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Abstract—The problem of reliable communication
over unknown frequency-selective block-fading channels
with sparse impulse responses is considered. In partic-
ular, discrete-time impulse responses with block-fading
interval N , length L < N , and exactly S ≤ L non-
zero coefficients are considered, where both the locations
and values of non-zero coefficients change independently
across blocks and are apriori unknown. Assuming that
the non-zero coefficients and noise are both Gaussian,
it is first shown that the ergodic noncoherent channel
capacity has pre-log factor 1 − S

N
for any L. Then, a

pilot-aided transmission (PAT) scheme and noncoherent
decoder are proposed which are capable of communicat-
ing with arbitrarily small error probability using only
S pilots per fading block. Furthermore, the achievable
rate of this scheme is shown to have the optimal pre-
log factor, i.e., 1 − S

N
. Finally, a lower complexity PAT

scheme is proposed, whose ε-achievable rate has the pre-
log factor 1− S+1

N
for any ε > 0.1

I. SYSTEM MODEL

The problem of communicating across sparse chan-
nels has recently gained significant attention through
the framework of compressed channel sensing [1]. We
study communication across sparse channels from an
information theoretic perspective, extending existing
results on non-sparse noncoherent capacity and pilot
aided transmission (PAT) to the sparse case [2], [3].

In particular, we consider the problem of communi-
cating reliably over an unknown, single-input single-
output, S-sparse, L-length N -block-fading frequency-
selective channel, as described by the discrete-time
complex-baseband input/output model

y(k)[n] =
√
ρ

L−1∑
l=0

h(k)[l]x(k)[n− l] + v(k)[n], (1)

where k ∈ {1, . . . ,K} is the fading-block index,
n ∈ {0, . . . , N − 1} is the channel-use index, x(k)[n]
is the transmitted signal, y(k)[n] is the received signal,
and v(k)[n] is additive white Gaussian noise (AWGN).
Throughout, it will be assumed that the channel length
obeys L < N . The channel is “sparse” in the
sense that exactly S of the L channel coefficients
{h(k)[l]}L−1l=0 are non-zero during each fading block
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k, where the indices of these non-zero coefficients,
collected in the set L(k), can change with fading block
k. In the sequel, we refer to S as the “sparsity” and
to the non-zero locations L(k) as the “support.”

As there are M ,
(
L
S

)
distinct S-element subsets

of {0, . . . , L − 1}, we write this collection of sub-
sets as {Li}Mi=1. We then assume that the support
L(k) is drawn so that the event L(k) = Li occurs
with prior probability λi, where L(k) is drawn in-
dependently of L(k′) for k′ 6= k. We also assume
that the vector h(k)

nz ∈ CS containing the non-zero
coefficients {h(k)[l] : l ∈ L(k)} has the circular
Gaussian distribution h(k)

nz ∼ CN (0, S−1I) with h(k)
nz

independent of h(k′)
nz for k′ 6= k. Finally, we assume

that v(k)[n] ∼ CN (0, 1) with v(k)[n] independent of
v(k

′)[n′] for (k′, n′) 6= (k, n). We impose the power
constraint 1

N

∑N−1
n=0 E{|x(k)[n]|2} = 1 ∀k, so that the

signal-to-noise ratio (SNR) becomes ρ in (1).
Throughout the paper, we assume that the prefix

samples {x(k)[−l]}L−1l=1 are chosen as a cyclic prefix
(CP), i.e., x(k)[−l] = x(k)[N− l] for l = 1, . . . , L−1.
Defining the vectors y(k) , (y(k)[0], . . . , y(k)[N −
1])T, v(k) , (v(k)[0], . . . , v(k)[N − 1])T, h(k) ,
(h(k)[0], . . . , h(k)[L−1], 0, . . . , 0)T ∈ CN , and x(k) ,
(x(k)[0], . . . , x(k)[N − 1])T, we get the following
input-output model in the frequency domain:

y
(k)
f =

√
ρD(x

(k)
f )h

(k)
f + v

(k)
f , (2)

where y(k)
f , Fy(k), x(k)

f , Fx(k), v(k)f , Fv(k),
h
(k)
f ,

√
NFh(k), and where F denotes the N -

dimensional unitary discrete Fourier transform (DFT)
matrix and D(·) converts a vector to a diagonal matrix.

