FDKD

Note that (p̆, B̆) in FDKD coincide with the TDKD pattern but the roles of

discrete delay spread Ndelay and the discrete Doppler spread NDopp interchanged. So,

(p̆, B̆) correspond to the MMSE-PAT for CE-BEM DSC with discrete delay spread

NDopp and discrete Doppler spread Ndelay. Now, from MMSE-PAT duality (Lemma 4),

(p = F H
N p̆, B = F H

NB̆) is an MMSE-PAT for DSC with the discrete delay spread

Ndelay and the discrete Doppler spread NDopp.
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C.4.3 Time domain Chirps

First, we shall establish that the chirp sequence (4.20) satisfies the optimal exci-

tation criterion. For i ∈ {0, · · · , Ndelay − 1}, we have

p[−i] = p[N − i] =

√

Ep

N
ej 2π

N

NDopp
2 (N−i)2

=

√

Ep

N
ej2π

NDopp
2 N

︸ ︷︷ ︸

=1,for N even

ej 2π
N

NDopp
2 i2 ej2πNDoppi

︸ ︷︷ ︸

=1

=

√

Ep

N
ej 2π

N

NDopp
2 (−i)2 .

So, for k ∈ Ndelay and m ∈ NDopp, we have

N−1
∑

i=0

p[i]p∗[i− k]e−j 2π
N

mi =
N−1
∑

i=0

√

Ep

N
ej 2π

N

NDopp
2 i2

√

Ep

N
ej 2π

N

NDopp
2 (i−k)2ej 2π

N
mi, (C.20)

=
Ep

N

N−1
∑

i=0

ej 2π
N

NDopp
2 (2ik−k2)e−j 2π

N
mi, (C.21)

=
Ep

N
e−j 2π

N

NDopp
2 k2

N−1
∑

i=0

ej 2π
N

(kNDopp−m)i

︸ ︷︷ ︸

Nδ[kNDopp−m]

, (C.22)

= Epδ[k]δ[m], (C.23)

where (C.23) follows from the fact that kNDopp − m 5= 0 ( mod N) as long as k ∈

Ndelay, m ∈ NDopp and NDoppNdelay < N .

123



Now, considering the inner product between the columns of chirp data modulation

matrix,

N−1
∑

i=0

bq1 [i]b
∗
q2

[i] =
N−1
∑

i=0

(√

1

N
ej 2π

N
(q1+NDoppNdelayi)ej 2π

N

NDopp
2 i2

)

×
(√

1

N
ej 2π

N
(q2+NDoppNdelayi)ej 2π

N

NDopp
2 i2

)∗

=
1

N

N−1
∑

i=0

ej 2π
N

(q1−q2)i

︸ ︷︷ ︸

Nδ[q1−q2]

= δ[q1 − q2],

we see that they are orthonormal and linearly independent. To verify the pilot data

orthogonality, note that

N−1
∑

i=0

bq[i]p
∗[i− k]e−j 2π

N
mi =

√

Ep

N

N−1
∑

i=0

ej 2π
N

(q+NDoppNdelay)iej 2π
N

NDopp
2 i2e−j 2π

N

NDopp
2 (i−k)2

× e−j 2π
N

mi,

=

√

Ep

N
e−j 2π

N

NDopp
2 k2

N−1
∑

i=0

ej 2π
N

(kNDopp+q+NDoppNdelay−m)

︸ ︷︷ ︸

Nδ[kNDopp+NDoppNdelay+q−m]

,

which is zero for k ∈ Ndelay, m ∈ NDopp and the range of q given in (4.21).

C.4.4 Frequency domain Chirps

The frequency domain chirps is the dual of time domain chirps from Example 3.

The proof follows along the same lines as that of FDKD in which the role of TDKD

is replaced by the time domain MMSE chirp.

C.5 Proof of Theorem 3

Let the columns of Bp ∈ CN×NdelayNDopp form an orthonormal basis for col(PU)

and the columns of Bd ∈ CN×(N−NdelayNDopp) form an orthonormal basis for the left null
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space of PU . Notice that, with B̄ = [BpBd], we have B̄
H
B̄ = B̄B̄

H
= IN . The

pilot-data orthogonality of MMSE-PAT [recall (4.7)] implies that BH
p H̀B = 0 and

BH
d H̀p = 0. Projecting the observed vector y onto the pilot and data subspaces, we

obtain yp = BH
p y and yd = BH

d y, respectively, where

yp =
√
ρBH

p H̀p + BH
p v

︸︷︷︸

vp

, (C.24)

yd =
√
ρBH

d H̀Bs + BH
d v

︸︷︷︸

vd

. (C.25)

Clearly, vp and vd are CWGN with unit variance. Since the projection (C.24) does

not compromise pilot energy, the LMMSE estimate of h given y equals the LMMSE

estimate given yp.

