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Abstract—Deep generative networks provide a powerful tool
for modeling complex data in a wide range of applications. In
inverse problems that use these networks as generative priors
on data, one must often perform inference of the inputs of
the networks from the outputs. Inference is also required for
sampling during stochastic training of these generative models.
This paper considers inference in a deep stochastic neural net-
work where the parameters (e.g., weights, biases and activation
functions) are known and the problem is to estimate the values
of the input and hidden units from the output. A novel and
computationally tractable inference method called Multi-Layer
Vector Approximate Message Passing (ML-VAMP) is presented.
Our main contribution shows that the mean-squared error (MSE)
of ML-VAMP can be exactly predicted in a certain large system
limit. In addition, the MSE achieved by ML-VAMP matches the
Bayes optimal value recently postulated by Reeves when certain
fixed point equations have unique solutions.

I. INTRODUCTION

Deep neural networks are increasingly used for describing

probabilistic generative models of complex data such as images,

audio and text. This paper considers the inference problem of

estimating the input and hidden units of an (already trained)

deep neural network from its output. The problem arises, for

example, in image reconstruction where a deep network is used

as a generative prior of an image with additional layers added

to model the measurements (such as blurring, occlusion or

noise) [1], [2]. While optimal inference is generally intractable,

there are several methods that have worked well in practice,

including MAP estimation via gradient descent [1], [2] and the

use of a separate learned deep network, as is done in variational

autoencoders [3], [4] and adversarial networks [5]. However,

similar to the situation in deep learning in general, there are few

analytic tools for understanding how these algorithms perform

or how far the estimates are from optimal.

In this work, we address this shortcoming by considering

inference based on approximate message passing (AMP) [6]. A

recent variant of AMP, called multi-layer AMP, has been propo-

sed for inference in deep networks [7]. That work characterizes

the replica prediction for optimality in multi-layer networks

and argues that the proposed ML-AMP method can achieve

this optimal inference in certain scenarios. Unfortunately, the

convergence of ML-AMP in [7] is not rigorously proven. In

addition, ML-AMP assumes Gaussian i.i.d. weight matrices

W�, and it is well-known that AMP methods often fail to
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converge when this assumption does not hold [8], [9], [10],

[11], [12].

In this work, we present a novel AMP method called multi-

layer vector AMP (ML-VAMP) that builds on the recent VAMP

method of [13] and its extensions to generalized linear models

(GLMs) in [14], [15]. The VAMP algorithm of [13] was itself

derived from the expectation consistent approximate inference

framework of [16], [17], [18] and applies to the special case of

a single linear layer. The ML-VAMP algorithm proposed here

extends the VAMP method to networks with multiple layers

and separable nonlinearities.

We analyze ML-VAMP in a setting where the number

of layers is fixed and the weight matrices are orthogonally

invariant random matrices with dimensions that grow to infinity.

This class of random matrices is much larger than i.i.d.

Gaussian ensembles. Importantly, it includes weight matrices

with arbitrary condition numbers, which is known to be the

main failure mechanism in conventional AMP convergence [8].

Our main theoretical contribution (Theorem 1) shows that the

mean squared error (MSE) of ML-VAMP algorithm can be

precisely predicted by a simple set of scalar state evolution

(SE) equations. In addition, a recent work by Reeves [19] has

shown that the fixed point equations for the MSE of ML-VAMP

exactly match those of the postulated optimal MSE as predicted

by information theoretic techniques. Hence, ML-VAMP may

be Bayes optimal when certain fixed point equations have

unique solutions. ML-VAMP thus enables computationally

tractable inference with rigorous analysis of its performance

and testable conditions for optimality. A full version of this

paper is available in [20], which includes proofs, simulation

details, and further discussion of previous work.