The non-zero tap coefficients and their locations are
“unknown” in the sense that neither the transmitter
nor the receiver knows the channel realization, though
they both know the channel statistics.

II. NONCOHERENT CAPACITY

For the unknown non-sparse, L-length, N -block
fading frequency-selective channel, the ergodic capac-
ity Cnon-sparse(ρ), in bits per channel use, obeys [3]
limρ→∞

Cnon-sparse(ρ)
log ρ = 1 − L

N . Here and throughout
the paper, the base of the logarithm equals 2. We now



characterize the ergodic noncoherent capacity of the
sparse version of this channel, focusing on the high-
SNR regime, i.e., the case ρ→∞.

Theorem 1. The ergodic noncoherent capacity
Csparse(ρ), in bits per channel use, of the S-
sparse, L-length, N -block-fading channel, obeys
limρ→∞

Csparse(ρ)
log ρ = 1− S

N for any L < N .

Proof: Using the chain rule for mutual informa-
tion [4], it follows straightforwardly that

I(y(k);x(k)) = I(y(k);L(k)) + I(y(k);x(k) | L(k))

− I(y(k);L(k) |x(k)). (3)

where I(a; b) denotes the mutual information between
random vectors a and b and where I(a; b | c) denotes
the conditional mutual information between a and b
conditioned on c. Then, since |L(k)| = M , we can
bound the first term in (3) as follows:

I(y(k);L(k)) ≤ h(L(k)) ≤ log |L(k)| = logM,

where h(a) denotes the entropy of a. Because
I(y(k);L(k) |x(k)) ≥ 0, we have the upper bound
I(y(k);x(k)) ≤ logM + I(y(k);x(k) | L(k)).
Similarly, since I(y(k);L(k)) ≥ 0,
equation (3) implies that I(y(k);x(k)) ≥
I(y(k);x(k) | L(k)) − I(y(k);L(k) |x(k)) and, since
I(y(k);L(k) |x(k)) ≤ h(L(k) |x(k)) ≤ logM , we also
have that I(y(k);x(k)) ≥ I(y(k);x(k) | L(k))− logM .
In summary, we have that I(y(k);x(k)) =
I(y(k);x(k) | L(k)) + ∆ for ∆ ∈

[
− logM, logM

]
.

Given knowledge of the support L(k), the
frequency-domain vector h

(k)
f is zero-mean

Gaussian with a rank-S covariance matrix.
Thus, [3, Theorem 1] implies that CL(ρ), the
pre-log factor of ergodic noncoherent capacity
under knowledge of the support equals 1 − S

N ,
i.e., limρ→∞

CL(ρ)
log ρ = 1 − S

N . Since CL(ρ) =
1
N max

p(x
(k)

f ):E ‖x(k)

f ‖2≤N
I(y

(k)
f ;x

(k)
f | L

(k)),

where I(y
(k)
f ;x

(k)
f | L

(k)) = I(y(k);x(k) | L(k))
and since I(y(k);x(k) | L(k)) differs from
I(y(k);x(k)) by a bounded ρ-invariant
constant ∆, the ergodic noncoherent capacity
Csparse(ρ) = 1

N maxp(x(k)):E ‖x(k)‖2≤N I(y(k);x(k)),
must also obey limρ→∞

Csparse(ρ)
log ρ = 1− S

N .
It is interesting to notice that the channel multi-

plexing gain equals 1− S
N whether or not the support

L , (L(1), ...,L(K)) is apriori known.

III. PILOT AIDED TRANSMISSION

For the non-sparse frequency-selective block-fading
channel, PAT is known to be spectrally efficient [2],
[3] in that it yields an achievable rate whose pre-
log factor matches that of the noncoherent channel
capacity expression. We now show, constructively,
that PAT is also spectrally efficient for the sparse
frequency-selective block-fading channel.