Splitting the channel matrix H̀ into the estimate and error component as H̀ =

Ĥ + H̃ , we have

yd =
√
ρBH

d ĤBs +
√
ρBH

d H̃Bs + vd
︸ ︷︷ ︸

n

. (C.26)

Let Rn = E{nnH} denote the covariance of the effective noise n. With the ap-

plication of weighting factor Q = R−1/2
n BH

d in the minimum distance decoding (Sec-

tion 2.3.2), which has the interpretation of pilot-data separation followed by effective-

noise whitening-filter, the achievable rates are given by [30]

Rmmse-blk ≥ E{log det[I + ρσ2
sR

−1
n BH

d ĤB(BH
d ĤB)H]}. (C.27)

The achievable rate result in [30] is derived under the assumption that MMSE channel

estimator is employed. But, with the pilot-data orthogonality, our LMMSE estima-

tor (2.30) coincides with the MMSE channel estimator, since the pilot observations

and the channel coefficients are jointly Gaussian. Note that the above lemma is
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applicable to the CP-MMSE-PAT schemes since they satisfy the pilot-data orthogo-

nality requirement Theorem 2. The above rate expression resembles that of coherent

case [33] with n acting as “effective” Gaussian noise. Furthermore, we have

Rn = I + ρσ2
sE{BH

d H̃B(BH
d H̃B)H} (C.28)

≤ I + ρσ2
sB

H
d E{H̃H̃

H}Bd, (C.29)

in the positive definite sense, since the columns of B are orthonormal.

Since E{H̃H̃
H} =

tr{Rh̃}
N I and BH

d Bd = I, we have

Rn ≤
(

1 + ρσ2
s

tr{Rh̃}
N

)

I. (C.30)

Substituting (C.30) into (C.27), we have

Rmmse-blk ≥ E{log det[I +
ρNσ2

s

ρσ2
s tr{Rh̃} + N

BH
d ĤB(BH

d ĤB)H]}. (C.31)

It follows that BH
p ĤB = 0 due to the similarity in the structure of H̀ and Ĥ .

Using the determinant identity det(I + G1G2) = det(I + G2G1) and the fact that

BdB
H
d = IN − BpB

H
p , the lower bound on the mutual information (C.31) can be

rewritten as (4.27) after the normalization of Ĥ .

For the upper bound on the mutual information, we consider the “best case”

scenario of perfect channel estimates, i.e., Ĥ = H̀ and H̃ = 0. For this scenario,

with i.i.d. Gaussian input distribution, it is straightforward [33] to obtain the bound

(4.28).

C.6 Proof of Theorem 4

We bound the asymptotic achievable rates from both below and above and get the

complete characterization. To start, Rmmse-blk-lb ≤ Rmmse-blk. First, let us characterize
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the asymptotic behavior of Rmmse-blk-lb. With any fixed power allocation fraction

α ∈ (0, 1), Es = αEtot and Ep = (1 − α)Etot, as ρ → ∞, estimation error variance

goes to zero, i.e., limρ→∞ tr{Rh̃} = 0 and hence it follows that limρ→∞ tr{Rĥ} = N .

Also, as ρ → ∞, the normalized channel estimates are equal to the actual channel

almost surely (a.s.),

lim
ρ→∞

H̄ = H̀ a.s. (C.32)

Using Fatou’s lemma [69,70], we find the lower bound on the asymptotics of Rmmse-blk-lb,

by interchanging the limit and the expectation. We have

lim
ρ→∞

Rmmse-blk-lb ≥ E{ lim
ρ→∞

log det[I + ρlbB
HH̄

H
H̄B]}, (C.33)

= E{log det lim
ρ→∞

[I + ρlbB
HH̄

H
H̄B]}, (C.34)

which follows from the continuity of log det(·). It easily follows that ∃ k such that

ρlb ≥ kρ, ∀ ρ ≥ 1, we have

lim
ρ→∞

Rmmse-blk-lb ≥ E{log det lim
ρ→∞

[I + kρBHH̀
H
H̀B]}, (C.35)

= E{log
Ns−1
∏

i=0

(1 + kρµi)}, (C.36)

where µi are the eigen values of BHH̀
H
H̀B. Since H̀B is full rank (Ns) with

probability 1, we have the following lower bound on Rmmse-blk,

Rmmse-blk(ρ) ≥ Rmmse-blk-lb(ρ) = Ns log(ρ) + O(1), (C.37)

as ρ→∞.