II. ML-VAMP ALGORITHM

We consider the following L/2-layer (for even L) neural-

network-based generative stochastic model: A random input

z0 with some density p(z0) generates a sequence of vectors,

z� ∈ R
N� , � = 1, . . . , L, through operations of the form

z� = W�z�−1 + b� + ξ�, ξ� ∼ N (0, ν−1
� I),

� = 1, 3, . . . , L− 1 (1a)

z� = φ�(z�−1, ξ�), ξ� ∼ p(ξ�), � = 2, 4, . . . , L. (1b)

Equation (1a) describes the linear stages of the network, which

are defined by the weight matrices W�, the bias vectors b�,

and the Gaussian noise terms ξ�. Equation (1b) describes the

nonlinear stages, which involve the activation functions φ�(·)
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and the possibly non-Gaussian noise terms ξ�. We will assume

separable φ�(·) and i.i.d. ξ�, i.e.,

[φ�(z�−1, ξ�)]n = φ�(z�−1,n, ξ�,n) (2)

p(ξ�) =

N�∏
n=1

p(ξ�,n), (3)

for scalar-valued functions φ�(·). This model covers many acti-

vation functions commonly used in neural networks, including

rectified linear units (ReLUs) and sigmoids. The final output

zL is observed.

We consider the problem of estimating the hidden network

variables z�, � = 0, . . . , L−1 from the observed output y = zL.

Importantly, the activation functions φ�(·) noise precisions ν�,
weight matrices W�, and bias terms b� are known (i.e., already

trained). Thus, we do not consider the learning problem.

The proposed ML-VAMP algorithm for this inference

problem is shown in Algorithm 1. It can be derived as an

extension of the GEC-SR algorithm [14] proposed for inference

in a GLM, which is a special case of our multi-layer problem

with L = 2 stages (i.e., one layer). The GEC-SR can also be

derived from TAP methods [21], [22]. We take a Bayesian

approach, where z0 is i.i.d. with known density p(z0). The

noise terms ξ� are independent random vectors, so that the

sequence z� in (1) is Markov. As described in the full paper

[20], the ML-VAMP algorithm can be derived similar to GEC-

SR using a Gaussian approximation of belief propagation on the

factor-graph representation of the Markov chain. The quantities

r+k� and γ+
k� represent the mean and precision (inverse variance)

of the Gaussian messages in the forward direction, and r+k�
and γ−

k� represent the same quantities in the reverse direction.

The terms r±k� and γ±
k� are updated by estimation functions

g±
� (·) that are defined as follows. For � = 1, . . . , L−1, we first

define the belief

b�(z�, z�−1|r+�−1, r−� , γ+
�−1, γ

−
� ) ∝ exp [−H�(z�, z�−1)] , (4)

which is a probability density, using the energy function

H�(z�, z�−1) := − ln p(z�|z�−1)

+
γ−
�

2
‖z� − r−� ‖2 +

γ+
�−1
2

‖z�−1 − r+�−1‖2. (5)

At each iteration k, the belief (4) represents an estimate of the

posterior density p(z�−1, z�|y). The estimation functions g±
� (·)

are defined as the functions that compute the expected value

of z�−1 and z� with respect to that belief, i.e.,

g+
� (r

+
�−1, r

−
� , γ

+
�−1, γ

−
� ) = E

[
z�|r+�−1, r−� , γ+

�−1, γ
−
�

]
, (6a)

g−
� (r

+
�−1, r

−
� , γ

+
�−1, γ

−
� ) = E

[
z�−1|r+�−1, r−� , γ+

�−1, γ
−
�

]
, (6b)

where the expectations are with respect to the density b� in (4).

For the end points � = 0 and L in the factor graph, we define

b0(z0|r−0 , γ−
0 ), bL(zL−1|r+L−1, γ+

L−1),

similar to (4)-(5), but in the case of b0 we omit the r+�−1 term

and replace p(z�|z�−1) by p(z0) in (5), and in the case of bL
we omit the r−� term in (5).

Algorithm 1 ML-VAMP

Require: Forward estimation functions g+
� (·), � = 0, . . . , L−1

and reverse estimation functions g−
� (·), � = 1, . . . , L.

1: Initialize r−0� = 0, γ−
0� = 0, � = 0, . . . , L−1.