For our PAT scheme, we partition the frequency-
domain transmission vector x(k)

f ∈ CN into a pilot
vector xp ∈ CP , created from {x(k)f [n] : n ∈ Np},
and a data vector x(k)

d ∈ CN−P , created from
{x(k)f [n] : n ∈ Nd}. Here, Np ⊂ {0, . . . , N − 1}
denotes the pilot subcarrier indices andNd denotes the
corresponding data subcarrier indices, where Nd =
{0, . . . , N − 1} \ Np. Notice that we have allocated
exactly P signal-space dimensions (per fading block)
to pilots, i.e., |Np| = P . For simplicity, we assume
that the pilot locations Np and pilot values xp do not
change with the fading block k, and that the pilot
values are constant modulus, i.e., |xp[n]| = 1.

In the parallel subchannel model (2), we partition
both y(k)

f ∈ CN and v(k)f ∈ CN in the same way as
we did x(k)

f ∈ CN , yielding

y
(k)
p =

√
ρD(xp)Jph

(k)
f + v

(k)
p (4)

y
(k)
d =

√
ρD(x

(k)
d )Jdh

(k)
f + v

(k)
d , (5)

where Jp is a selection matrix constructed from rows
Np of the N×N identity matrix, and Jd is constructed
similarly from rowsNd of the identity matrix. Another
formulation for y(k)

p and y(k)
d , which will be useful

in the sequel, is

y
(k)
p =

√
ρN D(xp)F

(k)
p,trueh

(k)
nz + v

(k)
p (6)

y
(k)
d =

√
ρN D(x

(k)
d )F

(k)
d,trueh

(k)
nz + v

(k)
d , (7)

where h
(k)
nz ∈ CS is formed from the non-zero

elements of h(k), F (k)
p,true is formed from rows Np

and columns L(k) of the DFT matrix F , and F (k)
d,true is

formed from rows Nd and columns L(k) of F . Notice
that, because L(k) is not apriori known to the decoder,
neither are F (k)

p,true or F (k)
d,true.

To achieve an arbitrarily small probability of de-
coding error, we construct codewords that span K
blocks, where K is arbitrarily large. Thus, using
C ⊂ CK(N−P ) to denote our codebook, we partition
each codeword xd ∈ C into K data vectors, i.e.,
xd = [x

(1)T
d , . . . ,x

(K)T
d ]T, for use in our PAT scheme.

The codewords xd are generated independently from a
Gaussian distribution such that the x(k)

d has positive
definite covariance matrix Rd for all k and x(k)

d is
independent of x(k′)

d for k 6= k′. Denoting the number
of codewords in the codebook by |C|, the average data
rate is given by R = 1

KN log |C|.
For PAT decoding, we employ a two-stage decou-

pled scheme: i) pilot-aided channel estimation and ii)
coherent data-decoding based on the channel estimate.
Furthermore, pilot-aided channel estimation is accom-
plished in a support-hypothesized manner. For this, we
note that the support-conditional prior

p(h
(k)
f | L

(k) = Li) = CN
(
0, NS F iF

H
i

)
(8)



is Gaussian for any sparsity S and any support hy-
pothesis Li. In the sequel, we use F p,i ∈ CP×S to
denote the matrix formed from rows Np of F i (i.e.,
rows Np and columns Li of F ).

For PAT decoding, we compute—at each fading
block k—the pilot-aided MMSE estimate ĥ

(k)

f,ik of the
frequency domain channel h(k)

f under channel-support
hypothesis L(k) = Lik , for ik ∈ {1, ...,M}:

ĥ
(k)

f,ik =
√
ρF ikF

H
p,ik

(
ρF p,ikF

H
p,ik+ S

N I
)−1D(x∗p)y

(k)
p

(9)
We then compute the weighted minimum-distance
(WMD) codeword estimate

x̂WMD
d,i (10)
= arg min

xd∈C

K∑
k=1

∥∥Q(k)
ik

(
y
(k)
d −√ρD(x

(k)
d )Jdĥ

(k)

f,ik

)∥∥2,
where Q(k)

ik
∈ CN×N whitens the effective noise

e
(k)
d,ik ,

√
ρD(x

(k)
d )Jdh̃

(k)

f,ik + v
(k)
d , (11)

for which h̃
(k)

f,ik denotes the channel estimation error.
For the achievable rate of the decoupled-decoder PAT
system to grow logarithmically with ρ, the effective
noise e(k)d,ik must satisfy certain properties.