Now, to bound the asymptotic achievable rates from above, we consider the “co-

herent” case of zero channel estimation error. Since the pilot component H̀p can be
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subtracted from y (4.24) without affecting the mutual information, we start with

yc =
√
ρH̀Bs + v. (C.38)

Using Ccoh to denote the capacity of (C.38) with power constraint E{‖s‖2} ≤ N , it

is evident that Rmmse-blk ≤ Ccoh. In fact, for (C.38), the capacity maximizing input

distribution is zero-mean Gaussian [33], so that

Rmmse-blk ≤ Ccoh = sup
tr{Rs}≤N

E{log det[INs + ρ(H̀B)HRsH̀B]}, (C.39)

where Rs denotes the covariance of s. Note that, for any Rs satisfying the power

constraint in (C.39), we have

Rs ≤ NINs , (C.40)

in the positive semi-definite sense. Using (C.40) in (C.39), we find

Rmmse-blk ≤ E{log det[INs + Nρ(H̀B)HH̀B]} (C.41)

= Ns log ρ+ O(1), (C.42)

as ρ→∞. Theorem 4 follows from (C.37) and (C.42).
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APPENDIX D

PROOFS OF SPECTRALLY EFFICIENT PAT RESULTS

D.1 Proof of Theorem 5

We use modulo-N indexing throughout this proof. First define

e(k,m) =
1

√

Ep

[p[k]ej 2π
N

m.0, p[k + 1]ej 2π
N

m.1, ...p[k + N − 1]ej 2π
N

m(N−1)]!,

which are normalized to have unit norm, for convenience. We also define the sets,

Ndelay = {−Ndelay+1, ..., Ndelay−1} and NDopp = {−NDopp+1, ..., NDopp−1}. Let W be

a matrix whose columns are constructed from the set {e(k,m), k ∈ Ndelay, m ∈ NDopp}.

Now, the orthogonality requirement (4.7) can be written as W HB = 0 and hence the

number of information symbols in each block Ns = rank(B) is at most equal to the

dimension of the null space of W H.

We proof the theorem by contradiction. We assume there are MMSE-PAT schemes

for which rank(B) = N − NDoppNdelay and find the necessary requirements on their

pilot vectors. Then we establish that the pilot vectors satisfying these requirements

does not yield rank(B) = N −NDoppNdelay.

Let (p, B) correspond to a MMSE-PAT with rank(B) = N −NDoppNdelay. Based

on the bounds of Ns (4.15), we have Ns is equal to the dimension of the null space of
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W . We proceed to establish the necessary requirements for p. To start with, optimal

excitation (4.8) is necessary for MMSE-PAT and let p be any vector which satisfies

(4.8). For convenience, define D = NDopp−1
2 . Figure D.1 gives a pictorial representation

of the elements of the set {e(k,m), k ∈ Ndelay, m ∈ NDopp} arranged in a grid.

W o

W
1 e

· · · · · ·

· · ·

e(−Ndelay+1,NDopp−1)e(−Ndelay+1,D+1)e(−Ndelay+1,D)e(−Ndelay+1,D−1)· · ·e(−Ndelay+1,−D)e(−Ndelay+1,−D−1)

e(−Ndelay+2,−NDopp+1) e(−Ndelay+2,−D−1) · · · e(−Ndelay+2,D−1) e(−Ndelay+2,D) e(−Ndelay+2,D+1) · · · e(−Ndelay+2,NDopp−1)

... · · · ...
... · · · ...

...
... · · · ...

e(0,NDopp−1)· · ·e(0,D+1)e(0,D)e(0,D−1)· · ·e(0,−D)e(0,−D−1)· · ·e(0,−NDopp+1)

e(1,−NDopp+1) · · · e(1,−D−1) e(1,−D) · · · e(1,D−1) e(1,D) e(1,D+1) · · · e(1,NDopp−1)

...· · ·...
...

