## Expecta

## Saurav K. Shastri, Rizwan Ahmad, Christopher A. Metzler, Philip Schniter

Plug-and-Play (PnP) Image Recovery

Goal: Recover N-pixel image  $\boldsymbol{x}_0$  from  $M \ll N$  noisy linear measurements 

$$oldsymbol{y} = oldsymbol{A} x_0 + oldsymbol{w}, ext{ with } egin{cases} oldsymbol{x}_0 : ext{true image} \ oldsymbol{A} = oldsymbol{I} ext{mage} \ oldsymbol{A} : ext{linear measurement operator} \ oldsymbol{w} : ext{AWGN with precision } \gamma_w. \end{cases}$$

- Although deep nets can be trained to predict  $\boldsymbol{x}_0$  from  $\boldsymbol{y}_1$ , th • require a huge number of  $(\boldsymbol{x}_0, \boldsymbol{y})$  pairs for training
  - may not generalize well to a different A operators
- Plug-and-play (PnP) algorithms iteratively call a deep-net image denoiser, which can be trained ...
  - from very few images, using patches
  - independently of A, facilitating generalization to any A
- Challenge: In PnP, the denoiser input-error statistics are iteration-dependent and difficult to characterize. For examp they are generally non-white and non-Gaussian
- Thus, it's not clear how to train the denoiser for optimal performance in PnP!
  - Typically the denoiser is trained with AWGN
  - Gilton et al. recently proposed to train the denoiser at the PnP equilibrium point, but it's A-dependent and thus may not generalize

Approximate Message Passing (AMP) Algorithms

- AMP is a family of PnP algorithms that have remarkable properties for large random A:
  - The denoiser input-error is white and Gaussian with predictable variance
  - When used with an MMSE denoiser, AMP algs converge the MMSE estimate of  $\boldsymbol{x}_0$  from  $\boldsymbol{y}$
- Challenge: In most image recovery problems, A does not satisfy AMP's randomness assumptions

AMP for Fourier-Structured Matrix A = MF

- Idea: Recover the wavelet coefficients  $c_0$ , not pixels  $x_0$ 
  - Why? The resulting model becomes  $y = Bc_0 + w$ , when the masked Fourier-wavelet  $oldsymbol{B} = oldsymbol{M} oldsymbol{F} oldsymbol{\Psi}^{ op}$  is approximate block-diagonal with sufficiently randomizing blocks
- With appropriate algorithm design, the denoiser input-error be white and Gaussian in each wavelet subband
- Prior work includes Whitened VAMP [PS et al. '17], Variable-Density (VD)-AMP [Millard et al. '20], based on wavelet thresholding, & Denoising-VD-AMP [Metzler et al.
- Note: These algorithms provide well-characterized errors, bit non-standard denoiser is required to exploit them!

| tion | Consister                 | It | Plug             |
|------|---------------------------|----|------------------|
| er   | The Ohio State University |    | univers<br>MARYI |

