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Abstract
Accelerated magnetic resonance (MR) imaging
attempts to reduce acquisition time by collect-
ing data below the Nyquist rate. As an ill-posed
inverse problem, many plausible solutions ex-
ist, yet the majority of deep learning approaches
generate only a single solution. We instead fo-
cus on sampling from the posterior distribution,
which provides more comprehensive information
for downstream inference tasks. To do this, we de-
sign a novel conditional normalizing flow (CNF)
that infers the signal component in the measure-
ment operator’s nullspace, which is later com-
bined with measured data to form complete im-
ages. Using fastMRI brain and knee data, we
demonstrate fast inference and accuracy that sur-
passes recent posterior sampling techniques for
MRI. Code is available at https://github.
com/jwen307/mri_cnf

1. Introduction
Magnetic resonance imaging (MRI) is a routine diagnostic
imaging tool that has the potential to provide high-quality
soft-tissue images without exposure to ionizing radiation.
However, MRI exams are generally time-consuming, which
reduces throughput, compromises patient comfort, and in-
creases the likelihood of artifacts from patient motion. Scan
time can be reduced by sampling below the Nyquist rate,
but this makes the image reconstruction process more chal-
lenging. Hence, recovering high-accuracy images from
highly subsampled MRI scans has become an active area of
research (Knoll et al., 2020).

Many approaches have been proposed to recover MR images
from subsampled measurements. Parallel imaging, which
is available on all commercial scanners, takes advantage of
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the availability of multiple receiver coils. After estimating
coil-sensitivity maps or interpolation kernels, methods like
SENSE (Pruessmann et al., 1999) and GRAPPA (Griswold
et al., 2002) can use subsampled data from multiple coils to
remove aliasing artifacts in the final reconstruction. How-
ever, parallel imaging alone can typically allow only two-
to three-fold acceleration of the acquisition process. For
higher acceleration, methods based on compressed-sensing
(CS) have been proposed (Lustig et al., 2007). The CS
methods are framed as iteratively minimizing the sum of
a data-fidelity term and a regularization term, where the
regularization term incorporates prior knowledge about the
images. The prior knowledge could be that the true im-
ages are sparse in some transform domain, as in traditional
CS, or that the true images are preserved by some denois-
ing function, as in “plug-and-play” recovery (Ahmad et al.,
2020). Deep neural networks have also been proposed for
MR image recovery, based on end-to-end approaches like
(Zbontar et al., 2018; Eo et al., 2018; Sriram et al., 2020) or
algorithmic unrolling (Hammernik et al., 2018). Yet another
approach, known as compressed sensing with a generative
model (CSGM) (Bora et al., 2017), trains a deep image gen-
erator and then optimizes its input to give the image that,
after application of the forward model, best matches the
measurements.

Although they achieve high reconstruction quality, the afore-
mentioned methods provide only a point estimate. Yet, ac-
celerated MRI is an ill-posed inverse problem, where there
exist many possible reconstructions that are consistent with
a given prior and set of subsampled measurements. Since
small variations in image content can impact the final diag-
nosis, it is crucial for radiologists to know whether a visual
structure is truly reflective of the patient anatomy or merely
an imaging artifact. Problems of this form fall into the realm
of uncertainty quantification (UQ) (Abdar et al., 2021).

One approach that facilitates UQ is Bayesian imaging,
where the goal is not to compute a single “good” image
estimate but rather to sample from the posterior distribution.
The availability of a large batch of posterior samples enables
many forms of UQ. For example, a simple approach is to
generate the pixel-wise standard-deviation map, which quan-
tifies which pixels are more trustworthy. A more involved
approach is to construct a hypothesis test for the absence of a
particular (multi-pixel) visual structure (Repetti et al., 2019).
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In this paper, we focus on the task of sampling from the pos-
terior, which facilitates future work that uses those samples
for uncertainty quantification, adaptive sampling (Sanchez
et al., 2020), counterfactual diagnosis (Chang et al., 2019),
or other applications.

There exist several deep-learning based approaches to sam-
ple from the posterior, including those based on conditional
generative adversarial networks (CGANs) (Isola et al., 2017;
Adler & Öktem, 2018), conditional variational autoencoders
(CVAEs) (Edupuganti et al., 2021; Tonolini et al., 2020),
conditional normalizing flows (CNFs) (Ardizzone et al.,
2019; Winkler et al., 2019), and score/Langevin/diffusion-
based approaches (Kadkhodaie & Simoncelli, 2020; Lau-
mont et al., 2022; Ho et al., 2020). In this paper, we focus on
the CNF approach. Compared to the other methods, CNFs
yield rapid inference and require only simple, likelihood-
based training. In a recent super-resolution (SR) contest
(Lugmayr et al., 2022), a CNF (by Song et al. (2022)) won,
beating all CGAN, CVAE, and diffusion-based competitors.

