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ABSTRACT

We consider the problem of practical communication over a doubly selective (DS)

channel, i.e., a time and frequency selective channel. The problem is approached

in two different ways: coherent communication and noncoherent communication, and

for each communication scheme we propose practical and near-optimal equalizers and

maximum-diversity precoders. Toward these ends, we adopt 1) basis expansion (BE)

modeling of the channel, which allows for an efficient and unified way of describing a

DS channel in both time and frequency domain; and 2) tree-search algorithms (TSAs),

which facilitate near-optimal performance with low complexity.

For practical coherent communication, we focus on the pulse-shaped (PS) multi-

carrier modulation (MCM), where controlled inter-symbol-interference (ISI) and inter-

carrier-interference (ICI) can be leveraged for computationally efficient receiver struc-

tures. Then, we propose a novel channel adaptive TSA with a novel fast minimum

mean-squared error (MMSE) generalized decision-feedback equalizer (GDFE) prepro-

cessing, and a rank-reduced channel estimation by using the BE channel model. Also,

a new finding about optimality of MMSE-GDFE preprocessing is presented, which

states that under constant modulus constellation the minimum distance property is

preserved by the MMSE-GDFE preprocessing.
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Then, two practically realizable noncoherent equalization schemes are proposed:

a sequential algorithm and a Bayesian expectation maximization (EM)-based algo-

rithm. The sequential algorithm is derived from the optimal noncoherent metric, and

made practical by a fast algorithm and a TSA to evaluate and search over the metric.

The Bayesian EM-based noncoherent algorithm is derived from optimal maximum a

posteriori (MAP) estimation of the BE parameters, and efficiently implemented via

iteration between soft coherent equalizer and soft channel estimator. Efficient opera-

tions are accomplished using fast algorithms whose overall complexities grow linearly

in the block size and quadratically in the number of BE parameters. Also, we demon-

strate that the noncoherent equalization can be readily applied to the communication

problem in a highly spread underwater acoustic channel (UAC).

Finally, we establish maximum-diversity conditions for each affine and linear pre-

coder, which imply that under some mild channel assumptions almost any random

affine (linear) precoder facilitates the maximum-diversity noncoherent (coherent) re-

ception.
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CHAPTER 1

INTRODUCTION

Over the past several years, wireless telecommunications have significantly changed

many aspects of our world. Just ten years ago, mobile telecommunication services

were, for the most part, dedicated to voice communication. Today, however, we

rely on them not only for voice communication, but also for data communication.

Consider, for example, email and information retrieval services, as well as the many

special-purpose services for entertainment, e-commerce, education, and health-care.

Former U.S. vice president Al Gore credited “the emergence of mobile platforms as

the catalyst behind the new communications revolution” [2]. Furthermore, he identi-

fied the wireless industry as “a bright spot in an otherwise grim global economy” [2].

Therefore, it is not an overstatement to say that research on wireless telecommunica-

tion system-design is of critical importance to our nation and to the world, both now

and in the foreseeable future.

With the wireless revolution comes an ever-growing demand for higher data-rate

and higher mobility. Wireless users want access to everything, everywhere, and any-

time. Thus, wireless devices must send and receive high-rate information streams

through quickly time-varying channels. (Here and in the sequel, we use “channel” to

denote the signal propagation medium.) Roughly speaking, signal reflections from
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structures like buildings, mountains, and vehicles cause selectivity in the receive sig-

nal. (See Fig. 1.1.) Reflections caused by physical objects between the transmitter

and the receiver create dispersion in time and these reflected signals are sometimes

summed in a destructive way, causing so called multipath fading. In this case, en-

ergy from each symbol disperses and spills out to the adjacent symbols, which we

call inter-symbol-interference (ISI). This channel behaves as a filter, whose frequency

response has frequency selectivity. Thus, it is also called frequency selective channel.

When the transmitter, the reflector, and/or the receiver are in motion, the reflected

signals travel through different channels at each time instance. Thus, the received

signal undergoes time-varying, i.e., time-selective, channel effect. In the frequency

domain, the received signal’s spectrum suffers dispersion from a phenomenon called

Doppler spreading. Wireless channels that are both time and frequency selective are

called doubly selective (DS).

Figure 1.1: Time-varying channel occurs by mobility of transmitter, reflector and/or
receiver.
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1.1 Motivation

In conventional wireless telecommunication systems, the principal effect of a DS

channel is a reduction in data rate. For example, 3rd Generation (3G) cellular service

can provide a rate of 384 kbit/sec at or below pedestrian speeds, but only 128 kbit/sec

in a moving car [3]. The reduction in data rate results primarily from the channel’s

increasing degrees of variation as indicated by Zheng and Tse in [4]. In practice, the

DS channel’s high degrees of variation yields difficulties in estimation of the channel

parameters. Compared to the singly selective channels, DS channel offers much more

channel coefficients to be estimated —involving hundreds or thousands of parameters,

since in each time instant the channel coefficients are different and to be tracked.

Therefore, our first goal is to efficiently model the DS channel with as small number

of parameters as possible.

Even if the channel coefficients were perfectly estimated, the mitigation of the

channel effect, i.e., equalization of DS channel itself can be computationally intense.

One possible equalization method is to extend the efficient equalization for the fre-

quency selective channels to the DS channels. It is well known that one-tap equalizer

for cyclic-prefixed (CP)- orthogonal frequency division multiplexing (OFDM) is sim-

plest and effective for the frequency selective channels. Thus, many multi-carrier

modulation (MCM) schemes modified from the CP-OFDM have been proposed. For

example, one can intentionally distort transmit signals (e.g., by pulse-shaping) so

that effective frequency response of the channel has a certain favorable tendency, e.g.,

small number of non-zero taps in the frequency response.

Not only the efficient equalization and the channel estimation at the receiver,

but also the effective transmission of the signal plays an important role in improving
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the error performance of the communication system. For example, if the channel

is randomly time-varying, one can spread transmitted signal on a long time period

and combine multiple received signals at the receiver to increase chances of correct

detection of the signal. Interestingly, it is known that such strategy for highly varying

channels facilitates better performance than slowly varying channel, as long as the

channel coefficients are correctly tracked. Thus, we focus on characterization of the

DS channel’s degrees of variation and design of transmission scheme that guarantees

the maximum exploitation of channel’s degrees of variation.

1.2 Contributions and Outline

In this dissertation, we propose

• practical, yet near-optimal implementations of DS channel equalizers for each

coherent receiver and noncoherent receiver,1 which adopt generic tree search

algorithms (TSAs) and efficient channel modeling via basis expansion (BE).

• a novel channel adaptive TSA that shows near-optimal performance with low

complexity,

and we establish

• maximum-diversity conditions to maximally exploit the DS channel’s degrees

of variation for each coherent receiver and noncoherent receiver and the fact

that almost any random affine (linear) precoding facilitates maximum-diversity

noncoherent (coherent) detection.

1We will define “coherent” and “noncoherent” receivers in Chapter 2.
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More specifically, in Chapter 2, we present an efficient modeling of DS channel

via BE, which leads to a unified system model. With some proper modulation and

demodulation schemes, the unified system model is expressed as a cyclic banded

channel matrix. In particular, we adopt PS-MCM by Schniter and Das in [5] to make

the frequency-domain channel matrix banded.

In Chapter 3, generic preprocessing and search strategies for TSAs are discussed

and their application to PS-MCM is presented. Then, a new finding about the opti-

mality of minimum mean-squared error (MMSE)- general decision feedback equalizer

(GDFE) preprocessing for TSA is established. In particular, the MMSE-GDFE pre-

processing has been previously known as a sub-optimal preprocessing in the sense

of preservation of the distance between the constellation points, thereby degrading

the performance of the minimum-distance detector. When applied to the constant-

modulus constellation, however, it preserves the distance so that it facilitates the

optimal minimum-distance detection.

In Chapter 4, optimal coherent equalization is discussed for PS-MCM applica-

tion. Then, a novel low-complexity MMSE-GDFE preprocessing and a novel low-

complexity channel-adaptive TSA algorithm are proposed, which together achieve

a near-optimal performance. Also, a low complexity channel estimation algorithm

based on BE is presented.