Lemma 1. Say that N is prime. Then, for any pilot
pattern Np such that P ≥ S, there exists a con-
stant C such that the channel estimation error obeys
E{‖h̃

(k)

f,p,i‖2} ≤ Cρ−1 for all ρ > 0 if Li = L(k)
true, i.e.,

Li is the true channel-support of the kth block.

Proof: We provide a proof sketch here; the full
version appears in [5]. First, we make some observa-
tions about F p,i and F (k)

p,true. When N is prime, the
Chebotarev theorem [6] guarantees that any square
submatrix of the N -DFT matrix F will be full rank.
Hence, any tall submatrix of F will also be full rank.
Then, because P ≥ S, it follows that F p,i ∈ CP×S

will be full rank for all i, as will F (k)
p,true.

We now focus on estimation of the channel im-
pulse response h(k), noting that the frequency-domain
channel estimate can be obtained by taking a DFT of
the impulse response estimate. Given knowledge of
the correct channel support, the estimator can directly
estimate the taps with non-zero variance. In partic-
ular, the pilot-aided zero-forcing estimate of h(k)

nz
is given by 1√

ρN
(F

(k)
p,true)+D(x∗p)y

(k)
p , where (·)+

denotes pseudo-inverse. The error variance of zero-
forcing estimator is given by 1

ρN E ‖(F (k)
p,true)+v

(k)
p ‖2.

Since F (k)
p,true is full rank, E ‖(F (k)

p,true)+v
(k)
p ‖2 ≤ C1

for some constant C1. The desired result follows
because the MMSE estimator has an error variance
no larger than that of the zero-forcing estimator.

We note that N is assumed prime only to ensure
certain submatrices of DFT matrix to be full rank.

This assumption can be relaxed in exchange for the
following restrictions on Np and L:

1) The set Np does not form a group with respect
to modulo-N addition, nor a coset of a subgroup
of {0, 1, . . . , N − 1} under modulo-N addition.

2) The channel length L obeys L < N/2.
Furthermore, the converse of Lemma 1 also holds [5]:
for the wrong support hypotheses, there exists no C

such that E{‖h̃
(k)

f,p,i‖2} ≤ Cρ−1 for all ρ > 0.
When the support is known correctly for all blocks,

the pre-log factor of the achievable-rate of our PAT
scheme is characterized by the following lemma.

Lemma 2. Say that N is prime, and that receiver
knows the correct channel support for each fading
block. Then, for any pilot pattern Np such that P ≥
S, the achievable rate of the support-hypothesized
estimator-decoder satisfies limρ→∞

R(ρ)
log ρ = 1− P

N .

Proof: We provide a proof sketch here; the full
version appears in [5]. The achievable rate of WMD
decoding under imperfect channel state information
and Gaussian coding was studied in [7], where it
was shown that the achievable rate behaves as if
the effective noise (11) was Gaussian. Given correct
support knowledge, and using the channel estimation
error variance bound from Lemma 1, it follows that
the effective signal to noise ratio grows linearly with
ρ. Then, because we transmit N − P independent
data symbols in each block, the achievable rate obeys
limρ→∞

R(ρ)
log ρ = 1− P

N .
In summary, the PAT scheme with the decoupled

decoder will suffice for spectral efficient commu-
nication over the sparse frequency-selective block-
fading channel if we can establish a reliable means
of determining the correct support.

IV. SUPPORT DECODING

In this section, we consider schemes for reliably
decoding the channel support for each fading block.