Inspired by the success of CNFs in SR, we design the first
CNF for accelerated multi-coil MRI. Previous applications
of CNFs to MRI (Denker et al., 2021a) showed compet-
itive results but were restricted to single-coil recovery of
magnitude images. As the vast majority of modern MRI
scanners capture multi-coil data, the extension to multi-
coil, complex-valued data is crucial for real-world adoption.
However, the order-of-magnitude increase in dimensional-
ity makes this transition non-trivial. For this purpose, we
propose a novel CNF that infers only the signal component
in the nullspace of the measurement operator and combines
its output with the measured data to generate complete im-
ages. Using fastMRI brain and knee data, we demonstrate
that our approach outperforms existing posterior samplers
based on CGANs (Adler & Öktem, 2018) and MRI-specific
score/Langevin-based approaches (Jalal et al., 2021a; Chung
& Ye, 2022a) in almost all accuracy metrics, while retaining
fast inference and requiring minimal hyperparameter tuning.

2. Background
2.1. Measurement Model

In MRI, measurements of the D-pixel true image itrue ∈ CD

are collected in the spatial Fourier domain, known as the “k-
space.” In a multi-coil system with C coils, measurements
from the cth coil can be written as

kc = PFScitrue + ϵc ∈ CM , (1)

where P ∈ RM×D is a sampling matrix containing M rows
of the D×D identity matrix I , F is the D×D 2D unitary
discrete Fourier transform (DFT) matrix, Sc ∈ CD×D is
the coil-sensitivity map of the cth coil, and ϵc ∈ CM is
measurement noise. We will assume that {Sc}Cc=1 have

been obtained from ESPIRiT (Uecker et al., 2014), in which
case

∑C
c=1 S

H
cSc = I . In the case of single-coil MRI,

C = 1 and S1 = I .

We now rewrite the model in terms of the “coil images”
xc ≜ Sci and their corresponding “zero-filled” estimates
yc ≜ F HP⊤kc, and then stack all the coils together via
xtrue ≜ [x⊤

1 , . . . ,x
⊤
C ]

⊤ and y ≜ [y⊤
1 , . . . ,y

⊤
C ]

⊤ to obtain

y = Axtrue + ε, (2)

with ε = [(F HP⊤ϵ1)
⊤, . . . , (F HP⊤ϵC)

⊤]⊤ and forward
operator

A = blkdiag
{
F HP⊤PF , . . . ,F HP⊤PF

}
. (3)

To perform image recovery, one can first compute y, then
estimate x̂ from y, and finally either “coil-combine” to yield
a complex-valued image estimate

î = [SH
1 , . . . ,S

H
C ]x̂ (4)

or perform root-sum-of-squares (RSS) reconstruction to
obtain a magnitude-only image estimate

|̂i| =
√∑C

c=1 |x̂c|2. (5)

In the “fully sampled” case, M = D and so y = xtrue + ε.
But fully sampled acquisition is very slow, and so we are
interested in accelerated MRI, where one collects M<D
measurements per coil to save time. This gives an “accelera-
tion factor” of R ≜ D/M , but it makes A rank deficient. In
this latter case, accurate recovery of xtrue requires the use
of prior information about xtrue, such as the knowledge that
xtrue is a vector of MRI coil images.

2.2. Posterior Sampling

In the case of MRI, the posterior distribution that we would
ultimately like to sample from is pi|k(·|k), where k ≜

[k⊤
1 , . . . ,k

⊤
C ]. Equivalently, we could consider pi|y(·|y)

since y and k contain the same information. Another op-
tion is to sample from px|y(·|y) and then use (4) or (5) to
combine coil images into a single image. We take the latter
approach.

For CNFs and CGANs, posterior sampling is accomplished
by designing a neural network that maps samples from an
easy-to-generate latent distribution (e.g., white Gaussian)
to the target distribution (i.e., the distribution of x given y,
with density px|y). Once that network is trained, sample
generation is extremely fast. For Langevin dynamics, an
algorithm is run for hundreds or thousands of iterations to
generate each sample, and each iteration involves calling a
neural network. Consequently, the inference time is much
longer than that of CNFs and CGANs.
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2.3. Conditional Normalizing Flows

Normalizing flows (NF) (Dinh et al., 2015; 2017; Kingma &
Dhariwal, 2018; Papamakarios et al., 2021) have emerged as
powerful generative models capable of modeling complex
data distributions. Normalizing flows learn an invertible
mapping between a target data distribution and a simple
latent distribution, generally a Gaussian. More concretely,
for a latent sample z drawn from the latent distribution pz ,
the normalizing flow defines an invertible transformation
fθ(·) : RQ → RQ. This transformation is parameterized
by θ, and x = fθ(z) defines a sample in the target data
domain. This mapping of the latent distribution induces
a probability in the target data domain with a probability
density derived from the change-of-variable formula

p̂x(x;θ) = pz(f
−1
θ (x))