In Chapter 5, optimal noncoherent equalization based on a BE modeling and a

MAP noncoherent metric is discussed. Then, a near-optimal implementation via a

novel sequential algorithm is presented, which embeds generic TSA to search for best

sequences over the noncoherent MAP metric. Also, a low-complexity noncoherent
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equalizer based on Bayesian expectation maximization (EM) is proposed, which iter-

ates between the coherent TSA proposed in Chapter 4 and a BE channel estimator.

In Chapter 6, the sequential noncoherent equalization scheme proposed in Chap-

ter 5 is applied to the underwater acoustic channel (UAC), which is characterized by

a sparse but long spread in impulse response. The sparsity is modeled and exploited

to further reduce the complexity of the equalization.

In Chapter 7, we characterize a maximum-diversity conditions for each coherent

detector and noncoherent detector by using BE channel modeling. Then, we estab-

lish the fact that almost any random affine (linear) precoding facilitates maximum-

diversity reception for noncoherent (coherent) detector under mild channel condition.

In Chapter 8, we conclude by summarizing our work and providing future research

possibilities.

1.3 Notation

We use (·)∗, (·)T and (·)H to denote conjugate, transpose and Hermitian transpose,

respectively. We write the kth entry of vector x as [x]k, and the (k, l)th entry of matrix

A as [A]k,l. We denote the determinant by det(·), and the null space of matrix A

by N (A). We denote M × 1 zero-valued column vector by 0M , and the M × N

zero-valued matrix by 0M×N . The N × N identity matrix is denoted by IN , and the

proper complex Gaussian distribution with mean vector m and covariance matrix C

is denoted by CN (m, C). For vector norms, we use ‖x‖2 , xHx and ‖x‖2
A , xHAx,

where A is positive semi-definite. We use ⊙ to denote the element-wise product of

matrices, Dd(x) to denote the diagonal matrix constructed from the dth cyclic down-

shift of vector x, and D(x) is shorthand for D0(x). Expectation is denoted by E{·},
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the Kronecker delta by δl, and the modulo-N operation by 〈·〉N . Real part of complex

number x is denoted by ℜ{x} and imaginary part ℑ{x}. We use R to denote the real

field, C the complex field, and Z the integers. We abbreviate “with probability one”

as “w.p.1”.

We summarize in Table 1.1 the abbreviations used in the dissertation.
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Table 1.1: List of abbreviations

AWGN Additive White Gaussian Noise
BE Basis Expansion
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CP Cyclic Prefix
CWGN Circular White Gaussian Noise
DFT Discrete Fourier Transform
DFE Decision Feedback Equalizer
DS Doubly Selective
DPP Delay-Power Profile
EM Expectation Maximization
FER Frame Error Rate
i.i.d. independent and identically distributed
ICI Inter-Carrier Interference
ISI Inter-Symbol Interference
LLR Log Likelihood Ratio
LMMSE Linear Minimum Mean-Squared Error
MAC Multiplication and Accumulation
MAP Maximum a Posteriori
MCM Multi-Carrier Modulation
MD Minimum Distance
MIMO Multi Input Multi Output
ML Maximum Likelihood
MMSE Minimum Mean-Squared Error
OFDM Orthogonal Frequency Division Multiplexing
PAM Pulse Amplitude Modulation
PS Pulse-Shaped
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
SD Sequence Detection
SISO Single Input Single Output
SNR Signal to Noise Ratio
SpD Sphere Decoder
SVD Singular Value Decomposition
TSA Tree Search Algorithm
ZF Zero Forcing
ZP Zero-Padded
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CHAPTER 2

PROBLEM STATEMENT AND SYSTEM MODEL

As discussed in Chapter 1, to reliably recover the transmitted information cor-

rupted by the DS channel and thus to increase the throughput of the system, a

judicious procedure to undo the effect of DS channel, i.e., equalization, needs to be

carried out first. Generally speaking, there are two designs of equalizers, i.e., co-

herent equalizers and noncoherent equalizers. Coherent equalizers are assumed to

be informed of the channel state parameters explicitly. The typical examples of the

channel state parameters are time-domain channel impulse response coefficients or

frequency domain inter-carrier interference coefficients. In order for the coherent

equalizer to operate, the channel state information should be fully provided by the

channel estimator. Noncoherent equalizers, however, perform the task without ex-

plicit state knowledge of the channel but with either channel statistics, e.g., mean

and correlation, or channel parameters, e.g., maximum delay of the impulse response.

Note that training-based, blind, and semi-blind schemes all fall under the category

of noncoherent equalization. Similarly, the term “joint channel/symbol estimation”

sometimes refers to noncoherent equalization, even though explicit channel estimates

are not strictly needed for data decoding.
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2.1 Coherent Equalization for Multi-Carrier Systems

In what we will refer to as the multicarrier modulation (MCM) approach [6], lin-

ear modulation waveforms are designed to yield a “simple” interference response—in

order to ease the equalization task—without explicitly considering the achievable

FER performance. The vast majority of DS-channel communication schemes fit

into this category, e.g., cyclic-prefix (CP) orthogonal frequency-division multiplex-

ing (OFDM) [7], zero-padded (ZP) OFDM [8], and Strohmer and Beaver’s “optimal”

OFDM [9]. For example, CP-OFDM and ZP-OFDM were originally designed for

time-selective—rather than doubly selective—channels, and are capable of totally

suppressing inter-symbol interference (ISI). When used in DS channels, however, CP-

OFDM and ZP-OFDM succumb to significant inter-carrier interference (ICI) which

greatly complicates the optimal (i.e., maximum likelihood) equalization. In response,

more sophisticated MCM schemes have been proposed based on smooth ISI/ICI-

minimizing pulses. Though these “pulse-shaped” MCM schemes succumb to less ICI

than their ZP-OFDM and CP-OFDM counterparts, their ISI/ICI responses are, in

general, still too complicated for practical maximum-likelihood (ML) sequence esti-

mation based equalizers.

Due to the impracticality of optimal equalizer in DS-channel MCM, several meth-

ods of reduced-complexity reception have been proposed. These schemes are typically

based on the combination of ISI/ICI truncation with suboptimal sequence estimation

. By ISI/ICI truncation, we mean that only the “significant” ICI/ISI coefficients

are estimated at the receiver and used for the sequence estimation. Examples of

suboptimal sequence estimation include linear detection (e.g., [10–12]), DF detection
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(e.g., [13–15]), iterative/turbo detection (e.g., [5,16,17]), and approximate-ML detec-

tion (e.g., [1,18–20]). We identify that the pulse-shaped (PS)-MCM by Schniter and

Das [5,16] is suitable for the practical near-optimal coherent equalization in that PS-

MCM near-perfectly suppresses all but a small number of ISI/ICI coefficients. Then

we conclude that judicious design of a DS channel communication system comes down

to

• designing a near-optimal (i.e., near-ML) equalization algorithm which leverages

the structure of significant-ISI/ICI for complexity reduction.

In Chapter 4 we’ll present a near-optimal coherent equalization algorithm based

on a novel tree search algorithm (TSA) tailored to the PS-MCM applications.

2.2 Noncoherent Equalization

For the noncoherent equalization, we consider the problem of decoding a data

sequence transmitted over an unknown or partially known DS channel, such as a

time-varying ISI channel or a frequency-varying ICI channel, whose statistics are

known.

Optimal noncoherent equalization requires evaluating a noncoherent metric for

every possible bit sequence and then summing over subsets of these metrics [21].

Since the number of possible bit sequences is impractically large, three suboptimal

approaches have emerged.

1. If the channel was known, a trellis could be used to efficiently calculate bit

posteriors via the forward-backward (i.e., BCJR) algorithm [22]. With an un-

known Gauss-Markov channel, forward-backward processing can be applied af-

ter expanding the trellis to allow conditional channel estimation at each state,
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although not optimally: the performance (and complexity) increase with trellis

expansion [23–26]. As an alternative, “fixed-lag” posteriors—which use a lim-

ited number of future observations—could be computed using a forward trellis

with per-survivor channel estimates [21, 25–27]. However, fixed-lag posteriors

are suboptimal for turbo reception. In either case, pilots are critical to ensure

good performance with low complexity.