...· · ·...
...· · ·...

e(Ndelay−1,−NDopp+1) · · · e(Ndelay−1,−D−1) e(Ndelay−1,−D) · · · e(Ndelay−1,D−1) e(Ndelay−1,D) e(Ndelay−1,D+1) · · ·

W 2
e

e(Ndelay−1,NDopp−1)

e(−Ndelay+1,−NDopp+1)

e(−Ndelay+2,−D)

Figure D.1: Elements of the set {e(k,m), k ∈ Ndelay, m ∈ NDopp} arranged in a grid

We define the quantity

r(k,m) :=
1

Ep

N−1∑

i=0

p[i]p∗[i + k]e−j 2π
N

mi (D.1)

= < e(0,0), e(k,m) > (D.2)

where < x, y >= yHx denotes the inner product between x and y. From (4.8), note

that

r(k,m) = δ[k]δ[m] for k ∈ Ndelay, and m ∈ NDopp. (D.3)
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Now we have,

< e(k1,m1), e(k2,m2) > =
1

Ep

N−1∑

i=0

p[i + k1]p
∗[i + k2]e

j 2π
N

m1.ie−j 2π
N

m2.i (D.4)

=
1

Ep

N−1+k1∑

q=k1

p[q]p∗[q + (k2 − k1)]e
−j 2π

N
(m2−m1)(q−k1) (D.5)

=
ej 2π

N
(m2−m1)k1

Ep

(
N−1∑

q=k1

p[q]p∗[q + (k2 − k1)]e
−j 2π

N
(m2−m1)q

+
N−1+k1∑

q=N

p[q]p∗[q + (k2 − k1)]e
−j 2π

N
(m2−m1)q

︸ ︷︷ ︸

Pk1−1
q=0 p[q]p∗[q+(k2−k1)]e

−j 2π
N

(m2−m1)q











(D.6)

=
ej 2π

N
(m2−m1)k1

Ep

N−1
∑

q=0

p[q]p∗[q + (k2 − k1)]e
−j 2π

N
(m2−m1)q (D.7)

= ej 2π
N

(m2−m1)k1r(k2−k1,m2−m1). (D.8)

From (D.3) and (D.8), all the elements in Fig. D.1 within any rectangle of height

Ndelay and width NDopp are orthonormal. We also have,

r∗(k,m) = < e(0,0), e(k,m) >∗ = < e(k,m), e(0,0) > = e−j 2π
N

mkr(−k,−m). (D.9)

We use the following intermediate result.

Lemma 9. If B is of rank N −NDoppNdelay, then |r(0,NDopp)| = 1 or |r(Ndelay,0)| = 1.

Proof. Since rank(B) = N−NDoppNdelay is the nullity of W H, it follows that rank(W ) =

NDoppNdelay. Let W o be a matrix whose columns are from the set {e(k,m) : k ∈

{0,−1, ...,−Ndelay + 1}, m ∈ {−D, ..., D}}, W 1
e = [e(−1,−D−1), ..., e(−Ndelay+2,−D−1)]

and W 2
e = [e(1,−D), ..., e(1,D−1)]. (See Fig. D.1.) From (4.8),(D.3) and (D.8), the

NDoppNdelay columns of W o are orthonormal and, since W is of rank NDoppNdelay, we
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have the following basis expansion:

e(k,m) =

Ndelay−1
∑

i=0

D∑

j=−D

< e(k,m), e(−i,j) > e(−i,j), ∀k ∈ Ndelay, ∀m ∈ NDopp, (D.10)

=

Ndelay−1
∑

i=0

D
∑

j=−D

ej 2π
N

(j−m)kr(−i−k,j−m)e(−i,j), ∀k ∈ Ndelay, ∀m ∈ NDopp. (D.11)

Since any two elements inside the rectangle of height Ndelay and width NDopp are

orthogonal ((D.3),(D.8)), for the columns of W 1
e, we have

[e(0,−D−1), e(−1,−D−1), ..., e(−Ndelay+2,−D−1)] = [e(0,D), e(−1,D), ..., e(−Ndelay+1,D)]M 1

where M 1 ∈ CNdelay×Ndelay−1 is given by








r(0,NDopp) e−j 2π
N

NDoppr(1,NDopp) · · · e−j 2π
N

NDopp(Ndelay−2)r(Ndelay−2,NDopp)

r(−1,NDopp) e−j 2π
N

NDoppr(0,NDopp) · · · e−j 2π
N

NDopp(Ndelay−2)r(Ndelay−3,NDopp)
...