2: for k = 0, 1, . . . , Nit − 1 do
3: // Forward Pass

4: for � = 0, . . . , L−1 do
5: if � = 0 then
6: ẑ+k� = g+

� (r
−
k�, γ

−
k�)

7: α+
k� = 〈∂g+

� (r
−
k�, γ

−
k�)/∂r

−
k�〉

8: else
9: ẑ+k� = g+

� (r
+
k,�−1, r

−
k�, γ

+
k,�−1, γ

−
k�)

10: α+
k� = 〈∂g+

� (r
+
k,�−1, r

−
k�, γ

+
k�−1, γ

−
k�)/∂r

−
k�〉

11: end if
12: γ+

k� = η+k� − γ−
k�, η

+
k� = γ−

k�/α
+
k�

13: r+k� = (η+k�ẑ
+
k� − γ−

k�r
−
k�)/γ

+
k�

14: end for
15: // Reverse Pass

16: for � = L−1, . . . , 0 do
17: if � = L−1 then
18: ẑ−k� = g−

�+1(r
+
k�, γ

+
k�, )

19: α−
k� = 〈∂g−

�+1(r
+
k�, γ

+
k�)/∂r

+
k�〉

20: else
21: ẑ−k� = g−

�+1(r
+
k�, r

−
k+1,�+1, γ

+
k�, γ

−
k+1,�+1)

22: α−
k� = 〈∂g−

�+1(r
+
k�, r

−
k+1,�+1, γ

+
k�, γ

−
k+1,�+1)/∂r

+
k�〉

23: end if
24: γ−

k+1,� = η−k� − γ+
k�, η

−
k� = γ+

k�/α
−
k�

25: r−k+1,� = (η−k�ẑ
−
k� − γ+

k�r
+
k�)/γ

+
k+1,�

26: end for
27: end for

We also use the following notation. For any vector u ∈ R
N ,

〈u〉 := (1/N)
∑N

n=1 un, which is the empirical average over

the components. For a matrix Q ∈ R
N×N , we let 〈Q〉 =

(1/N)Tr(Q), which is the average of the diagonal components.

Finally, ∂g±
� denotes the Jacobian of the estimation function

g±
� : RN� → R

N� with respect to its first argument.

As shown in the full paper [20], an appealing feature of

ML-VAMP is that the estimation functions g±
� (·) can be easily

computed for the network (1). By this, we mean the following.

Nonlinear stages: Consider � ∈ {2, 4, . . . , L}, corre-

sponding to a nonlinear stage (1b). For separable activation

function φ�(·) and i.i.d. noise ξ�, the estimation functions (6)

are themselves separable in that [g±
� (r�−1, r�, γ

+
�−1, γ

−
� )]n =

g±� (r�−1,n, r�,n, γ
+
�−1, γ

−
� ). The corresponding scalar estimation

functions g±� can often be evaluated analytically, or if not by

two-dimensional numerical integration.

Linear stages: Consider � ∈ {1, 3, . . . , L−1}. Since the

transformation in (1a) is linear and the noise is Gaussian, the

belief (4) is also Gaussian. Therefore, the expectation in (6) and

covariance can be computed in closed form. For the purpose of

analysis, we compute the estimate using an SVD. Specifically,
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suppose that the weight matrix W� has the SVD

W� = V�Σ�V�−1, Σ� =

[
Diag(s�) 0

0 0

]
∈ R

N�×N�−1 ,

(7)

where V� and V�−1 are orthogonal matrices, the vector s� =
(s�1, . . . , s�R�

) contains singular values, and rank(W�) ≤ R�.

Also, let b̄� := VT
�b� and ξ̄� := VT

� ξ� so that

b� = V�b̄�, ξ� = V�ξ̄�, (8)

Then, as shown in the full paper [20], the estimation functions

(6) reduce to matrix-vector multiplications with V� and VT
�

and scalar inversions.

III. STATE EVOLUTION ANALYSIS OF ML-VAMP

A. Large System Limit Model

Our main contribution is to rigorously analyze ML-VAMP

in a certain large system limit (LSL). The LSL analysis is

widely-used in studying AMP algorithms and their variants

[23], [13]. For this, we consider a sequence of problems indexed

by N . The number of stages L is fixed and the dimensions

N� = N�(N) and ranks R� = R�(N) in each stage are

deterministic functions of N . We assume that limN→∞ N�/N
and limN→∞ R�/N converge to non-zero constants, so that the

dimensions grow linearly with N . We follow the framework of

Bayati and Montanari [23], which models various sequences

as deterministic, but with components converging empirically

to a distribution. See [20] for a review of this framework.