2. In the second approach, the expectation-maximization (EM) approach [28] is

applied, resulting in the (iterative) computation of a single channel estimate

per data block [29–32]. Each EM iteration includes two steps: soft coherent

maximum a posteriori (MAP) equalization and soft channel estimation. With

a sufficiently good initialization (e.g., from pilots), the EM approach will yield

the maximum likelihood channel estimate (and the corresponding soft symbol

estimates), imparting a sense of optimality.

3. Other approaches generally fall into the third category: a soft coherent equalizer

(e.g., [33–36]) is combined with a soft channel estimator (e.g., [37–39]) without

attention to joint optimality. Recent examples of this “ad hoc” approach include

[39, 40].

A potential drawback of near-optimal trellis-based approaches is the need for

2q(NH−1) states, where q is the number of bits/symbol and NH is the channel spread,

or more if the trellis is expanded; for channels with moderate-to-long spreads, the

number of states becomes impractical. A potential drawback of near-optimal ap-

proaches based on Gauss-Markov channel models is that, while they can efficiently

model the time-domain channel trajectories encountered in single-carrier systems,
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they do not efficiently model the frequency-domain channel trajectories encountered

in multi-carrier systems, where channel variation is best parameterized using a com-

plex exponential basis expansion [41]. Thus, our goals are stated as follows.

1. To provide an efficient and unified modeling of the variation (in time or fre-

quency) of the channel for both single-carrier and multi-carrier systems.

2. To establish optimal (e.g. ML or MAP) noncoherent equalization methods, and

then to provide practical algorithms to accomplish a near-optimal noncoherent

equalization.

The problems are possibly addressed via adoption of BE and via two new noncoherent

equalization schemes. As we will see in Section 2.4.4, generic BE modeling can provide

an efficient modeling of the DS channel. Two equalization schemes, i.e., a novel

noncoherent metric based sequential equalization and an expectation maximization

(EM)-based iterative equalization, will be discussed in Chapter 5.

2.3 Maximum-Diversity Precoding

We are especially interested in the high-SNR regime, where the performance is

strongly dependent on the diversity order, i.e., the negative slope of the log-error-rate

versus log-SNR curve.

For the case where the receiver has channel state information (CSI) and that the

channel follows a complex-exponential basis expansion model (CE-BEM), Ma and

Giannakis [42] characterized the maximum achievable diversity order and proposed a

linear precoding scheme that facilitates maximum-diversity reception. The assump-

tions of perfect receiver CSI and a CE-BEM channel are quite restrictive, however,
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limiting the practical impact of [42]. For example, CSI is not easy to acquire and

maintain in the doubly dispersive case, where channel parameters can be multitudi-

nous and quickly varying.

In response, we consider the more difficult but more practical problem of nonco-

herent communication over the DS channel, where neither the transmitter nor the

receiver is assumed to have CSI. In this case, the receiver must exploit (a priori

known) structure in the transmitted signal in order to decode reliably in the presence

of channel uncertainty.

For noncoherent communication over the DS channel, there exists a large body of

work on optimal and suboptimal noncoherent reception strategies (e.g., [43–53]). For

this case, there also exists several articles on training sequence design (e.g., [54–57])

with the aim of improving explicit channel estimates. But we are not aware of work

addressing the general problem of transmitter design (i.e., joint design of data and

training sequences) to improve the reliability of communication over the noncoherent

DS channel.

In response,

1. we characterize the maximum achievable diversity order for noncoherent (or

coherent) communication over the DS channel, and

2. pursue precoding schemes to facilitate the maximum-diversity decoding at the

receiver.

2.4 System Model

At the transmitter, we assume that information bits {b(j)
m }, are rate-R coded,

interleaved, and mapped to 2q-ary QAM symbols, where j ∈ {0, . . . , J − 1} is the
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transmit block index. Groups of Ns information symbols are then combined with

pilot and guard symbols to form symbol blocks of length N ≥ Ns. We denote the jth

symbol block by

s(j) = [s(j)

0 , . . . , s(j)

N−1]
T , (2.1)

where s(j)
n ∈ S for symbol alphabet S, and the corresponding coded bit vector by

x(j) = [x(j)

0 , . . . , x(j)

Nsq−1]
T , (2.2)

where x(j)

k ∈ {0, 1}. The symbols are then linearly block-modulated by either a single-

carrier scheme or a multi-carrier scheme, represented by G ∈ CNt×N with Nt ≥ N ,

to form the transmitted signal

t(j) , [t(j)

0 , . . . , t(j)

Nt−1]
T (2.3)

The we write t(j) = Gs(j). The construction of G will be described later.

At the channel output, the samples in the jth received block

r(j) , [r(j)

0 , . . . , r(j)

Nr−1]
T (2.4)

are assumed to take the form

r(j)

n =
Nh−1∑

l=0

h(j)

n,lt
(j)

n−l + ν(j)

n , (2.5)

where h(j)

n,l is the time-n response of the channel to an impulse applied at time-(n− l),

where Nh is the discrete channel delay spread, and where {ν(j)
n } is zero-mean circular

white Gaussian noise (CWGN) with covariance σ2.

The received vector r(j) is then linearly (single- or multi-carrier) demodulated via

matrix Γ ∈ CN×Nr to yield

y(j) = H (j)s(j) + w(j)., (2.6)
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where we define y(j) = Γr(j) and

H (j) , ΓH
(j)G. (2.7)

In (2.6) and (2.7), w(j) = Γν (j) and H(j) ∈ CNr×Nt is a convolution matrix constructed

from the channel’s time-varying impulse response with [H(j)]n,n−l = h(j)

n,l. Thus we

have Nr = Nt + Nh − 1 and H(j) is banded with bandwidth Nh. Note that H (j)

represents the composite effect of modulation, channel propagation, and demodula-

tion. When either single- or multi-carrier scheme is appropriately designed, H (j) can

be closely approximated by a “circularly banded” matrix [5] with bandwidth NH , as

illustrated in Fig. 5.2(a).

2.4.1 Single-Carrier Modulation/Demodulation

Cyclic-prefixed (CP) single carrier modulation uses the choices of

Γ = IN (2.8)

G =




0 INcp

IN−Ncp 0
0 INcp


 . (2.9)

The guard length and the CP length is typically set to NH − 1. Thus H (j), with

bandwidth NH = Nh, contains the impulse response coefficients {h(j)

n,l}. Sometimes,

the bandwidth NH , or delay spread, can be very large depending on the channel

environment, under which the system operates. For example, delay spread τmax =

20µs and sampling frequency 1/Ts = 10 MHz yield NH , ⌈τmax/Ts⌉ = 200.

2.4.2 Multi-Carrier Modulation/Demodulation

In the multi-carrier case, the modulation is described by

G = D(g)F H
t , (2.10)
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where F H
t ∈ C

Nt×N is a period-N unitary inverse discrete Fourier transform (DFT)

matrix cyclically extended in the row dimension, and where D(g) is a diagonal matrix

created from a time-domain transmission pulse g ∈ CNt . Then, the demodulation is

described by

Γ = F rD(γ ⊙ m), (2.11)

where F r ∈ CN×Nr is a period-N unitary DFT matrix cyclically extended in the col-

umn dimension, γ ∈ CNr is a time-domain reception pulse, and [m]n = exp(j 2π
N

ND−1
2

n).

With appropriate design of g and γ [5], the frequency-domain channel matrix H (j)

has bandwidth

NH = ND , ⌈2fDTsN⌉ + α, (2.12)

where fD denotes the single-sided Doppler spread (in Hz), Ts denotes the channel-use

interval (in sec), and α is a (small) non-negative integer that controls out-of-band

coefficient energy. We also define ICI radius as

D ,
NH − 1

2
(2.13)

so that NH = 2D + 1. The off-diagonal elements of H (j) induce ICI. We assume the

last NH−1 symbols in s(j) are zero-valued guards, so that H (j) acts causally on the

first N−NH +1 symbols.