∣∣∣∣det(∂f−1
θ (x)

∂x

)∣∣∣∣, (6)

where det(·) denotes the determinant. The goal of the nor-
malizing flow is to approximate the underlying data distribu-
tion px with p̂x(·;θ). Given a set of data samples {x(i)}Ni=1,
the parameters θ can be fit using a maximum likelihood loss

L(θ) =

N∑
i=1

ln p̂x(x
(i);θ) (7)

=

N∑
i=1

ln pz(f
−1
θ (x(i))) + ln

∣∣∣∣det(∂f−1
θ (x(i))

∂x(i)

)∣∣∣∣ (8)

Once the training is complete, samples from the target dis-
tribution can be rapidly generated by drawing samples from
the latent distribution and passing them through the normal-
izing flow fθ.

It is worth noting that maximizing L(θ) is equivalent to
minimizing the Kullback-Leibler (KL) divergence between
p̂x(·;θ) and px (Papamakarios et al., 2021), which aligns
with the goal of approximating px with p̂x(·;θ). The
maximum-likelihood loss provides stable training with mini-
mal hyperparameter tuning and has been shown to be robust
to mode collapse.

Conditional normalizing flows (CNFs) (Ardizzone et al.,
2021) generalize normalizing flows by adding a condi-
tioning signal y. With the CNF denoted as hθ(·, ·) :
RQ × RQ → RQ, the forward process from the latent do-
main to the data domain is given by x = hθ(z,y). For
complex-valued, multi-coil MRI, we have Q = 2CD. The
inclusion of y alters the objective of the CNF to approxi-
mating the unknown posterior distribution px|y(·|y) with
p̂x|y(·|y;θ). As before, the change-of-variable formula im-
plies the induced distribution

p̂x|y(x|y;θ) = pz(h
−1
θ (x,y))

∣∣∣∣det(∂h−1
θ (x,y)

∂x

)∣∣∣∣, (9)

where h−1
θ refers to the inverse mapping of hθ with respect

to its first argument.

Given a dataset {(x(i),y(i))}Ni=1, the maximum likelihood
loss can be utilized to optimize the parameters θ

L(θ) =

N∑
i=1

ln p̂x|y(x
(i)|y(i);θ) (10)

=

N∑
i=1

ln pz(h
−1
θ (x(i),y(i)))+ln

∣∣∣∣det(∂h−1
θ (x(i),y(i))

∂x(i)

)∣∣∣∣
(11)

CNFs have shown promising performance in solving inverse
problems, such as super-resolution (Lugmayr et al., 2020;
Kim & Son, 2021; Song et al., 2022), making it an exciting
avenue of exploration for accelerated MRI. Denker et al.
(2021a) developed a CNF for single-coil, magnitude-only
knee images. This study showed promising initial results,
but the limited scope did not demonstrate performance in
the more realistic multi-coil, complex-valued domain. As
this transition increases the dimensionality by an order of
magnitude, non-trivial architectural changes are required. In
this paper, we build on the latest advances in CNFs to create
a method that is capable of generating high-quality posterior
samples of multi-coil, complex-valued MRI images.

3. Method
Our CNF consists of two networks, a conditioning network
gθ and a conditional flow model hθ. The conditioning net-
work takes the vector of zero-filled (ZF) coil-images y as
input and produces features that are used as conditioning
information by the flow model hθ. Aided by the condition-
ing information, hθ learns an invertible mapping between
samples in the latent space and those in the image space.
Using the notation of Sec. 2.3, our overall CNF takes the
form

hθ(z,y) ≜ hθ(z, gθ(y)). (12)

Recently, advancements of CNFs in the super-resolution
literature have revealed useful insights for more general
inverse problems. First, Lugmayr et al. (2020) suggested
the use of a pretrained, state-of-the-art point-estimate net-
work for the conditioning network gθ. This network is
then trained jointly with hθ using the loss in (11). This
approach provides a functional initialization of gθ and al-
lows gθ to learn to provide features that are useful for the
maximum-likelihood training objective. We utilize a UNet
from (Zbontar et al., 2018) for gθ since it has been shown to
perform well in accelerated MRI. We first pre-train gθ for
MRI recovery, and later we jointly train gθ and hθ together.

Song et al. (2022) demonstrated the benefits of using
“frequency-separation” when training a CNF for super-
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Figure 1. The architecture of our CNF. The conditioning network gθ takes in multi-coil zero-filled image estimates y and outputs features
used by the flow model hθ . The flow learns an invertible mapping between Gaussian random samples z(i) and images u(i) that are the
projections of the training images x(i) onto the non-measured subspace.

resolution. The authors argue that the low-resolution condi-
tional image already contains sufficient information about
the low-frequency components of the image, so the CNF can
focus on recovering only the high-frequency information.
The CNF output is then added to an upsampled version of
the conditional image to yield an estimate of the full image.