Specifically, let us denote the “true” realization of z� using

the superscripted variable z0� . Then we assume that the signal

realization z0� ∈ R
N0 for � = 0, and the noise realizations ξ� in

the nonlinear stages � = 2, 4, . . . , L, all converge empirically

to random variables Z0 and Ξ�, i.e.,

lim
N→∞

{
z00,n

} PL(2)
= Z0

0 , lim
N→∞

{ξ�,n} PL(2)
= Ξ�, � = 2m,

(9)

For the linear stages � = 1, 3, . . . , L−1, let s̄� be a version of the

singular-value vector s� zero-padded to length N�. We assume

that s̄�, the transformed bias b̄� = VT
�b�, and the transformed

noise realization ξ̄� = VT
� ξ� all converge empirically as

lim
N→∞

{
s̄�,n, b̄�,n, ξ̄�,n

} PL(2)
= (S̄�, B̄�, Ξ̄�), � = 2m+ 1,

(10)

to independent random variables S̄�, B̄�, and Ξ̄�, with Ξ̄� ∼
N (0, ν−1

� ), where ν� is the noise precision. We assume that

S̄� ≥ 0 and S̄� ≤ Smax for some upper bound Smax.

We assume that the matrices V� are Haar distributed (i.e.,

uniform on the set of N� ×N� orthogonal matrices) as well as

independent of one another. For any linear stage �, the weight

matrix W�, bias b�, and noise ξ� are then generated from (7)

and (8). Finally, the true z0� are generated from the recursions,

z0� = W�z
0
�−1 + b� + ξ�, � = 1, 3, . . . , L−1 (11a)

z0� = φ�(z
0
�−1, ξ�), � = 2, 4, . . . , L. (11b)

Algorithm 2 ML-VAMP State Evolution

Require: Random variables Z0
0 , Ξ�, B̄�, S̄�, Ξ̄�.

1:

2: Initialize γ−
0� = 0

3: Q0
0 = Z0

0 , P0 ∼ N (0, τ00 ), τ00 = E(Q0
0)

2

4: for � = 1, 2, . . . , L−1 do
5: if � is odd then
6: Q0

� = S̄�P
0
�−1 + B̄� + Ξ̄�

7: else
8: Q0

� = φ�(P
0
�−1,Ξ�)

9: end if
10: P 0

� = N (0, τ0� ), τ0� = E(Q0
�)

2

11: end for
12:

13: for k = 0, 1, . . . do
14: // Forward Pass

15: η+k0 = 1/E+
0 (γ−

k0)
16: γ+

k0 = η+k0 − γ−
k0, α+

k0 = γ+
k0/η

+
k0

17: for � = 1, . . . , L− 1 do
18: η+k� = 1/E+

� (γ+
k,�−1, γ

−
k�, τ

0
�−1)

19: γ+
k� = η+k� − γ−

k�, α+
k� = γ+

k�/η
+
k�

20: end for
21:

22: // Reverse Pass

23: η−k,L−1 = 1/E−
L (γ+

k,L−1)
24: γ−

k,L−1 = η+k,L−1 − γ+
k,L−1, α−

k,L−1 = γ−
k,L−1/η

+
k,L−1

25: for � = L−1, . . . , 0 do
26: η−k,�−1 = 1/E−

� (γ+
k,�−1, γ

−
k�, τ

0
�−1)

27: γ−
k,�−1 = η−k,�−1 − γ+

k,�−1, α−
k,�−1 = γ+

k,�−1/η
−
k,�−1

28: end for
29: end for

B. State Evolution Equations

Define the quantities

q0
� := z0� , p0

� := V�q
0
� = V�z

0
� � = 0, 2, . . . , L

q0
� := VT

� z
0
� , p0

� := z0� = V�q
0
� , � = 1, 3, . . . , L−1,

(12)

which represent the true vectors z0� and their transforms.