2.4.3 Real-Valued System Model for Tree Search

When we discuss about TSAs in the rest part of the dissertation, particularly in

Chapter 3 and Chapter 4, it is sometimes convenient to adopt real-valued system

model, since many TSAs are operated only for real-valued systems. One way to
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construct real-valued model given complex-valued equation (2.6) is splitting each

complex element in vectors y(j), s(j) and w(j) into two real elements and stacking them

in an alternating way. In other words, real-valued vector ȳ(j) ∈ R2N is constructed

so that [ȳ(j)]2n = ℜ{y(j)
n } and [ȳ(j)]2n+1 = ℑ{y(j)

n } for 0 ≤ n < N . In the similar

manner, the real-valued symbol vector s̄(j) is constructed via [s̄(j)]2n = ℜ{s(j)
n } , s̄(j)

2n

and [s̄(j)]2n+1 = ℑ{s(j)
n } , s̄(j)

2n+1. With setting Q2 = 2q, we have Q-ary PAM alphabet

S̄ for s̄(j)
n for this real-valued model, instead of the 2q-ary (i.e., Q2-ary) QAM alphabet

S for s(j)
n . The channel matrix H̄

(j) ∈ R
2N×2N are built by alternatively placing real

and imaginary elements of H (j), e.g.,

H̄
(j)

=




ℜ{[H (j)]0,0} −ℑ{[H (j)]0,0} · · ·
ℑ{[H (j)]0,0} ℜ{[H (j)]0,0}

...
. . .


 (2.14)

∈ R
2N×2N .

Resulting real-valued system equation

ȳ(j) = H̄
(j)

s̄(j) + w̄(j) (2.15)

is used when we discuss preprocessing of TSA and variety of TSAs adopted to equal-

ization in Chapter 3 and Chapter 4.

2.4.4 Basis Expansion Modeling of DS Channel

We assume that the channel is Rayleigh fading and wide-sense stationary (WSS).

And the channel’s time variation is assumed to follow the “Jakes’ channel model,” i.e.,

E{hn,lh
∗
n+m,l} = σ2

l J0(2πfDTsm), where J0(·) denotes the zeroth-order Bessel function

of the first kind, fD denotes the single-sided Doppler spread in Hz, Ts denotes the

channel-use interval in seconds and σ2
l denotes the delay-power profile for the lth

channel tap. We also assume the channel retains “uncorrelated scattering” property
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across the tap locations, i.e., E{hn,lh
∗
n+m,l+ℓ} = 0, for ℓ 6= 0. Random channel vector

defined by the N -sample trajectory of the lth channel tap can be written

h
(j)

l , [h(j)

0,l, h
(j)

1,l, . . . , h
(j)

N−1,l]
T (2.16)

= [[H (j)]0,−l, [H
(j)]1,1−l, . . . [H

(j)]N−1,N−1−l]
T , (2.17)

which corresponds to the lth sub-diagonal of H (j). Now, it can be expressed (without

loss of generality) using a basis matrix B(j) ∈ CN×Nb as

h
(j)

l = B(j)θ
(j)

l , (2.18)

where θ
(j)

l ∈ CNb is a zero-mean circular Gaussian random vector. Examples of

BEs which do not require statistical channel knowledge include the polynomial BE

model [58], [59]:

[B(j)]m,k = (
√

Nb)
−1
(
m − Nb − 1

2

)k

, (2.19)

and oversampled complex exponential BE model with oversampling factor M [60], [61]:

[B(j)]m,k = (
√

Nb)
−1e

j 2π
MNb

(k−N−1
2 )m

. (2.20)

BE models which require statistical knowledge include the Slepian BE model [62] and

the Karhunen-Lóeve (KL) BE model [63].

The BE channel parameter is collected as a single vector, i.e.,

θ(j)
, [θ(j)T

0 , . . . , θ(j)T
NH−1]

T (2.21)

and thus vector is distributed as θ ∼ CN (0, Rθ), where Rθ has full rank NHNb and

its structure depends on the choice of the basis. For example, the covariance matrix
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of h
(j)

l can be expressed with KL basis via eigen decomposition and a reduced-rank

approximation:

E{h(j)

l h(j)H
l } = V (j)Λ(j)

l V (j)H (2.22)

≈ Ṽ
(j)

Λ̃
(j)

l Ṽ
(j)H

, (2.23)

where the rank reduction to Nb eigen-modes is used. This example produces a KL

BE with B(j) = Ṽ
(j)

, R
(j)

θl,θl
= Λ̃

(j)

l and

R
(j)

θ =




Λ̃
(j)

0 0
. . .

0 Λ̃
(j)

NH−1


 . (2.24)

The parameter Nb ≤ N quantifies the degrees of variation of the channel tap. In

cases of practical interest, the channel varies slowly enough that Nb ≪ N . For evi-

dence of this claim, Fig. 2.1 plots the effective2 degrees of variation for the commonly

assumed Rayleigh channel.

For multi-carrier system, N -sample trajectory of the dth frequency-domain (and

frequency-varying) channel tap can be defined as the same way as in (2.17) but using

frequency domain channel matrix. In this case, we find it convenient to expand h
(j)

d

with truncated Fourier basis, e.g.,

h
(j)

d = F (j)θ̄
(j)

d (2.25)

≈ B(j)θ(j)

d , (2.26)

where F (j) ∈ CN×N is the DFT matrix and B(j) ∈ CN×Nb has Nb columns selected

from those of F (j). Note that when using proper pulse-shaping schemes the ap-

proximation can be made very close. A more detailed description of MCM channel

2We define the “effective degrees of variation” as the number of eigenvalues in E{hℓh
H
ℓ } which

are larger than 1/1000 of the principle eigenvalue.

20



10
−4

10
−3

10
−2

10
−1

0

2

4

6

8

10

12

14

16

 

 

N=8

N=64

N
b

fDTs

Figure 2.1: Effective degrees of variation Nb versus normalized single-sided Doppler
spread fDTs for Jakes’ channel at different block lengths N .
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coefficients and its Fourier basis representation based on sparse channel assumption

is provided in Appendix A.
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CHAPTER 3

TREE SEARCH ALGORITHMS

TSAs can be employed in many coherent equalization problems as detection or

equalization algorithms, i.e., TSAs can perform maximum likelihood sequence detec-

tion (MLSD), or TSAs can facilitate a soft maximum a posteriori (MAP) equalization

by generating a set of best sequences. Also, TSAs can be adopted the same way for

the noncoherent equalization problems, as we will see in Chapter 5. In this chapter,

we review generic TSAs, by focusing on preprocessing algorithms and several search

strategies used for algorithms, especially in the context of MCM application. Then, we

discuss the optimality of the minimum mean-squared error (MMSE)-general decision

feedback equalizer (GDFE) preprocessing. More specifically, we establish that under

some condition the MMSE-GDFE preprocessing does not compromise the optimal

search performance.

The MCM described at the end of Section 2.4.2 allows us to focus on a system

model (almost) free of ISI and insignificant-ICI. Suppressing the (j) notation and

adopting the real-valued model in (2.15), the MCM system equation (2.6) becomes

ȳ = H̄s̄ + w̄, (3.1)
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where H̄ retains the quasi-banded structure in Fig. 3.1(a). We assume that the

symbol is chosen from a Q-ary PAM alphabet written as

S̄ = {−Q − 1

2
, . . . ,

Q − 1

2
}. (3.2)

Since (3.1) involves 2N -dimensional real-valued vectors, we define L , 2N . The

MLSD solution to (3.1) under known H can be expressed as a minimum distance

(MD) search over the signal alphabet:

ˆ̄sML = arg min
s̄∈S̄L

∥∥∥ȳ − H̄s̄
∥∥∥
2
. (3.3)

The brute-force approach to finding ˆ̄sML requires O(QL) operations, which is im-

practical for large N . If H̄ was banded with a band radius of D, then the Viterbi

algorithm could be used to solve (3.3) with a complexity of L(2D + 1)Q2D+1 real

multiply-accumulate (MAC) operations per block [1]. Since H̄ is only quasi-banded,

a different approach is needed. For example, one could instead use a “tail-biting”

MLSD which hypothesizes an initial state at an arbitrary location within the block,

runs the standard Viterbi algorithm from that state, and forces a termination back

to that state. Exhaustively searching among the Q2D possible hypotheses yields an

MLSD algorithm with a complexity of L(2D + 1)Q4D+1 real MACs per frame. How-

ever, these Viterbi algorithms, while much cheaper than brute force search, will still

be impractical in many applications.