We now generalize the frequency-separation idea to arbitrary
linear models of the form y = Axtrue + ε from (2) and
apply the resulting procedure to MRI. Notice that (2) implies

A+y = A+Axtrue +A+ε (13)

where (·)+ denotes the pseudo-inverse. Here, A+Axtrue is
recognized as the projection of xtrue onto the row-space of
A, which we will refer to as the “measured space.” Then

utrue ≜ (I −A+A)xtrue (14)

would be the projection of xtrue onto its orthogonal comple-
ment, which we refer to as the “nullspace.” Assuming that
the nullspace has dimension > 0, we propose to construct
an estimate x̂ of xtrue with the form

x̂(z,y) = (I −A+A)hθ(z,y) +A+y, (15)

where hθ(z,y) is our CNF-generated estimate of utrue and
the (I −A+A) in (15) strips off any part of hθ(z,y) that
has leaked into the measured space. A similar approach was
used in (Sønderby et al., 2017) for point estimation. Given
training data {(x(i),y(i))}Ni=1, the CNF hθ(·, ·) is trained to
map code vectors z(i) ∼ pz to the nullspace projections

u(i) ≜ (I −A+A)x(i) (16)

using the measured data y(i) as the conditional information.
As a result of (15), the reconstructions x̂ agree with the
measurements y in that Ax̂ = y. However, this also means
that x̂ inherits the noise ε corrupting y, and so this data-
consistency procedure is best used in the low-noise regime.
In the presence of significant noise, the dual-decomposition
approach (Chen & Davies, 2020) may be more appropriate.

In the accelerated MRI formulation (1)-(3), the matrix A is
itself an orthogonal projection matrix, so that, in (15),

I −A+A = blkdiag
{
F HP̃

⊤
P̃ F , . . . ,F HP̃

⊤
P̃ F

}
, (17)

where P̃ ∈ R(D−M)×D is the sampling matrix for the non-
measured k-space. Also, y is in the row-space of A, so

A+y = y (18)

in (15). Figure 1 illustrates the overall procedure, using
“data consistency” to describe (15) and “nullspace projec-
tion” to describe (16). In Sec. 4.2, we quantitatively demon-
strate the improvements gained from designing our CNF to
estimate only the nullspace component.

3.1. Architecture

The backbone of gθ is a UNet (Ronneberger et al., 2015)
that mimics the design in (Zbontar et al., 2018), with 4 pool-
ing layers and 128 output channels in the first convolution
layer. The first layer was modified to accept complex-valued
coil images. The inputs have 2C channels, where C is the
number of coils, each with a real and imaginary component.
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The outputs of the final feature layer of the UNet are pro-
cessed by a feature-extraction network with L convolution
layers. Together, the feature extraction network and the
UNet make up our conditioning network gθ. The output of
each convolution layer is fed to conditional coupling blocks
of the corresponding layer in hθ.

For the flow model hθ, we adopt the multi-scale RealNVP
(Dinh et al., 2017) architecture. This construction utilizes
L-layers and B-flow steps in each layer. A flow step con-
sists of an activation normalization (Kingma & Dhariwal,
2018), a fixed 1×1 orthogonal convolution (Ardizzone et al.,
2019), and a conditional coupling block (Ardizzone et al.,
2021). Each layer begins with a checkerboard downsam-
pling (squeeze layer) (Dinh et al., 2017) and a transition step
made up of an activation normalization and 1× 1 convolu-
tion. Layers end with a split operation that sends half of the
channels directly to the output on the latent side. For all ex-
periments, we use L = 3 and B = 20. The full architecture
of hθ is specified in Fig. 1.

Although the code that accompanies (Denker et al., 2021a)
gives a built-in mechanism to scale their flow architecture
to accommodate an increased number of input and output
channels, we find that this mechanism does not work well
(see Sec. 4.2). Thus, in addition to incorporating nullspace
learning, we redesign several aspects of the flow architecture
and training. First, to prevent the number of flow parame-
ters from growing unreasonably large, our flow uses fewer
downsampling layers (3 vs 6) but more flow steps per down-
sampling layer (20 vs 5), and we utilize one-sided (instead
of two-sided) affine coupling layers. Second, to connect the
conditioning network to the flow, Denker et al. (2021a) used
a separate CNN for each flow layer and adjusted its depth
to match the flow-layer dimension. We use a single, larger
CNN and feed its intermediate features to the flow layers
with matched dimensions, further preventing an explosion
in the number of parameters. Third, our conditioning net-
work uses a large, pretrained UNet, whereas Denker et al.
(2021a) used a smaller untrained UNet. With our modifica-
tions, we grow the conditional network more than the flow
network, which allows the CNF to better handle the high
dimensionality of complex-valued, multi-coil data.