|   | THE OHIO STATE UNIVERSITY OF MARYLAND (SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>2022 IEEE ICASSP #SS-3.2</b><br>upported by NSF 1955587, NIH 135489, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Proposed Algorithm: Denoising GEC (D-GEC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | New Results: MRI Image Recovery Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Our approach builds on the Generalized Expectation Consistent<br>(GEC) algorithm from Fletcher et al. '16:<br>require: $f_1(\cdot)$ , $f_2(\cdot)$ , and $gdiag(\cdot)$<br>initialize: $r_1$ , $\gamma_1$<br>for $t = 0, 1, 2,$<br>$\hat{x}_1 \leftarrow f_1(r_1, \gamma_1)$ linear estimation<br>$\eta_1 \leftarrow Diag(gdiag(\nabla f_1(r_1, \gamma_1)))^{-1}\gamma_1$<br>$\gamma_2 \leftarrow \eta_1 - \gamma_1$<br>$r_2 \leftarrow Diag(\gamma_2)^{-1}(Diag(\eta_1)\hat{x}_1 - Diag(\gamma_1)r_1)$ Onsager<br>$\hat{x}_2 \leftarrow f_2(r_2, \gamma_2)$ denoising<br>$\eta_2 \leftarrow Diag(gdiag(\nabla f_2(r_2, \gamma_2)))^{-1}\gamma_2$<br>$\gamma_1 \leftarrow \eta_2 - \gamma_2$<br>$r_1 \leftarrow Diag(\gamma_1)^{-1}(Diag(\eta_2)\hat{x}_2 - Diag(\gamma_2)r_2)$ Onsager<br>GEC is essentially Peaceman-Rachford ADMM with adaptive<br>vector-valued stepsizes $\gamma_1$ and $\gamma_2$<br>The GEC linear estimation stage is preconditioned LS:<br>$f_1(r, \gamma) = (\gamma_w B^H B + Diag(\gamma))^{-1}(\gamma_w B^H y + Diag(\gamma)r)$<br>which can be implemented using the conjugate gradient method | <ul> <li>We consider single coil measurements y = M</li> <li>Experimental setup: <ul> <li>M is a variable density mask</li> <li>w is AWGN giving pre-mask SNR = 40 dB</li> <li>Ψ is 2D Haar wavelet transform with D = 4 levels</li> <li>PnP-PDS uses bias-free white-noise DnCNN and ca</li> <li>D-VDAMP uses the modified DnCNN denoiser from</li> <li>D-GEC uses bias-free corr+corr DnCNN</li> <li>training data: 62 000 48x48 patches from 70 training Stanford 2D FSE dataset</li> <li>5 copies DnCNN-c+c were trained using sub-band distributed in the ranges 0-10, 10-20, 20-50, 50-120</li> </ul> </li> <li>Avg performance on 10 Stanford 2D FSE 352 <ul> <li>C = 1 coil</li> <li>M/N = 1/4 M/N</li> <li>method</li> <li>PnP-PDS</li> <li>45.97 0.978 41.28</li> <li>D-VDAMP</li> <li>44.61 0.974 38.43</li> <li>D-GEC</li> <li>Example single-coil recoveries and error maps</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | <ul> <li>∇f<sub>i</sub> denotes the Jacobian, and gdiag(·) averages its diagonal across different wavelet subbands. D-GEC approximates the Jacobian using a Monte-Carlo approach [Ramani et al. '08]</li> <li>New Update-Proposed Denoiser: corr+corr</li> <li>In the wavelet domain, the denoiser input-error is white and Gaussian in each subband, but with subband-dependent inverse-variances γ that change with the iterations</li> <li>Thus, in the pixel-domain, the error is correlated Gaussian with known covariance matrix Ψ Diag(γ)<sup>-1</sup>Ψ<sup>T</sup></li> <li>How should we inform the denoiser about (Ψ, γ)?</li> <li>We propose to add an extra input channel to an arbitrary denoiser (e.g., DnCNN) and feed it with an independent realization of N(0, Ψ Diag(γ)<sup>-1</sup>Ψ<sup>T</sup>)</li> <li>The denoiser learns to extract the statistics (Ψ, γ) from e</li> </ul>                                                                                                                                                                                                                       | • ODD ODD ODD ODD ODD ODD ODD ODD ODD OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ] | and use them productively for denoising<br>• We call it "corr+corr"<br>• Example PSNRs for depth-1 2D wavelet transform:<br>$\sqrt{\gamma^{-1}}$ white DnCNN corr+corr DnCNN genie DnCNN<br>[48,47,6,19] 25.54 32.32 32.79<br>[10,40,23,14] 33.08 35.84 36.47<br>[13,7,8,10] 36.93 37.53 37.90<br>[10,10,10,10] 38.03 37.92 38.21<br>uniform [0-50,0-50,0-50] 32.18 35.34<br>White trained unif [0-50] and & corr+corr unif [0-50,0-50,0-50,0-50]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Example wavelet-error QQ plots at iteration I vertical, Scale 2 I under strateging of the strateging of |



periments

 $oldsymbol{MFx}_0+oldsymbol{w}$ 

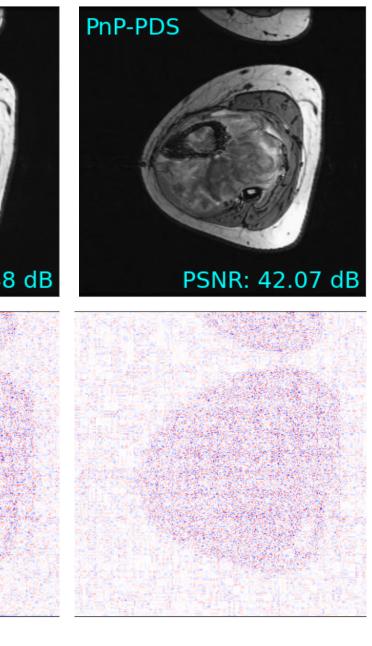
 $ls \Rightarrow 13$  subbands careful tuning om that paper

ning images of the

noise SDs uniformly 20, and 120-500

 $52 \times 352$  test images: = 1/8R SSIM 0.957 0.901 0.959

ps at M/N = 1/4:



error vs iteration: True Diagonal • Predicted Diagonal Scale 1 -22.5 -25.0