MD search algorithms present an alternative to brute-force and Viterbi MLSD [64].

After converting the linear system (3.1) to upper triangular form, efficient MD search

algorithms based on sequential decoding [65, 66] or sphere decoding [67, 68] can be

used to implement MLSD with an average complexity far below O(QL). Since the

sequential decoding and the sphere decoding are closely related (see, e.g., [69]) in that
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L = 2N
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Figure 3.1: Channel matrices associated with MCM: (a) “quasi-banded” channel
matrix, (b) “V-shaped” channel matrix.

they explore tree-shaped data structure to find the optimal point, we refer to them

collectively as TSAs. For the system (3.1) with general (i.e., non-banded) channel

matrix H̄ , for example, sphere decoding maintains an average complexity of approx-

imately O(L3) at high SNR, regardless of constellation size Q [69]. This remarkable

fact encourages a more thorough investigation of TSAs capable of leveraging the

quasi-banded structure of H̄ for further complexity reduction. In fact, we will show

in Section 4.2.2 that quasi-banded H̄ allows near-ML TSA with an average complex-

ity close to O(L2). TSA consists of a preprocessing step and a tree search step; both

are discussed next.

3.1 Preprocessing

We refer to “TSA preprocessing” as that which converts the linear system (3.1)

to upper triangular form. The traditional TSA preprocessing method uses the QR

decomposition H̄ = QR to transform (3.1) into the equivalent system y′ = QT ȳ =

Rs̄ + w′, where R is upper triangular and w′ is statistically equivalent to w̄. This is
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called zero-forcing (ZF)-DFE preprocessing and with ZF-DFE preprocessing optimal

detection criterion still holds, i.e., the detection problem (3.3) is equivalently restated

as

ˆ̄sML = arg min
s̄∈S̄L

‖y′ − Rs̄‖2
. (3.4)

It is not unusual for the preprocessed channel matrix R to be ill-conditioned. When

this is the case, the complexity of near-ML TSA is known to grow significantly [70].

MMSE-GDFE preprocessing [69,71] was recently proposed as an alternative to the

traditional ZF-DFE preprocessing. It is motivated by the well known fact that, under

perfect decision feedback, the MMSE-GDFE [72] exhibits higher signal to interference-

plus-noise ratio (SINR) than the ZF-DFE at the decision point. We now outline

the main ideas behind the MMSE-GDFE preprocessing algorithm in [71]. Under the

assumptions that s and w are zero-mean uncorrelated random vectors with covariance

matrices σ2
sIL and σ2IL, respectively, we define γ , σ2

s/σ
2 and the augmented channel

matrix H̃ in (3.5):

H̃ ,

[
H̄
1√
γ
IL

]
(3.5)

= Q̃R̃ =

[
Q1

Q2

]
R̃. (3.6)

Equation (3.6) gives the QR decomposition of H̃ , where Q̃ has orthonormal columns

and R̃ is upper triangular with positive diagonal entries. MMSE-GDFE preprocess-

ing produces the transformed observation ρ , QT
1 ȳ which is used in the detection

problem

ˆ̄sPP = arg min
s̄∈S̄L

∥∥∥ρ − R̃s̄
∥∥∥
2
. (3.7)
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Because Q1 ∈ R
L×L is not guaranteed to be orthogonal, we cannot claim (for general3

constellations S̄) that ˆ̄sPP = ˆ̄sML. When H̄ is fully populated (i.e., not quasi-banded)

as in flat-fading multi-antenna communication, Damen [71] demonstrated that, at

moderate-to-high SNR, ˆ̄sPP is near-ML and can be found, via TSA, at an average

search complexity of O(L3), regardless of constellation size Q. We note, for later use,

that the error n , ρ − R̃s̄, while signal dependent and non-Gaussian, is white with

covariance σ2IL [73].

It is important to realize that, when H̄ has the quasi-banded structure in Fig. 3.1(a),

R̃ will have the “V-shaped” structure in Fig. 3.1(b). Since, as we shall see, the V-

shaped structure can have a profound affect on TSA behavior, it is worthwhile to

consider the conditions under which this V-shaping arises. As suggested by Fig. 3.1,

we measure the degree of V-shaping by the ratio 4D+1
2N

; as 4D+1
2N

decreases below 1,

the V-shaping becomes more prominent. Recalling D = ⌈2fDTcN⌉+ α and assuming

the typical choice N = 4Nh, where Nh , Th/Tc denotes the normalized delay spread,

we find

4D + 1

2N
=

4⌈8fDTcNh⌉ + 4α + 1

8Nh
=

1.125 + 0.5α

Nh
, (3.8)

where the second equality in (3.8) holds for all reasonable spreading factors, i.e., for

0 < 2fdTh ≤ 0.5. When α = 4 (as used in Section 6.4), 4D+1
2N

= 3.125
Nh

, and so R̃ will

be V-shaped for Nh > 3. In most applications of interest, though, we have Nh ≫ 3,

in which case R̃ is prominently V-shaped.

Additional TSA preprocessing might also be considered. For example, relaxing

the constraint s̄ ∈ S̄L in (3.7) to s̄ ∈
(
Z + 1

2

)L
allows more freedom in the choice

3It will be established in Section 3.3 that ˆ̄sML = ˆ̄sPP when the data is uncoded and constant
modulus.
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of lattice basis [70]. In our application, however, we are interested in preserving the

quasi-banded structure of H̄ , which limits the types of preprocessing that can be

performed. These issues will be discussed further in Section 4.1.1.

3.2 Tree Search Algorithms

The preprocessed sequence detection problems (3.4) and (3.7) both correspond

to tree search over a tree with depth L, where every tree node has Q children. A

brute-force approach to tree search would entail the examination of the Euclidean

metrics (3.4) and (3.7) at each of the QL leaf nodes. We are interested in search

algorithms which prune branches that are unlikely to contain the ML path, thus

drastically reducing the search complexity. Unlike their ML counterparts, near-ML

tree search algorithms can, in some cases, discard the ML path, and hence return a

suboptimal sequence estimate. Thus, each near-ML algorithm achieves a particular

tradeoff between performance and complexity.

Tree search algorithms can be categorized as breadth-first, depth-first, or best-

first search algorithms [66, 70]. Breadth-first search algorithms include, e.g., the M-

algorithm [66], T-algorithm [74], statistical pruning algorithms [75], Wozencraft’s

TSA [76], and Pohst’s sphere decoder [77]. Depth-first search algorithms include,

e.g., the Schnor-Euchner’s sphere decoder and its variants [67–69]. Best-first search

algorithms include, e.g., the stack and Fano algorithms [65, 70, 78].

3.2.1 TSAs for MCM Application

We focus on a few representative TSAs and discuss their strengths and weaknesses

in the context of solving (3.7) for the DS-channel MCM application, i.e., when R̃

has the V-shaped structure in Fig. 3.1(b), as opposed to the general case of (3.7)
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that results from, e.g., flat-fading multi-antenna channels and time-dispersive single-

antenna channels—neither4 of which yield V-shaped R̃. In fact, we find that the

structure of R̃ has a profound effect on TSA behavior.