A. Data-Aided Support Decoding

We now construct a so-called data-aided support
decoder (DASD) that leverages the error-detecting
capabilities of the codebook C. To enable DASD, we
assume that the transmitter embeds cyclic redundancy
check (CRC) bits in the data-bit stream. Denoting
the rate of information bits as R and the rate of
CRC bits as δ (per channel use), it is clear that, over
m = KN channel uses, we transmit a total of mR
bits of information and mδ bits of CRC. Then we can
write the “binning function” that maps information
bits to CRC bits as µ(·), where

µ : {1, . . . , 2mR} → {1, . . . , 2mδ}.

For the information message w, the corresponding
CRC bits are u = µ(w), which are sometimes
referred to as the “auxiliary check message.” The



encoder then maps the “composite message” (w,u),
which contains m(R+ δ) bits, to one of the 2m(R+δ)

codewords in the codebook C.
The DASD procedure is defined as follows.

For each hypothesis of support index i =
(i1, . . . , iK) ∈ {1, . . . ,M}K ,

1) Compute conditional channel esti-
mates {ĥ

(k)

f,ik}
K
k=1 according to (9).

2) Compute the WMD codeword estimate
x̂d,i according to (11).

3) From the codeword x̂d,i, obtain the
composite message (ŵi, ûi)

4) Perform error detection on (ŵi, ûi),
i.e., check if µ(ŵi) = ûi.

5) If no error is detected or there are no
more hypotheses to consider, stop and
declare the decoded message as ŵi,
else continue with the next i.

The asymptotic performance of DASD is character-
ized by the following theorem.

Theorem 2. For the S-sparse frequency-selective N -
block-fading channel with prime N , the PAT scheme,
when used with S pilots and DASD, yields an achiev-
able rate RDASD(ρ) that obeys limρ→∞

RDASD(ρ)
log ρ =

1− S
N .

Proof: In our proof, instead of considering a
specific binning function µ, we consider the error per-
formance averaged over all possible random binning
assignments and establish that the average error ap-
proaches zero. For a given support hypothesis Li, the
DASD computes the support-conditional channel esti-
mate and the corresponding WMD codeword estimate,
from which the composite message bits (ŵi, ûi)
are obtained. There are two situations under which
the DASD terminates, producing the final estimate
ŵDASD = ŵi: i) when i 6= ilast and µ(ŵi) = ûi,
or ii) when i = ilast. Here we use ilast to denote the
last of the MK hypotheses.

We now upper bound the probability that the
DASD infers the wrong information bits, i.e., that
ŵDASD 6= w. Say that istop denotes the value of i
used to produce ŵDASD, i.e., ŵDASD = ŵistop and itrue
denote the index corresponding to the true support.
We can partition the error event ŵistop 6= w into three
mutually exclusive events:
E1) istop = itrue and ŵistop 6= w,
E2) istop = ilast 6= itrue and both µ(ŵitrue) 6= ûitrue

and ŵistop 6= w.
E3) ∃istop /∈ {itrue, ilast} s.t. both µ(ŵistop) =

ûistop and ŵistop 6= w.
Notice that E1 is the event of a data-decoding error
under the correct support hypothesis (i.e., ŵitrue 6= w).
As long as the total rate R + δ is less than R,
the achievable rate under known-support, the prob-
ability of E1 can be made arbitrarily small. E2

characterizes the event in which the true support is
falsely discarded and a data-decoding error results
later (under an incorrect support hypothesis). The
probability of E2 can be upper bounded by the
probability of a decoding error under the correct
support-hypothesis, which (like Pr{E1}) can be made
arbitrarily small for any achievable rate. E3 describes
the event that both the detection of a support-error is
missed and a data-decoding error results. We have,
Pr{E3} = Pr

{
∃ istop /∈ {itrue, ilast} s.t. µ(ŵistop) =

ûistop

∣∣ ŵistop 6= w
}

Pr{ŵistop 6= w} which can be
upper bounded as Pr{E3} ≤

∑
i6=itrue

Pr{µ(ŵi) =
ûi | ŵi 6= w}. Now, to find the probability of missing
a support-error, we assume that, when ŵi 6= w,
the auxiliary check estimate µ(ŵi) is uniformly dis-
tributed over all possibilities of u. This can be justified
by letting the function µ be constructed by a random
binning assignment of the codewords onto 2mδ bins,
and averaging over the ensemble of random binning
assignments [8]. In this case, for any i 6= itrue, the
probability of missing the detection of a support-error
becomes Pr{µ(ŵi) = ûi | i 6= itrue, ŵi 6= w} =

1
2mδ

, so that Pr{E3} ≤ (LS)
K

2mδ
=

(LS)
K

2KNδ
=
(

(LS)
2Nδ

)K
.