... · · · ...
r(−Ndelay+1,NDopp) e−j 2π

N
NDoppr(−Ndelay+2,NDopp) · · · e−j 2π

N
NDopp(Ndelay−2)r(−1,NDopp)








.

Similarly, we have the following expansion for the columns of W 2
e,

[e(1,−D), e(1,−D+1), ..., e(1,D−1)] = [e(−Ndelay+1,−D), e(−Ndelay+1,−D+1), ..., e(−Ndelay+1,D)]M 2

where M 2 ∈ CNDopp×NDopp−1 is given by








r(−Ndelay,0) e−j 2π
N r(−Ndelay,−1) ··· e−j 2π

N
(NDopp−2)r(−Ndelay,−NDopp+2)

ej 2π
N r(−Ndelay,1) r(−Ndelay,0) ··· e−j 2π

N
(NDopp−3)r(−Ndelay,−NDopp+3)

...
... ···

...
ej 2π

N
(NDopp−1)r(−Ndelay,NDopp−1) ej 2π

N
(NDopp−2)r(−Ndelay,NDopp−2) ··· ej 2π

N r(−Ndelay,1)








.

Since each column of W 1
e is orthogonal to each column of W 2

e, from their basis

expansions, we see that they have only one common basis vector e(−Ndelay+1,D). So, to

meet the orthogonality requirement, we have

r(−1,NDopp) = r(−2,NDopp) = · · · = r(−Ndelay+1,NDopp) = 0 (D.12)
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or

r(−Ndelay,1) = r(−Ndelay,2) = · · · = r(−Ndelay,NDopp−1) = 0. (D.13)

Using (D.12) in the basis expansion of e(0,−D−1), we have

e(0,−D−1) = r(0,NDopp)e(0,D). (D.14)

Since both e(0,−D−1) and e(0,D) have unit norm, we have

|r(0,NDopp)| = 1 ⇒ r(0,NDopp) = ejθ for some θ ∈ R. (D.15)

Similarly, when the condition (D.13) is met, we have

e(1,−D) = r(−Ndelay,0)e(−Ndelay+1,−D) (D.16)

and |r(−Ndelay,0)| = 1. So, from (D.9) we have

r(Ndelay,0) = ejθ̄ for some θ̄ ∈ R. (D.17)

Now we study the pilot vectors p which satisfy (4.8) with the additional constraint

that |r(Ndelay,0)| = 1 or |r(0,NDopp)| = 1. Considering these two cases separately, we

establish that there is no such p for which rank(B) = N −NDoppNdelay.

Case I: r(0,NDopp) = ejθ

From (D.14), we have

p[i](e−j 2π
N

NDoppi − ejθ) = 0. (D.18)

Now, if θ 5= 2π
N NDoppq for some q ∈ Z, then p[i] = 0∀i, which clearly does not satisfy

the MMSE-PAT requirement (4.8), and hence ruled out from consideration. Now, if
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θ = 2π
N NDoppq for some q ∈ Z, from (D.18), p[i] may be non-zero only if i = q + kN

NDopp

for k ∈ Z such that kN
NDopp

∈ Z. Now, for k ∈ Z, defining

aq[k] =

{

|p[q + kN
NDopp

]|2 if kN
NDopp

∈ Z

0 else
(D.19)

then from the requirement (D.3), it follows that
∑NDopp−1

i=0 aq[i]e
j 2π

NDopp
mi

= Epδ[m], ∀m ∈

NDopp, which can be met if and only if

aq[i] =
Ep

NDopp

, ∀ i ∈ {0, ..., NDopp − 1}. (D.20)

From the definition (D.19), it follows that, the above requirement can be met if and

only if N
NDopp

∈ Z. If N
NDopp

/∈ Z, there is no training sequence which satisfies both

(4.8) and (D.15). Now, if N
NDopp

∈ Z, from (D.19) and (D.20), the sequence p[i] is

of the form given in Example 1. For Example 1, as noted earlier, rank(B) = Ns =

N − (2Ndelay − 1)NDopp < N − NDoppNdelay. This contradicts the initial assumption

that B is of rank NDoppNdelay.