We now briefly discuss depth-first, breadth-first, and best-first TSAs to gain in-

sight into their behavior in the DS-channel MCM application. But first, some nota-

tion: We associate every node on the “ith level” of the tree (i ≥ 0) with a realization

of the partial path

s̄i , [s̄i, s̄i+1, . . . , s̄L−1]
T ∈ S̄

L−i. (3.9)

The root node corresponds to the Lth level and the leaf nodes to the 0th level. The

Euclidean partial-path metric associated with s̄i is defined in (3.10) using r̃k,l , [R̃]k,l:

M(s̄i) ,

L−1∑

k=i

∣∣∣∣ρk −
L−1∑

l=k

r̃k,ls̄l

∣∣∣∣
2

. (3.10)

• Depth-First Search: Depth-first search (DFS) algorithms proceed down the tree

by following the minimum-cost branch at each level. The first full path obtained

in this manner, corresponding to the classical DFE sequence estimate, is kept as

a reference. The DFS algorithm then backs up one level at a time, re-examining

the discarded branches at each level and pursuing any that have a chance at

beating the reference. If a new best-sequence is found, it is used as the new

reference and the process is repeated. DFS yields very low search complexity

when the initial (i.e., DFE) sequence estimate is ML, since no other branches will

be re-examined. For this reason, DFS complexity approaches DFE complexity

4The ICI span of properly designed MCM (i.e., NH) will be much shorter than the ISI span of
an equivalent single-carrier system (i.e., Nh). Thus, while a time-domain channel matrix would be
banded, it would have a much wider band than our quasi-banded H . Unless H has a narrow band,
R̃ will not be V-shaped.
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at high SNR. At low SNR, however, DFS can waste a lot of effort on non-ML

paths, leading to very costly searches.

When R̃ is V-shaped, as in MCM-shaped DS channels, and the SNR is moderate-

to-low, DFS will not be efficient in solving (3.7). To see why, consider Fig. 3.2,

which shows that s̄L−2D−1 does not affect {ρ0, . . . , ρL−4D−1}. Consequently, an

error in ˆ̄sL−2D−1 will be invisible to the branch metrics at levels i ∈ {0, . . . , L−

4D − 2}. When such an error occurs, all DFS branch re-examinations at levels

i ∈ {0, . . . , L − 4D − 2} will be performed in vain. Similar situations occur

with errors in ˆ̄sk for k ∈ {2D + 1, . . . , L − 2D − 2}. Note that this behavior

does not manifest for general upper-triangular R̃. Thus, while DFS algorithms

like the Schnorr-Euchner’s sphere decoder may be attractive in multi-antenna or

time-dispersive channels, they are not well suited to MCM-shaped DS channels.

These notions will be confirmed numerically in Section 4.2.

• Best-First Search: Best-first search (BeFS) algorithms maintain a sorted list of

the best partial paths (of possibly different lengths). At each iteration, BeFS

extends the best partial path, replaces its list entry with that of its children,

and re-sorts the list. BeFS terminates as soon as the best partial path reaches

a leaf node, since, at that point, all other partial paths are destined to yield

inferior full-path metrics. The Fano algorithm is a near-ML BeFS algorithm

that uses the biased partial-path metric

MFano(s̄
i) ,

L−1∑

k=i

∣∣∣∣ρk −
L−1∑

l=k

r̃k,ls̄l

∣∣∣∣
2

− (L − i)b for b > 0. (3.11)

Larger b biases Fano in favor of longer paths, yielding quicker searches; for very

large b, Fano behaves like DFS, greedily extending the best path at every level
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L − 2D − 1L − 2D − 1L − 4D − 2

Figure 3.2: Illustration of ρ = R̃s̄ + n for V-shaped R̃. The PAM symbol s̄L−2D−1

does not affect {ρ0, . . . , ρL−4D−2}.

and returning the DFE sequence estimate. In practice, b is chosen to achieve a

particular complexity/performance tradeoff.

A recent comprehensive comparison [70] suggested that a properly-designed

Fano algorithm achieves a better complexity/performance tradeoff than all other

known TSAs when R̃ has a fully populated upper triangle. For V-shaped R̃,

however, BeFS algorithms (like Fano) can face difficulties. Recalling Fig. 3.2,

when the best partial path includes an error in ˆ̄sL−2D−1, the branch metrics

at levels i ∈ {0, . . . , L − 4D − 2} will be non-informative about this error,

and thus BeFS algorithms can waste lots of time pursuing extensions of this

“best” path in vain. Similar situations occur with errors in ˆ̄sk for k ∈ {2D +

1, . . . , L − 2D − 2}. Furthermore, best-partial-path errors in any of these ˆ̄sk’s

will be gradually de-emphasized by the Fano bias term in (3.11) as these “best”
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partial paths are extended, making the Fano algorithm less likely to revisit the

shorter stack elements without the error in ˆ̄sk. Consequently, Fano exhibits

an exploding complexity at low SNR and an inferior complexity/performance

tradeoff at high SNR when used with the R̃ that results from MCM-shaped DS

channels. These notions will be confirmed numerically in Section 6.4.

• Breadth-First Search: As we saw earlier, the complexity of DFS and BeFS

explodes at low SNR because a huge amount of searching is needed to eliminate

suboptimal paths, and the problem is exacerbated by V-shaped R̃. Breadth-

first search (BrFS) complexity, in contrast, is much less sensitive to SNR and

the structure of R̃, suggesting that it might be advantageous in our application.

The M-algorithm, for example, has complexity that is invariant to both SNR

and R̃. The M-algorithm starts at the root node (i.e., level L) and chooses the

M best child nodes at level L − 1. The children of these level-(L − 1) nodes

are then evaluated, and the M best are chosen. This process repeats at every

level, extending M nodes per level, until finally the best leaf node is chosen as

the sequence estimate.

At high SNR, however, the M-algorithm is much more expensive than DFS and

BeFS because it is not aggressive enough in branch pruning. Hence, a bet-

ter complexity/performance tradeoff might be achieved by a BrFS algorithm

that varies the number of nodes considered at each level. For example the T-

algorithm only extends paths from nodes whose Euclidean metrics lie in the

interval [M(s̄i
⋆),M(s̄i

⋆) + T ), where M(s̄i
⋆) denotes the minimum Euclidean

metric among all considered nodes, and where T is a threshold parameter that
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is chosen to achieve a particular complexity/performance tradeoff. Several ap-

proaches to the design of T have been proposed. For example, [74] took an

experimental approach, while [79] and [80] used SNR and code structure. In

Section 4.1.2 we propose an adaptive T-algorithm which uses the elements in

R̃, as well as SNR, to optimize T at each level. We shall see that this adaptive

T-algorithm results in a superior complexity/performance tradeoff for MCM-

shaped DS channels.

3.3 Optimality of MMSE-GDFE Preprocessed Estimates

In this section, we establish that MMSE-GDFE preprocessing does not compro-

mise the ML-optimality of minimum distance (MD) search for N ×M MIMO systems

under constant modulus signaling. This property holds for systems of arbitrary size

(i.e., over- or under-determined linear channels), though not for non-constant modulus

constellations. The result is attractive because MMSE-GDFE preprocessing is known

to yield significant reductions in the average search complexity of TSAs, especially

in moderate-to-low SNR ranges and/or with ill-conditioned/under-determined linear

channels. Therefore, our finding implies that the complexity savings of MMSE-GDFE

preprocessing can be leveraged for true ML (rather than only near -ML) detection.

Consider the generic MIMO system model

y = Hs + w, (3.12)

where H ∈ CN×M . Let us define Y(s) as the set of (non-preprocessed) observations

for which the ML estimate of the constant modulus sequence s ∈ SM is the optimal

MD solution. In other words,

Y(s) , {y : ‖y − Hs‖ ≤ ‖y − Hs′‖, ∀s′ ∈ S
M}, (3.13)
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where s′ is an arbitrary constant modulus sequence. Since y = Hs+w, we find that

‖y − Hs‖ ≤ ‖y − Hs′‖

⇔ ‖w‖ ≤ ‖w − H(s′ − s)‖

⇔ 2ℜ{wHH(s′ − s)} ≤ ‖H(s′ − s)‖2. (3.14)

Now we define an error sequence α(s) , s′ − s and a set of the error sequences

A(s) , {s′ − s : s′ ∈ SM} provided that s is the minimum distance solution. Then,

putting (3.13) and (3.14) together, we see that the following equivalence holds for

arbitrary s ∈ SM .

y ∈ Y(s) ⇔ 2ℜ{wHHα(s)} ≤ ‖Hα(s)‖2, ∀α(s) ∈ A(s). (3.15)

Next let us define Ỹ(s) as the set of MMSE-GDFE preprocessed observations for

which the MD estimate of the sequence s will be the minimum distance solution. In

other words,

Ỹ(s) , {ỹ : ‖ỹ − R̃s‖ ≤ ‖ỹ − R̃s′‖, ∀s′ ∈ S
M} (3.16)

where

ỹ = QH
1 y

= QH
1 (Hs + w)

= R̃s + (QH
1 H − R̃)s + QH

1 w︸ ︷︷ ︸
, n

. (3.17)

Recall that, since Q1 is typically non-orthogonal, we cannot claim that QH
1 H = R̃.