3.2. Data

We apply our network to two datasets: the fastMRI knee and
fastMRI brain datasets (Zbontar et al., 2018). For the knee
data, we use the non-fat-suppressed subset, giving 17286
training and 3592 validation images. We compress the mea-
surements to C = 8 complex-valued virtual coils using
(Zhang et al., 2013) and crop the images to 320×320 pixels.
The sampling mask is generated using the golden ratio offset
(GRO) (Joshi et al., 2022) Cartesian sampling scheme with
an acceleration rate R = 4 and autocalibration signal (ACS)

region of 13 pixels. We create the ZF coil-image vectors
y by applying the mask and inverse Fourier transform to
the fully sampled kc given by the fastMRI dataset to obtain
yc = F HP⊤Pkc for all c, and then stack the coils to obtain
y = [y⊤

1 , . . . ,y
⊤
C ]

⊤. We create the ground-truth coil-image
vectors xtrue using the same procedure but without the mask,
i.e., xc = F Hkc and xtrue = [x⊤

1 , . . . ,x
⊤
C ]

⊤.

With the brain data, we use the T2-weighted images and
take the first 8 slices of all volumes with at least 8 coils.
This provides 12224 training and 3352 validation images.
The data is compressed to C = 8 virtual coils (Zhang et al.,
2013) and cropped to 384× 384 pixels. The GRO sampling
scheme is again used with an acceleration rate R = 4 and a
32-wide ACS region. For both methods, the coil-sensitivity
maps are estimated from the ACS region using ESPIRiT
(Uecker et al., 2014). All inputs to the network are normal-
ized by the 95th percentile of the ZF magnitude images.

3.3. Training

For both datasets, we first train the UNet in gθ with an
additional 1 × 1 convolution layer to get the desired 2C
channels. We train the UNet to minimize the mean-squared
error (MSE) from the nullspace projected targets {u(i)}Ni=1

for 50 epochs with batch size 8 and learning rate 0.003.
Then, we remove the final 1 × 1 convolution and jointly
train gθ and hθ for 100 epochs to minimize the negative log-
likelihood (NLL) loss of the nullspace projected targets. For
the brain data, we use batch size 8 and learning rate 0.0003.
For the knee data, we use batch size 16 with learning rate
0.0005. All experiments use the Adam optimizer (Kingma &
Ba, 2015) with default parameters β1 = 0.9 and β2 = 0.999.
The full training takes about 4 days on 4 Nvidia V100 GPUs.

3.4. Comparison Methods

We compare against other methods that are capable of
generating posterior samples for accelerated MRI. For the
fastMRI brain data, we present results for the CGAN from
(Adler & Öktem, 2018) and the Langevin method from
(Jalal et al., 2021a). For the fastMRI knee data, we present
results for the “Score” method from (Chung & Ye, 2022a)
and the “sCNF” method from (Denker et al., 2021a).

For the CGAN, we utilize a UNet-based generator with 4
pooling layers and 128 output channels in the initial layer
and a 5-layer CNN network for the discriminator. The gen-
erator takes y concatenated with a latent vector z as input.
The model is trained with the default loss and hyperparam-
eters from (Adler & Öktem, 2018) for 100 epochs with a
learning rate of 0.001. For the Langevin method, we use the
authors’ implementation but with the GRO sampling mask
described in Sec. 3.2.

The Score method is different than the other methods in that
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Figure 2. Mean images and pixel-wise standard-deviation maps
computed from 8 and 32 posterior samples for the brain images
and knee datasets, respectively. The standard-deviation maps show
which pixels have the greatest reconstruction uncertainty. The
corresponding PSNR is shown on each reconstruction.

it assumes that the k-space measurements kc are constructed
from true coil images xtrue with magnitudes affinely nor-
malized to the interval [0, 1] and phases normalized to [0, 1]
radians. Although this normalization cannot be enforced on
prospectively undersampled MRI data, Score fails without
this normalization. So, to evaluate Score, we normalize each
kc using knowledge of the ground-truth xc, run Score, and
un-normalized its output x̂c for comparison with the other
methods. Since the Score paper (Chung & Ye, 2022a) used
RSS combining to compute î, we do the same. For the Score
method, we use T =200 iterations and not the default value
of T =2000. This is because, when using posterior-sample
averaging (see Sec. 3.5), the PSNR computed using 200
iterations is better than with 2000.

The sCNF method works only on single-coil magnitude
data, and so we convert our multi-coil data to that domain in
order to evaluate sCNF. To do this, we apply RSS (5) to ZF
coil-images y and repeat the process for the true coil images
xtrue. Using those magnitude images, we train sCNF for
300 epochs with learning rate 0.0005 and batch size 32.