Similarly, define the ML-VAMP estimates

q̂±
k� := ẑ±k�, p̂±

k� := V�ẑ
±
k� � = 0, 2, . . . , L (13a)

q̂±
k� := VT

� ẑ
±
k�, p̂±

k� := ẑ±k� � = 1, 3, . . . , L−1. (13b)

Our goal is to describe the mean squared error of these estimates

in the LSL. To this end, similar to those in VAMP [13], we

introduce the concept of error functions. Let � = 2, 4, . . . , L−2
be the index of a nonlinear stage and suppose that we are given

parameters γ+
�−1, γ−

� , and τ0�−1. Define a set of random variables

(R+
�−1, Z

0
�−1, Z

0
� , R

−
� ) by the Markov chain

R+
�−1 ∼ N (0, τ0�−1 − 1/γ+

�−1), Z0
�−1 ∼ N

(
R+

�−1,
1

γ−
�−1

)
,

Z0
� = φ�(Z

0
�−1,Ξ�), R−

� ∼ Z0
� +N (0, 1/γ−

� ).
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Define the error functions

E+
� (γ+

�−1, γ
−
� , τ0�−1) := var(Z0

� |R+
�−1, R

−
� ),

E−
� (γ+

�−1, γ
−
� , τ0�−1) := var(Z0

�−1|R+
�−1, R

−
� ),

(14)

which represent the error variances in estimating the inputs

and outputs. For � = 0, we can define E+
0 (γ−

0 ) by dropping

the terms associated with R+
�−1 and Z0

�−1. For � = L, we define

E−
L−1(γ

+
L−1, τ

0
L−1) by dropping the terms associated with R−

� .

Next, let � = 1, 3, . . . , L−1 be the index of a linear stage, and

consider a Markov chain,

R̄+
�−1 ∼ N (0, τ0�−1 − 1/γ+

�−1), P 0
�−1 ∼ N (R̄+

�−1, 1/γ
−
�−1),

Q0
� = S̄P 0

�−1 + B̄ + Ξ̄�, R̄−
� ∼ Q0

� +N (0, 1/γ−
� ), (15)

which represents the inputs and outputs of a scalar linear

channel with parameters S̄, B̄ and Ξ̄� given from variables

(10). Define

E+
� (γ+

�−1, γ
−
� , τ0�−1) := var(Q0

� |R̄+
�−1, R̄

−
� , S̄�, B̄�),

E−
� (γ+

�−1, γ
−
� , τ0�−1) := var(P 0

�−1|R̄+
�−1, R̄

−
� , S̄�, B̄�),

(16)

Under these definitions, the SE equations for ML-VAMP are

given in Algorithm 2, which defines a sequence of random

variables and constants.

Theorem 1. Consider the outputs of the ML-VAMP algorithm,
Algorithm 1, and the corresponding outputs of the SE equations
in Algorithm 2. In addition to the assumptions in Section III-A,
assume:

(i) The constants α±
k� ∈ (0, 1) for all k and �.

(ii) The activation functions φ�(z�−1, ξ�) in (2) are pseudo-
Lipschitz continuous of order two.

(iii) The components of the estimation functions g±
� (·) are

uniformly Lipschitz continuous (see [20] for more details).
Then, for any fixed iteration k and index �,

lim
N→∞

(γ±
k�, α

±
k�, η

±
k�) = (γ±

k�, α
±
k�, η

±
k�) (17)

almost surely, where the quantities on the right hand side are
from the SE equations, Algorithm 2. In addition, the components
of the transformed true vectors p0

� and q0
� and their estimates

p̂±
k� and q̂±

k� converge empirically as

lim
N→∞

{
(p0�,n, q

0
�,n, p̂

±
k�,n, q̂

±
k�,n)

}
PL(2)
= (P 0

� , Q
0
� , P̂

±
k�, Q̂

±
k�),

(18)

where the random-variable limits have moments

E(P̂±
k� − P 0

� )
2 = E(Q̂±

k� −Q0
�)

2 =
1

η±k�
. (19)

Theorem 1 shows that the components of the true sig-

nals p0
� and q0

� and the corresponding ML-VAMP estima-

tes p̂±
k� and q̂±

k� converge empirically to random variables

(P 0
� , Q

0
� , P̂

±
k�, Q̂

±
k�). The full paper [20] provides a complete

description of the joint distribution of these variables and thus

gives an exact characterization of the asymptotic behavior of

the true signal and their estimates. In particular, the asymptotic

MSE of the ML-VAMP can be exactly computed from (19).