Repeating the argument in (3.14), we obtain the following equivalence, which holds

for arbitrary s ∈ SM

ỹ ∈ Ỹ(s) ⇔ 2ℜ{nHR̃α(s)} ≤ ‖R̃α(s)‖2, ∀α(s) ∈ A(s). (3.18)
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Finally, let us define the QH
1 -transformation of the region Y(s):

YQH
1
(s) , {QH

1 y : y ∈ Y(s)}. (3.19)

Note that y ∈ Y(s) ⇔ ỹ ∈ YQH
1
(s) since ỹ , QH

1 y. Thus (3.15) implies

ỹ ∈ YQH
1
(s) ⇔ 2wHHα(s) ≤ ‖Hα(s)‖2, ∀α(s) ∈ A(s) (3.20)

for arbitrary s ∈ S
M .

Lemma 1 YQH
1
(s) = Ỹ(s) for arbitrary constant modulus signaling vector s ∈ SM

and SNR γ.

proof : Examining the left side of the inequality in (3.18), we see that

nHR̃α(s) =
(
wHQ1 + sH

(
HHQ1 − R̃

H
))

R̃α(s)

= wHHα(s) + sH
(
HHH − R̃

H
R̃

)
α(s)

= wHHα(s) − γ−1sHα(s), (3.21)

where we have used the facts that Q1R̃ = H and R̃
H

R̃ = HHH + γ−1IM . The

latter fact also implies

‖R̃α(s)‖2 = ‖Hα(s)‖2 + γ−1‖α(s)‖2. (3.22)

Equations (3.21)-(3.22) can be used to rewrite (3.18) as

ỹ ∈ Ỹ(s) ⇔ 2ℜ{wHHα(s)} ≤ ‖Hα(s)‖2 + γ−1
(
‖α(s)‖2 + 2ℜ{sHα(s)}

)

︸ ︷︷ ︸
, E

,

∀α(s) ∈ A(s) (3.23)
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When s is a constant-modulus vector, it can be seen that E = 0, i.e.,

E = γ−1
(
‖s′ − s‖2 + 2ℜ{sH(s′ − s)}

)
(3.24)

= γ−1
(
‖s′‖2 − ‖s‖2

)
(3.25)

= 0 (3.26)

Thus, comparing (3.23) to (3.20), we see that YQH
1
(s) = Ỹ(s) for arbitrary s ∈

{−1
2
, 1

2
}M . �

From Lemma 1, we see that the decision regions with MMSE-GDFE and ZF-DFE

preprocessing are the same, which leads to the following corollary.

Corollary 2 Consider model (3.12) with arbitrary H, w, and constant modulus s.

Then we have ŝML = ŝPP.

Corollary 2 establishes the fact that MMSE-GDFE preprocessing does not affect

the optimality of ML detection when constant modulus signaling is used. From the

proof of Lemma 1, it is clear that the property YQH
1
(s) = Ỹ(s) will not hold for non-

constant modulus, e.g., PAM/QAM, constellations, though, implying that MMSE-

GDFE preprocessing can render MD decision making sub-optimal when non-constant

modulus constellations are used. This sub-optimality will be investigated further in

Section 3.3.1.

It is interesting to note that the MMSE-GDFE property holds for arbitrary pos-

itive γ. (This fact will be confirmed numerically in Section 3.3.1.) Thus, ML esti-

mates can be obtained via MMSE-GDFE preprocessing without knowledge of SNR.

However, the search complexity remains a function of γ, and numerical experiments

suggest choosing γ as specified in [71].
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3.3.1 Numerical Experiments

In this section we present the results of three numerical experiments. In all exper-

iments, the MIMO channel matrix H ∈ RN×M was generated from i.i.d. zero-mean

Gaussian elements with variance M−1, and the noise vector from i.i.d. zero-mean

Gaussian elements with variance (4SNR)−1 for BPSK and (4SNR/5)−1 for 4-PAM,

recalling that S = {−1
2
, 1

2
} for BPSK and S = {−3

2
,−1

2
, 1

2
, 3

2
} for 4-PAM. In other

words, SNR is the signal-energy to noise-energy ratio at each receive antenna. Unless

noted otherwise, we set γ = SNR, as specified in [71].

The first experiment shows the typical reduction of search complexity that comes

from the use of MMSE-GDFE preprocessing and ordering in place of the traditional

ZF-DFE preprocessing and ordering. We employed the greedy ordering scheme sug-

gested by [69] which was originally proposed for V-BLAST in [81]. Figure 3.3 shows

average Schnorr-Euchner (SE) sphere decoder (SpD) search complexity for a system

with M = N = 32 under BPSK signaling (or, equivalently, m = n = 16 under

QPSK signaling). By “search complexity” we mean the number of real multiplica-

tions plus additions per frame consumed by the SpD search stage5 of the SE-SpD

algorithm from [69]. Note that the complexity is reported on a logN scale. Here the

SE-SpD sphere radius was initialized at 1.5 times the average distance between the

observation and the closest lattice point. Figure 3.3 demonstrates that MMSE-GDFE

preprocessing can lead to significant complexity savings over a moderate-to-low SNR

range. For example, a factor of about 10 in complexity savings can be observed for

5This definition assumes slow-fading, where the matrix computations associated with preprocess-
ing could be amortized over many frames, thereby making the SpD search complexity dominant.
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SNR at 8 dB. More detailed investigations of MMSE-GDFE complexity savings can

be found in [69–71].

The second experiment compares the frame error rate (FER) achieved by the

ML detector (3.3) to that achieved by the MMSE-GDFE preprocessed MD detec-

tor (3.7) under BPSK signaling for several combinations of M and N and for sev-

eral choices of MMSE-GDFE parameter γ. Specifically, Fig. 3.4 examines (M, N) ∈

{(6, 8), (8, 8), (8, 6)}, which includes over- and under-determined linear channels, and

γ ∈ { 1
10

SNR, SNR, 10SNR}. Consistent with Corollary 2, the FER of MMSE-GDFE

sphere decoding is identical to that of ML detection in all cases. In this experiment,

the ML detector was implemented using the ZF-DFE preprocessed SE-SpD algorithm

from [69].

The third experiment verifies the sub-optimality of MMSE-GDFE preprocessed

MD estimates when non-BPSK/QPSK constellations are used. In Fig. 3.5, the FER

of the ML detector is compared to that of the MMSE-GDFE preprocessed SpD for

a 4-PAM system with M = N = 8. Observe that the FER degradation caused by

MMSE-GDFE preprocessing is small but measurable. As before, the ML detector

was implemented using the ZF-DFE preprocessed SE-SpD algorithm from [69].
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Figure 3.3: A comparison of the per-frame average search complexity of Schnorr-
Euchner (SE) SpD with two forms of preprocessing: ZF-DFE versus MMSE-GDFE,
both with greedy ordering. A BPSK system of dimension M = N = 32 was employed
and γ = SNR was used in MMSE-GDFE.
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dimensions (M, N) and several values of MMSE-GDFE parameter γ.
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Figure 3.5: Frame error rate of the ML detector (via ZF-DFE preprocessed SpD)
versus the MMSE-GDFE preprocessed SpD for a 4-PAM system with M = N = 8.
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CHAPTER 4

NEAR-OPTIMAL COHERENT EQUALIZATION FOR
PS-MCM

In this chapter, we combine the PS-MCM previously proposed by Schniter and

Das in [5, 17] with near-ML TSAs [65, 66, 70] with rank-reduced pilot-aided and BE-

based Wiener channel estimation for high-spectral-efficiency, high-performance, and

low-complexity multicarrier communication over the DS channel. By “near-ML,” we

mean FER performance equivalent to that attained by maximum-likelihood (ML)

sequence detection (SD) at a fraction-of-a-dB lower SNR. We tolerate this small loss

because, as we shall see, it enables huge complexity savings relative to true MLSD.