3.5. Evaluation

We report results for several different metrics, including
peak-signal-to-noise ratio (PSNR), structural-similarity in-
dex (SSIM) (Wang et al., 2004), Fréchet Inception Score
(FID) (Heusel et al., 2017), and conditional FID (cFID)

(Soloveitchik et al., 2021). PSNR and SSIM were computed
on the average of P posterior samples {ip}Pp=1, i.e.,

î(P ) ≜
1

P

P∑
p=1

îp (19)

to approximate the posterior mean, while FID and cFID
were evaluated on individual posterior samples îp. By de-
fault, we compute all metrics using magnitude reconstruc-
tions |̂i| rather than the complex-valued reconstructions î,
in part because competitors like sCNF generate only mag-
nitude reconstructions, but also because this is typical in
the MRI literature (e.g., the fastMRI competition (Zbontar
et al., 2018)). So, for example, PSNR is computed as

PSNR ≜ 10 log10

(
Dmaxd |[itrue]d|2∥∥|̂i(P )| − |itrue|

∥∥2
2

)
, (20)

where [·]d extracts the dth pixel. For FID and cFID, we use
the embeddings of VGG-16 (Simonyan & Zisserman, 2014)
as (Kastryulin et al., 2022) found that this helped the metrics
better correlate with the rankings of radiologists.

For the brain data, we compute all metrics on 72 random
test images in order to limit the Langevin image generation
time to 4 days. We generate complex-valued images using
the coil-combining method in (4) and use P = 32 posterior
samples to calculate cFID1, FID1, PSNR, and SSIM. (For
the reference statistics of FID, we use the entire training
dataset.) Because FID and cFID are biased by small sample
sizes, we also compute FID2 and cFID2 with 2484 test
samples and P = 8 for our method and the CGAN.

With the knee data, we follow a similar evaluation procedure
except that, to comply with the evaluation steps of Score,
we generate magnitude-only signals using the root-sum-
of-square (RSS) combining from (5). Also, we computed
metrics on 72 randomly selected slices in order to bound the
image generation time of Score to 6 days with P = 8. We
use P = 8 for all metrics, but for FID2 and cFID2, we use
2188 test samples.

When computing inference time for all methods, we use a
single Nvidia V100 with 32GB of memory and evaluate the
time required to generate one posterior sample.

4. Results
Table 1 reports the quantitative metrics for the knee dataset.
It shows that our method outperforms sCNF by a signifi-
cant margin in all metrics except inference time. By using
information from multiple coils and a more advanced archi-
tecture, our method shows the true competitive potential of
CNFs in realistic accelerated MR imaging.

Table 1 also shows that our method surpasses Score in all
metrics except FID1, even though Score benefited from im-
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Figure 3. Examples of posterior samples and standard-deviation maps for the knee data. The samples show important structural variations.
This demonstrates the advantages of generating multiple reconstructions and computing a pixel-wise standard-deviation map.

practical ground-truth normalization. Compared to Score,
our method generated posterior samples 8000× faster. Fur-
thermore, our method (and sCNF) will see a speedup when
multiple samples are generated because the conditioning
network gθ needs to be evaluated only once per P generated
samples for a given y. For example, with the knee data,
we are able to generate P = 32 samples in 1.41 seconds,
corresponding to 44 milliseconds per sample, which is a
2.5× speedup over the value reported in Table 1.

Table 2 reports the quantitative results for the brain dataset.
The table shows that we outperform the Langevin and
CGAN methods in all benchmarks except inference time.
While our method is a bit slower than the CGAN, it is orders
of magnitude faster than the Langevin approach.

We show the mean images and standard-deviation maps
for the fastMRI knee and brain experiments in Fig. 2. For
the knee data, our method captures texture more accurately
than the sCNF method and provides a sharper representation
than the Score method. All of the brain methods provide
a visually accurate representation to the ground truth, but
the Langevin method provides a more diffuse variance map,
with energy spread throughout the image.

In Fig. 3, we plot multiple posterior samples, along with
zoomed-in regions, to illustrate the changes across inde-
pendently drawn samples for each method. The standard-
deviation maps are generated using P = 8 posterior sam-
ples, three of which are shown. From the zoomed-in regions,
it can be seen that several samples are consistent with the
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Model PSNR (dB)↑ SSIM↑ FID1↓ FID2↓ cFID1↓ cFID2↓ Time
Score 34.15 ± 0.19 0.8764 ± 0.0036 4.49 — 4.49 — 15 min
sCNF 32.93 ± 0.17 0.8494 ± 0.0047 7.32 5.78 8.49 6.51 66 ms
Ours 35.23 ± 0.22 0.8888 ± 0.0046 4.68 2.55 3.96 2.44 108 ms

Table 1. Average performance on non-fat-suppressed fastMRI knee data, with standard error reported after the ±. PSNR, SSIM, FID1, and
cFID1 are computed for 72 test images and P = 8 posterior samples. FID2, and cFID2 are computed for 2188 test samples and P = 8
posterior samples. Time to the generation of one posterior sample.