Importantly, this asymptotic MSE can be information theore-

tically optimal. Specifically, following a pre-print of this paper

Fig. 1. Simulation with a randomly generated neural network. Top: Normalized
mean squared error (NMSE) for ML-VAMP and the predicted MSE as
a function of the iteration with M = 100 measurements. Bottom: Final
NMSE for ML-VAMP and the predicted MSE as a function of the number of
measurements, M .

[20], Reeves [19] has postulated the optimal MSE for inference

in deep networks using information theoretic methods. It is

shown there that the fixed points of the SE of this work satisfy

the same fixed point equations for the postulated optimal MSE.

Hence, when the fixed points are unique, ML-VAMP achieves

the postulated information-theoretically optimal MSE.

IV. NUMERICAL EXPERIMENTS

Synthetic random network: To illustrate the SE analysis,

we first consider a randomly generated neural network that

follows the theoretical model of the paper. (Details are in

[20].) Briefly, the network accepts N0 = 20 dimensional unit-

variance Gaussian noise z0, and has three hidden layers, of

dimension 100, 500 and 784, respectively. (Similar dimensions

will be used for the MNIST experiment below). The observed

output is a compressed linear measurement y = Az5 + w,

where z5 is the vector from the final hidden layer, the matrix

A is M × 784, and w is Gaussian noise, scaled to achieve a

sigal-to-noise ratio of 30 dB. The number of measurements

M is varied from 100 to 600. To follow the theory, the weight

matrices are drawn from the i.i.d. Gaussian ensemble and the

observation matrix A is drawn from the orthogonally invariant

matrix ensemble with singular values spaced logarithmically to

give condition number κ = 10. This model cannot be treated

by the ML-AMP algorithm in [7].

The left panel of Fig. 1 shows the normalized mean squared

error (NMSE) for the estimation of the inputs to the networks

z0 as a function of the iteration number for a fixed number of

measurements M = 300. Also plotted is the state evolution

(SE) prediction. Plotted values are the average of 1000 random

realizations. We see that the SE predicts the ML-VAMP

behavior remarkably well, within approximately 1 dB. The right
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Fig. 2. Inpainting of handwritten digits using MAP estimation, stochastic
gradient Langevin dynamics (SGLD) and ML-VAMP.

panel shows the NMSE after 50 iterations (100 half-iterations)

for various values of M . We again see an excellent agreement

between the actual values and the SE predictions.

MNIST inpainting: To demonstrate the feasibility of ML-

VAMP on a real dataset, we performed inpainting on the

MNIST dataset, as in [1], [2], [24]. The MNIST dataset consists

of 28 × 28 = 784 pixel images of hand-written digits as shown

in the first column of Fig. 2. Following [4], a generative model

for these digits was trained using a variational autoencoder

(VAE), so that each image x is modeled as the output of an

L-stage neural network. In this experiment, we used a network

with 20 input units, 400 hidden units, and 784 output units,

corresponding to the dimension of the images. (Details about

the network and its training are given in [20].) For each image

x, we then created an occluded image, y, by removing the

rows 10–20 of the original image, as shown in the second

column of Fig. 2. Combining the generative layers with the

occlusion layer creates a deep network model for the occluded

image y. ML-VAMP was then used to recover the original

image x from the occluded image y.

Fig. 2 shows a typical reconstructions from i) ML-VAMP,

ii) MAP estimation via numerical optimization of the posterior

density as performed in [1], [2], and iii) estimation of the

posterior mean E(x|y) via Stochastic Gradient Langevin

Dynamics (SGLD) [25]. (See [20] for details.) We see that,

visually, the ML-VAMP, MAP, and SGLD estimates are similar.

However, the ML-VAMP algorithm was significantly faster

than its competitors: ML-VAMP used only 20 iterations, while

MAP used 500 iterations, and SGLD used 10000. Thus, this

experiment suggests that, in addition to providing theoretical

guarantees, ML-VAMP may be a computationally efficient

approach to reconstruction. Of course, further experimentation

on a variety of data sets is still needed to evaluate its practical

applicability.

V. CONCLUSIONS

We have presented a principled and computationally tractable

method for inference in deep networks whose performance

can be rigorously characterized in certain high-dimensional

random settings. Importantly, the asymptotic MSE of ML-

VAMP satisfies a fixed point equation that is identical to that

of the optimal MSE postulated by Reeves [19].
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