Case II: r(Ndelay,0) = ejθ̄

From (D.9), (D.16) and (D.17), it follows that

p[i] = ejθ̄p[i + Nt]. (D.21)

Because of the circular symmetry p[i+N ] = p[i], using (D.21), we can find the largest

integer L ∈ {1, ..., Ndelay} so that N
L ∈ Z and p[i] = ejθp[i + L] for some θ ∈ R. Note

that, if N
Ndelay

∈ Z then L = Ndelay else L < Ndelay. Again from the circular symmetry,

θ = 2π
N Lq for some q ∈ Z. Let p̆ denote the N -point unitary discrete Fourier transform
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(DFT) of p. For the sequence p with the given “periodic” structure, we have

p̆[k] =
1√
N

N−1∑

i=0

p[i]e−j 2π
N

ik (D.22)

=
1√
N

L−1
∑

i=0

p[i]e−j 2π
N

ik

N
L
−1

∑

m=0

e−j 2π
N

L(k−q)m (D.23)

and hence p̆[k] = 0 ∀ k /∈ {q, q + N
L , ..., q + N(L−1)

L }. Now, the optimal excitation

requirement (4.8) can be written in terms of p̆ as (Recall Lemma 3)

N−1
∑

i=0

p̆[i]p̆∗[i− k]e−j 2π
N

mi = Epδ[k]δ[m] ∀k ∈ NDopp, ∀m ∈ Ndelay. (D.24)

Defining |p̆[q+ iN
L ]|2 = ăq[i], i ∈ {0, ..., L−1} and using the MMSE-PAT requirements

in the frequency domain, we require

g[m] =
L−1∑

i=0

ăq[i]e
−j 2π

N
(i N

L
+q)m = Epδ[m], ∀ m ∈ Ndelay. (D.25)

If L < Ndelay, then (D.25) can not be satisfied since g[L] = g[0]ej 2π
N

qL. So, if N
Ndelay

/∈ Z,

there is no MMSE-PAT with dim(W ) = NDoppNdelay. Now, if N
Ndelay

∈ Z, then L =

Ndelay and the only sequence {ăq[i]} satisfying the requirement (D.25) is ăq[i] = c for

some constant c, ∀ i. This corresponds to the equi-spaced, equi-powered frequency

domain pilot sequence of FDKD in Example 2. Again, for this pilot sequence, from

Example 2, we have rank(B) < N −NDoppNdelay. Again, we reach a contradiction on

the initial assumption that B is of rank NDoppNdelay.

D.2 Proof of Theorem 6

First, we establish that, for the PAT schemes satisfying the hypothesis, the to-

tal estimation error satisfies σ2
e ≤ κ

ρ , ∀ρ. Since the PAT is linearly separable, the

projection yp in (5.8) captures all the pilot energy and denoting G = BH
p PU , we
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have

yp =
√
ρGλ + vp. (D.26)

Since PU is full rank, it easily follows that the matrix G is full rank. Note that

σ2
e = E{‖λ − λ̂‖2} where λ̂ denotes the LMMSE estimate of λ. Using the zero

forcing estimate from (D.26) to upper bound σ2
e , we have

σ2
e ≤ 1

ρ
tr{(GHG)−1}. (D.27)

Since G is full rank, we have tr{(GHG)−1} ≤ κ for some κ ∈ R. Now, for a PAT

scheme which satisfies pilot-data orthogonality (4.7), with the choice of weighting

matrix Q given in (5.6), the achievable rates are given by (5.9). First, we obtain a

lower bound on the prelog factor of the achievable rates. Now, Rn, the covariance

of
√
ρBH

d H̃Bs + vd is bounded as Rn ≤ (1 + ρσ2
eEs‖M‖2

F )I. Recall that M is the

ZP or CP mapping matrix. Since σ2
e ≤ κ

ρ , we have Rn ≤ CI for some constant C,

∀ρ > 1. So the achievable rates are bounded as

R(ρ) ≥ 1

N
E{log det[I +

ρ

C
ĤdRsĤ

H

d ]}. (D.28)

Since σ2
e → 0 as ρ → ∞, the channel estimates converge almost everywhere to the

true channel, i.e., limρ→∞ Ĥ = H . Also, ĤdRsĤ
H

d has rank equal to rank(B)

with continuously distributed eigen values, we have limρ→∞
R(ρ)
log ρ ≥

rank(B)
N . From the

hypothesis, rank(B) = N − NDoppNdelay. The upper bound on pre-log factor follows

by applying Jensen’s inequality and taking the expectation inside log det(·) in the

rate expression (5.9).