Model PSNR (dB)↑ SSIM↑ FID1↓ FID2↓ cFID1↓ cFID2↓ Time
Langevin 37.88 ± 0.41 0.9042 ± 0.0062 6.12 — 5.29 — 14 min
CGAN 37.28 ± 0.19 0.9413 ± 0.0031 5.38 4.06 6.41 4.28 112 ms
Ours 38.85 ± 0.23 0.9495 ± 0.0012 4.13 2.37 4.15 2.44 177 ms

Table 2. Average performance on non-fat-suppressed fastMRI brain data, with standard error reported after the ±. PSNR, SSIM, FID1,
and cFID1 are computed for 72 test images and P = 32 posterior samples. FID2 and cFID2 are computed using 2484 test samples and
P = 8. Time to the generation of one posterior sample.

ground truth while others are not (although they may be
consistent with the measured data). Regions of high pos-
terior variation can be flagged from visual inspection of
the standard-deviation map and further investigated through
viewing multiple posterior samples for improved clinical
diagnoses.

Our method presents observable, realistic variations of small
anatomical features in the zoomed-in regions. The variations
are also registered in the standard-deviation map. Both the
posterior samples and the standard-deviation map could be
used by clinicians to assess their findings. Comparatively,
our method demonstrates variation that is spread across the
entire image, while in the Score method, the variation is
mostly localized to small regions. Since it is difficult to say
which standard-deviation map is more useful or correct, the
interpretation of these maps could be an interesting direction
for future work. The sCNF also demonstrates variation, but
it is mostly driven by residual aliasing artifacts.

4.1. PSNR Gain versus P

It is well known that the minimum MSE (MMSE) estimate
of i from y equals the conditional mean E{i|y}, i.e., the
mean of the posterior distribution pi|y(·|y). Thus, one way
to approximate the MMSE estimate is to generate many
samples from the posterior distribution and average them,
as in (19). Bendel et al. (2022) showed that the MSE

EP ≜ E
[
∥̂i(P ) − itrue∥22

∣∣y] (21)

of the P -posterior-sample average î(P ) obeys E1/EP =
2P/(P + 1). So, for example, the SNR increases by a
factor of two as P grows from 1 to ∞. The same thing
should happen for PSNR, as long as the PSNR definition is
consistent with (21). For positive signals (i.e., magnitude
images) the PSNR definition from (20) is consistent with

Figure 4. The gain in (magnitude) PSNR and complex PSNR of
the P -sample mean estimate î(P ) versus P , for both brain and
knee data. Note the ≈ 3 dB increase as P grows from 1 to infinity.

(21), but for complex signals we must use “complex PSNR”

cPSNR ≜ 10 log10

(
Dmaxd |[itrue]d|2

∥̂i(P ) − itrue∥22

)
. (22)

As RSS combining provides only a magnitude estimate, we
compute the coil-combined estimate for our method and
Score to evaluate cPSNR behavior for the knee dataset.

One may then wonder whether a given approximate poste-
rior sampler has a PSNR gain versus P that matches the the-
ory. In Fig. 4, we answer this question by plotting the PSNR
gain and the cPSNR gain versus P ∈ {1, 2, 4, 8, 16, 32} for
the various methods under test (averaged over all 72 test
samples). There we see that our method’s cPSNR curve
matches the theoretical curve well for both brain and knee
data. As expected, our (magnitude) PSNR curve does not
match the theoretical curve. The cPSNR curves of the Score
and CGAN methods fall short of the theoretical curve by
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Model PSNR (dB)↑ SSIM↑ FID2↓ cFID2↓
(Denker et al., 2021a) 17.61 ± 0.20 0.6665 ± 0.0072 16.02 16.68
+ Data Consistency 27.27 ± 0.21 0.7447 ± 0.0061 16.92 18.56
+ Architectural Changes 33.87 ± 0.23 0.8715 ± 0.0049 4.48 4.50
+ Nullspace Learning 35.23 ± 0.22 0.8888 ± 0.0046 2.55 2.44

Table 3. Ablation Study: Performance on non-fat-suppressed
fastMRI knee data, with standard error reported after the ±. Each
line adds a new contribution to the model of the previous line.
Metrics are computed as described in Sec. 3.5

Figure 5. Examples of a ground-truth image, one posterior sample,
an average of P = 8 posterior samples, and a MAP estimate. The
log posterior density in units of bits-per-dimension is shown in the
bottom right corner of each image.

a large margin, but interestingly, the Langevin method’s
cPSNR curve matches ours almost perfectly. sCNF’s PSNR
gain curve matches the theoretical one almost perfectly,
which provides further empirical evidence that CNF meth-
ods accurately sample from the posterior distribution.