So, when δ >
log (LS)
N , by choosing K large enough,

we can make Pr{E3} averaged over all the random
binning CRC assignments arbitrarily small. Notice
that the rate δ sacrificed to make Pr{E3} arbitrarily
small does not grow with SNR ρ. As long as we
choose the SNR-dependent information rate R(ρ) ≤
R(ρ) − δ, where R(ρ) is an achievable rate for
the sparse channel with known support described in
Lemma 2, the error probability that Pr{ŵDASD 6=
w} = Pr{E1}+Pr{E2}+Pr{E3} can be made arbi-
trarily small. Since δ is fixed with respect to SNR, the
information rate of DASD satisfies limρ→∞

R(ρ)
log ρ =

1− S
N .

As we have seen, the DASD achieves the optimal
pre-log factor, though its complexity grows exponen-
tially with number of fading blocks K.

B. Pilot-Aided Support Decoding

In this section, we propose a pilot-aided sup-
port decoder (PASD) that offers significantly re-
duced decoding complexity relative to DASD. Our
PASD, however, requires one additional pilot di-
mension relative to DASD (i.e., P = S + 1) and
is only asymptotically reliable (i.e., the probability
of support-detection error vanishes as ρ → ∞).
Consider the following normalized pilot observa-
tions: z(k)p , 1√

ρN
D(x∗p)y

(k)
p = F

(k)
p,trueh

(k)
nz +

1√
ρN
ν
(k)
p , where ν(k)

p ∼ CN (0, I). We henceforth
use Πp,i , F p,i(F

H
p,iF p,i)

−1F H
p,i to denote the matrix

that projects onto the column space of F p,i, and
Π⊥p,i , I−Πp,i to denote its orthogonal complement.

The pilot-aided support estimator (PASE) infers the



support index as that which minimizes the energy of
the projection error e(k)p,i :

ı̂
(k)
p , arg min

i∈{1,...,M}
‖e(k)p,i ‖

2 for e
(k)
p,i , Π⊥p,iz

(k)
p

Theorem 3. For the S-sparse frequency-selective N -
block-fading channel with prime N , and the PAT
scheme with P ≥ S + 1 arbitrarily placed pilots, the
probability of PASE support-detection error vanishes
as ρ→∞.

Proof: We first note that, due to the Chebotarev
theorem [6], each F p,i ∈ CP×S is full rank when N
is prime and P ≥ S+1. Also, each column f of F p,i
is linearly independent of all columns in F p,j

∣∣
j 6=i that

are not equal to f .
A PASE support-detection error results in case of

the event
E4) ∃i 6= i

(k)
true s.t. ‖e(k)p,i ‖2 < ‖e

(k)
p,true‖2.

Now, Pr{E4} ≤
∑
i 6=itrue

Pr{‖e(k)p,i ‖ < ‖e(k)p,true‖}.
Since ‖e(k)p,i ‖ = ‖Π⊥p,iF

(k)
p,trueh

(k)
nz + 1√

ρN
Π⊥p,iν

(k)
p ‖ ≥

‖Π⊥p,iF
(k)
p,trueh

(k)
nz ‖ − ‖ 1√

ρN
Π⊥p,iν

(k)
p ‖, we have

Pr{E4} ≤
∑
i6=i(k)true

Pr
{
‖Π⊥p,iF

(k)
p,trueh

(k)
nz ‖ <

1√
ρN
‖Π⊥p,iν

(k)
p ‖ + 1√

ρN
‖Π(k)⊥

p,trueν
(k)
p ‖

}
. Since

Πp,i and Π
(k)
p,true are projection matrices, we have

‖Π⊥p,iν
(k)
p ‖ ≤ ‖ν

(k)
p ‖ and ‖Π(k)⊥

p,trueν
(k)
p ‖ ≤ ‖ν

(k)
p ‖

and we can further upper bound error probability as

Pr{E4}
≤

∑
i6=i(k)true

Pr
{
‖Π⊥p,iF

(k)
p,trueh

(k)
nz ‖ < 2√

ρN
‖ν(k)

p ‖
}
.(12)