136



APPENDIX E

PROOFS OF MIMO-MMSE-PAT RESULTS

E.1 Proof of Theorem 7

Using the techniques similar to the derivation of MMSE-PAT requirements for

SISO DSC (Chapter 4), we obtain that the pilot-data orthogonality (P̄ Ū)HD̄Ū =

0 ∀D̄ which is equivalent to (6.14), is a necessary requirement for MIMO-MMSE-

PAT. When (6.14) is satisfied, we have

σ2
e = tr{(R−1

λ̄
+ ρ(P̄ Ū)HP̄ Ū)−1} (E.1)

≥
NDoppNdelayRT−1

∑

m=0

(
1

[Rλ̄]m,m
+ ρ[(P̄ Ū )HP̄ Ū ]m,m

)−1

(E.2)

= R
T−1
∑

t=0

NDoppNdelay−1
∑

m=0

(
1

[Rλ]m,m
+
ρ‖p[t]‖2

N

)−1

(E.3)

and the equality in (E.2) is achieved if and only if the columns of P̄ Ū are orthogonal.

Since
∑T−1

t=0 ‖p[t]‖2 = Ep, from the method of Lagrange multipliers

σ2
e ≥ RT

NDoppNdelay−1
∑

m=0

(

1

[Rλ]m,m
+
ρEp

NT

)−1

(E.4)

and the equality is achieved if and only if (6.15) is met.
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E.2 Proof of Theorem 8

Let the columns of Bp ∈ CN×TNDoppNdelay form an orthonormal basis for the column

space of PU and the columns of Bd ∈ CN×(N−TNDoppNdelay) form an orthonormal basis

for the left null space of PU . The pilot-data orthogonality of MMSE-PAT [recall

(6.14)] implies that BH
p H [r]B̄ = 0 and BH

d H [r]p̄ = 0, ∀ r. Projecting the rth antenna

observation vector y[r] onto the data subspace, we obtain

y[r]

d =
√
ρBH

d H [r]B̄s̄ + BH
d v[r].

Defining v[r]

d = BH
d v[r] and ȳd = [y[0]!

d , ...,y[R−1]!
d ]!, we have

ȳd =
√
ρB̄

H
d H̄B̄s̄ + v̄d, (E.5)

where B̄d = diag(Bd, ...,Bd) and v̄d = [v[0]!
d , ...,v[R−1]!

d ]!. Now, splitting H̄ into

estimate and error component as H̄ = Ĥ + H̃ , we have

ȳd =
√
ρB̄

H

d ĤB̄s̄ +
√
ρB̄

H

d H̃B̄s̄ + v̄d
︸ ︷︷ ︸

n̄

. (E.6)

Similar to the SISO case, with the mismatched decoder, n̄ acts as AWGN in the

achievable rate expression [30]. With an i.i.d. Gaussian distribution on s, we have

the following mutual information bound [33]:

I(ȳd; s̄) ≥ E{log det[I + ρσ2
sR̄

−1
n B̄

H

d ĤB̄(B̄
H

d ĤB̄)H]}, (E.7)

where R̄n = E{n̄n̄H}. Since columns of B̄ are orthonormal, from the statistics of H̃ ,

it follows that R̄n ≤ (1 + ρσ2
s

tr{Rh̃}
NR )I. Substituting this into (E.7), and normalizing

Ĥ , we have

I(ȳd; s̄) ≥ E{log det[I + ρlbB̄
H

d H̆B̄(B̄
H

d H̆B̄)H]}. (E.8)
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It follows that B̄
H

p H̆B̄ = 0 due to similarity in the structure of H̄ and H̆ . Using

the fact that BdB
H
d = IN −BpB

H
p and the determinant identity det(I + G1G2) =

det(I + G2G1), the lower bound on the mutual information (E.8) can be rewritten

as (6.32).