4.2. Ablation Study

To evaluate the impact of our contributions to CNF archi-
tecture and training design, we perform an ablation study
using the fastMRI knee dataset. We start with the base-
line model in (Denker et al., 2021a), modified to take in
16 channels instead of 1, and scale it up using the built-
in mechanism in the author’s code. We train this model
for 300 epochs with batch size 32 and learning rate 0.0001
to minimize the NLL of the multicoil targets {x(i)}, since
higher learning rates were numerically unstable. Table 3
shows what happens when we add each of our contributions.
First, we add data consistency (15) to the evaluation of the
baseline. We then add the architectural changes described
in Sec. 3.1, and finally we add nullspace learning to arrive
at our proposed method. From Table 3, it can be seen that
each of our design contributions yielded a significant boost
in performance, and that nullspace learning was a critical
ingredient in our outperforming the Score method in Table 1.
For this ablation study, all models were trained following
the procedure outlined in Sec. 3.3 (except for the learning
rate of the baseline).

4.3. Maximum a Posteriori (MAP) Estimation

Because CNFs can evaluate the posterior density of a sig-
nal hypothesis (recall (9)), they can be used for posteriori
(MAP) estimation, unlike CGANs.

Due to our data-consistency step (15), we find the MAP
estimate of x using

x̂MAP = ûMAP +A+y (23)
ûMAP = arg max

u∈null(A)
ln p̂u|y(u|y). (24)

Note the CNF output u is constrained to the nullspace of A.
From (17), this nullspace is spanned by the columns of

W ≜ blkdiag
{
F HP̃

⊤
, . . . ,F HP̃

⊤}
, (25)

which are orthonormal, and so ûMAP = Wk̃MAP with

k̃MAP = argmax
k̃

ln p̂u|y(Wk̃|y;θ) (26)

= argmax
k̃

[
ln pz(h

−1

θ (Wk̃,y))

+ ln

∣∣∣∣det(∂h
−1

θ (ũ,y)

∂ũ

∣∣∣∣
ũ=Wk̃

)∣∣∣∣
]
. (27)

For this maximization, we use the Adam optimizer with
5000 iterations and a learning rate of 1× 10−8. Above, k̃
can be recognized as the unmeasured k-space samples.

In Figure 5, we show an example of a MAP estimate along
with the ground truth image, one sample from the posterior,
a P = 8 posterior-sample average, and their correspond-
ing log-posterior-density values. As expected, the MAP
estimate has a higher log-posterior-density that the other
estimates. Visually, the MAP estimate is slightly sharper
than the sample average but contains less texture details
than the single posterior sample.

5. Conclusion
In this work, we present the first conditional normalizing
flow for posterior sample generation in multi-coil accel-
erated MRI. To do this, we designed a novel conditional
normalizing flow (CNF) that infers the signal component
in the measurement operator’s nullspace, whose outputs
are later combined with information from the measured
space. In experiments with fastMRI brain and knee data, we
demonstrate improvements over existing posterior samplers
for MRI. Compared to score/Langevin-based approaches,
our inference time is four orders-of-magnitude faster. We
also illustrate how the posterior samples can be used to
quantify uncertainty in MR imaging. This provides radi-
ologists with additional tools to enhance the robustness of
clinical diagnoses. We hope this work motivates additional
exploration of posterior sampling for accelerated MRI.
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A. Accelerated MRI Simulation Procedure
We outline the procedure for simulating the accelerated MRI problem. The fastMRI datasets provide the fully sampled
multi-coil k-space, i.e., {kc}Cc=1 with M = D. To obtain the ground truth coil-images {xc}Cc=1, we take the inverse Fourier
transform of the fully sampled k-space measurement, i.e., xc = F Hkc, wherein we assume that the noise ϵc in (1) is
negligible. To obtain the zero-filled images yc, we take the inverse Fourier transform after masking the fully-sampled
k-space measurement kc, i.e., yc = F HP⊤Pkc. This procedure is illustrated in Fig. 6. In real-world accelerated MRI, the
data acquisition process would collect masked k-space Pkc directly.

Figure 6. A visual illustration of simulating accelerated MRI. Given the fully sampled k-space kc highlighted in blue, we obtain the
ground truth xc by applying the inverse Fourier transform F H. The zero-filled image yc is acquired by applying the sampling mask
P⊤P to fully sampled kc and then taking the inverse Fourier Transform F H.

B. Implementation Details
For our machine learning framework, we use PyTorch (Paszke et al., 2019) and PyTorch lightning (Falcon et al., 2019).
To implement the components of the CNF, we use the Framework for Easily Invertible Architectures (FrEIA) (Ardizzone
et al., 2018). For the Score, sCNF, and Langevin methods, we utilize the authors’ implementations at (Chung & Ye, 2022b),
(Denker et al., 2021b), and (Jalal et al., 2021b), respectively. ESPIRiT coil-estimation and coil-combining are implemented
using the SigPy package (Ong & Lustig, 2019).
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C. Brain Posterior Samples

Figure 7. Examples of posterior samples and standard-deviation maps for the brain images, both with zoomed regions.
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