Taking the SVD Π⊥p,iF
(k)
p,true = U

(k)
i Σ

(k)
i V

(k)H
i and

defining g(k)i ,
√
SV

(k)H
i h

(k)
nz ∼ CN (0, I), we can

rewrite (12) as follows and upper bound further:
Pr{E4} ≤

∑
i 6=i(k)true

Pr
{
‖Σ(k)

i g
(k)
i ‖2 < 4S

ρN ‖ν
(k)
p ‖2

}
≤
∑
i 6=i(k)true

Pr
{

(σ
(k)
i,0 )2|g(k)i,0 |2 < 4S

ρN ‖ν
(k)
p ‖2

}
≤
∑
i 6=i(k)true

Pr
{

(σ
(min)
i,0 )2|g(k)i,0 |2 < 4S

ρN ‖ν
(k)
p ‖2

}
=
∑
i 6=i(k)true

Pr

{
|g(k)i,0 |

2

‖ν(k)
p ‖2

< 4S

(σ
(min)
i,0 )2ρN

}
. Here, σ(k)

i,0

denotes the largest singular value in Σ
(k)
i and

σ
(min)
i,0 , mink σ

(k)
i,0 . Notice that at least one of the

columns of F (k)
p,true lies outside the column space

of F p,i. The projection of those columns onto the
subspace orthogonal to the column space of F p,i

will be non-zero implying that Π⊥p,iF
(k)
p,true is not

identical to 0 and hence the largest singular value
σ
(k)
i,0 > 0,∀k. Since g

(k)
i,0 ∼ CN (0, 1) is inde-

pendent of ν(k)
p ∼ CN (0, I), the random variable

F
(k)
i , |g(k)i,0 |2/‖ν

(k)
p ‖2 is F-distributed with pa-

rameters (2, 2P ). Since the cumulative distribution
function of an F-distributed random variable vanishes
as its argument (in this case, 4S

(σ
(min)
i,0 )2ρN

) approaches

zero, the probability of a PASE error vanishes as
ρ→∞.

For pilot-aided support decoding (PASD), we as-
sume that the transmitter uses the PAT scheme with
P = S + 1 pilots and prime N . At the receiver,
the PASE scheme is used to estimate the sparse
channel support and, based on this estimate, support-
conditional channel estimation and decoupled data
decoding are performed. For some ε > 0 and SNR
ρ, let Rε(ρ) denote the information rate for which
the probability of decoding error can be made less
than ε. Lemma 3 characterizes Rε(ρ) for PAT with
PASD.

Lemma 3. For the S-sparse frequency-selective N -
block-fading channel with prime N , the previously
defined PAT scheme, when used with S+ 1 pilots and
PASD, yields an ε-achievable rate RPASD

ε that, for any
ε > 0, obeys limρ→∞

RPASD
ε (ρ)
log ρ = 1− S+1

N .

Proof: From Theorem 3 we know that, under the
conditions stated in the lemma, there exists, for any
ε > 0, an SNR ρε above which the error of PASE is
less than ε

2 . In the case that the support hypothesis
is correct, the channel estimation and decoupled de-
coding allow for the design of a codebook Cρ,ε that
guarantees data decoding with error probability less
than ε

2 at SNR ρ. Furthermore, from Lemma 2, this
codebook can be designed with a rate Rε(ρ) such that
limρ→∞

Rε(ρ)
log ρ = 1− S+1

N . Putting these together, we
obtain the result of the lemma.
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