For the upper bound on the mutual information, we consider the best case scenario

of perfect channel estimates, i.e., Ĥ = H and tr{Rh̃} = 0. For this scenario, with

i.i.d. Gaussian input distribution, it is straightforward [33] to obtain the bound (6.33).

E.3 Proof of Theorem 9

Since Rmimo-mmse-blk ≥ Rmimo-mmse-blk-lb, we first characterize the asymptotic behav-

ior of Rmimo-mmse-blk-lb. Since (6.32) and (E.8) are equivalent, using Fatou’s lemma [70]

and the continuity of log det(·),

lim
SNR→∞

Rmimo-mmse-blk-lb ≥ E{log det lim
ρ→∞

[I + ρlb(B̄
H

d H̆B̄)HB̄
H

d H̆B̄]}, (E.9)

≥ E{log det lim
ρ→∞

[I + ρk(B̄
H
d H̄B̄)HB̄

H
d H̄B̄]}, (E.10)

for some k ∈ R, since limρ→∞ tr{Rh̃} = 0 and limρ→∞ H̆ = H̄ almost surely, with

any fixed power allocation fraction α ∈ (0, 1). Since the “effective channel” He =

B̄
H

d H̄B̄ ∈ CR(N−TNDoppNdelay)×TNs is full rank with probability 1 and it follows that

Rmimo-mmse-blk(ρ) ≥ Rmimo-mmse-blk-lb(ρ) (E.11)

= min{R(N − TNDoppNdelay), TNs} log ρ+ O(1). (E.12)

Now, to bound the asymptotic achievable rate from above, we consider the “coher-

ent” case of zero channel estimation error, i.e., H̄ is perfectly known at the receiver.

Since I(ȳ; s̄) = I(ȳd; s̄), using Ccoh to denote the capacity of (E.5) with the same

power constraint, it is evident that Rmimo-mmse-blk ≤ Ccoh. Using the coherent capacity
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result from [33], we have Ccoh = maxtr{R̄s}≤N E{log det[I + ρHeR̄sH
H
e ]}, where R̄s

denotes the covariance of s̄. Note that, for any R̄s satisfying the power constraint,

we have R̄s ≤ NI , in the positive semi-definite sense. So, as ρ→∞,

Rmimo-mmse-blk(ρ) ≤ E{log det[I + ρNHH
e He]} (E.13)

= min{R(N − TNDoppNdelay), TNs} log ρ+ O(1). (E.14)

E.4 Derivation of T# and R#

Notice that with optimal T!, we have N − T!NdelayNDopp > 0 since we consider

underspread channel which satisfies N − NdelayNDopp > 0. So, we have R(N −

T!NdelayNDopp) ≥ r(N − T!NdelayNDopp) ∀r ∈ {0, ..., R} and hence an optimal value

R! = R. Finding T! follows from geometrical arguments. It is clear that the pre-log

factor is non-negative. As a (continuous) function of t, we plot the non-negative val-

ues R!(N − tNdelayNDopp) and tNs in Fig. E.1. Notice that R!(N − tNdelayNDopp) is a

straight line and tNs = t(N − (t + 1)NdelayNDopp + κ) is a parabola as a function of t

where κ = 1, Ndelay, NDopp for MIMO- Chirp, FDKD and TDKD schemes respectively.

T! is an integer which maximizes the minimum of the two curves. There arises two

possibilities depending on whether the two curves intersect or not. When the two

curves intersect Fig. E.1 (a), it is clear that the pre-log factor increases until the first

intersection point (at t =
ξ−
√

ξ2−4R$NNDoppNdelay

2NDoppNdelay
) after which it decreases. Since T!

is an integer which can not be more than the number of available antennas T , the

optimal T! is given by min

(

T,





ξ−
√

ξ2−4R$NNDoppNdelay

2NDoppNdelay






)

. When the two curves do

not intersect Fig. E.1 (b), the pre-log factor increases until t = ξ
2NdelayNDopp

− R$

2 after

which it decreases, and T! is given by min
(

T,


 ξ
2NdelayNDopp

− R$

2





)

.
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t →t →

(a) (b)

R!NR!N

ξ
NdelayNDopp

− R!

ξ
NdelayNDopp

− R!

N
NdelayNDopp

N
NdelayNDopp

Figure E.1: Pre-log factor with number of active transmit antennas t.
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