We choose the PS-MCM scheme from [5,17] because of its high spectral efficiency and

excellent ISI/ICI suppression. We propose TSA based on a novel fast MMSE-GDFE

preprocessor [71] and on a novel channel-adaptive T-algorithm [74], both of which

are specifically tailored to the ISI/ICI structure induced by PS-MCM over the DS

channel. We’ve discussed, in Section 3.2.1, the shortcomings of traditional TSAs on

these channels. Numerical experiments are conducted to evaluate the efficacy of the

PS-MCM scheme, the proposed TSA, the channel estimator, and their combination,

relative to other designs.
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4.1 Proposed PS-MCM Coherent Equalization

In the proposed PS-MCM receiver, a fast TSA preprocessing is applied to the

subchannel outputs ȳ prior to TSA via the adaptive T-algorithm. The channel coef-

ficients used in TSA are estimated via pilot symbols. Below, we describe each receiver

component in detail.

4.1.1 TSA Preprocessing

In this section we describe low-complexity TSA preprocessing which leverages the

quasi-banded structure in H̄
(j)

. For ease of TSA discussion, we assume real-valued

system model in (2.15) and suppress the (j) notation in this section. Also the signal is

assumed to be chosen from the Q-ary PAM alphabet described in (3.2). We start with

a description of a low-complexity implementation of MMSE-GDFE preprocessing.

Then a simple ordering scheme which preserves the quasi-banded structure in H̄ is

presented.

Fast MMSE-GDFE Preprocessing

The MMSE-GDFE preprocessing originally proposed in [71] involves QR decompo-

sition with complexity O(L3). In this section, we propose an O(D2L) implementation

of MMSE-GDFE preprocessing that leverages the quasi-banded structure of H̄ found

in our application. We note connections to the fast MMSE-DFE in [15], which was

formulated for a banded (as opposed to quasi-banded) matrix H̄ that occurs when

the edge subcarriers are inactive.

Recall the augmented channel matrix H̃ in (3.5) and its QR decomposition (3.6).

Note that, while H̄ is quasi-banded with 2D + 1 active diagonals [as illustrated
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in Fig. 3.1(a)], H̃ is not quasi-banded. However, the matrix H̃
T
H̃ , which can be

computed in (4D2 + 4D + 2)L MACs, is quasi-banded with 4D + 1 active diagonals.

Now, since Q̃ is an orthogonal matrix, we know H̃
T
H̃ = R̃

T
R̃. Hence, R̃ can be

obtained via Cholesky factorization [82] of H̃
T
H̃ in O(D2L) operations. Table 4.1

details the fast Cholesky factorization A = GGT , where A , H̃
T
H̃ and where

G , R̃
T

is the lower triangular Cholesky factor. This fast computation of R̃ can be

shown to consume (10D2 +11D+2)L− 1
3
(74D3 +133D2 +44D+3) MAC operations.

Next, we consider the implementation of the preprocessing operation ρ = QT
1 y.

Multiplication of this equality by R̃
T

yields

R̃
T
ρ = R̃

T
QT

1 y = H̄
T
y , b. (4.1)

Due to quasi-banded H̄ , the vector b can be computed in (2D+1)L MAC operations.

From b we can solve (4.1) for ρ using forward substitution in O(DL) additional op-

erations, because R̃
T

has the sparse “V-shaped” structure in Fig. 3.1(b). In total,

this consumes (6D +2)L− 6D2 − 3D MAC operations. Combining forward substitu-

tion with fast Cholesky decomposition, our fast MMSE-GDFE preprocessing requires
(
14D2 + 21D + 6

)
L − 76

3
D3 − 53D2 − 53

3
D − 1 real MAC operations.

Circular Ordering

In [69], Damen et al. outline three stages of TSA preprocessing: lattice reduction,

column ordering, and MMSE-GDFE preprocessing. In our application, the lattice

reduction and column ordering would destroy the quasi-banded structure of H̄ , in

which case the subsequent MMSE-GDFE preprocessing would require a complexity

of O(L3). Since, in practice, L = 2N can be quite large (e.g., in the hundreds or

thousands), such a complexity would be impractical. For these reasons, we restrict
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Table 4.1: Fast Cholesky factorization of quasi-banded A.
Say A = GGT , where G is lower triangular and
A ∈ R

L×L is quasi-banded with ±2D diagonals.

for j = 0 : L − 4D − 1
vj:L−1 = [A]j:L−1,j

m1 = max{0, j − 2D − 1}
m2 = j + 2D − 1
for i = m1 : j − 1

vj:m2 = vj:m2− [G]j,i[G]j:m2,j

vL−2D−1:L−1 = vL−2D−1:L−1

−[G]j,i[G]L−2D−1:L−1,j

end
[G]j:m2,j = vj:m2/

√
vj

[G]L−2D−1:L−1,j = vL−2D−1:L−1/
√

vj

end
for j = L − 4D : L − 2D − 1

vj:L−1 = [A]j:L−1,j

m1 = max{0, j − 2D − 1}
for i = m1 : j − 1

vj:L−1 = vj:L−1− [G]j,i[G]j:L−1,j

end
[G]j:L−1,j = vj:L−1/

√
vj

end
for j = L − 2D : L − 1

vj:L−1 = [A]j:L−1,j

for i = 0 : j − 1
vj:L−1 = vj:L−1− [G]j,i[G]j:L−1,j

end
[G]j:L−1,j = vj:L−1/

√
vj

end
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ourselves to preprocessing operations which preserve the quasi-banded structure of

H̄ .

One admissible preprocessing operation is an n-place circular shift in column order

of H̄ . Using the left circular shift matrix J , the shifting operation transforms (3.1)

into the equivalent system (4.2) with channel matrix H̄J−n:

y =
(
H̄J−n

)
Jns̄ + w (4.2)

J ,

[
0L−1 IL−1

1 0T
L−1

]
. (4.3)

Though HJ−n is not quasi-banded in the sense of Fig. 3.1a, the matrix H̃
T
H̃ = R̃

T
R̃

is, allowing the fast MMSE-GDFE processing from Section 4.1.1. Among the unique

shifts n ∈ {0, . . . , L−1}, we choose the one which maximizes the norm of the rightmost

column of H̄J−n, i.e., the norm of the rightmost column of R̃. Thus, the PAM symbol

contributing the most energy to y is placed at the root of the tree. The complexity of

this circular ordering stage is dominated by the evaluation of column norms, requiring

O(DN) operations. We have observed, numerically, that this “circular ordering”

scheme yields a modest improvement in terms of the performance/complexity tradeoff.

4.1.2 Channel-Adaptive T-algorithm

In this section we propose a channel-adaptive version of the T-algorithm in which

the threshold parameter Ti is adjusted at the ith level in the tree according to the

channel realization and noise variance. Recall that the T-algorithm is a breadth-first

search algorithm which, at the ith level, discards all partial paths s̄i whose metric

M(s̄i) exceeds that of the best partial path s̄i
⋆ , arg mins̄i M(s̄i) by an amount

≥ Ti. (See Fig. 4.1.) Thus, the T-algorithm will make a block error if the true partial

path s̄i
T is discarded at any level i ∈ {L − 1, L − 2, . . . , 0}.
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M(s̄(i))

T0

T1

T2

T3

3 2 1 0 level i

Figure 4.1: Illustration of path evolution in the T-algorithm when Q = 2 and L = 4.
The circled points denote the minimum path metrics, the crossed points denote the
discarded path metrics, and the bold line denotes the true path. Note that, in this
example, M(s̄2

⋆) < M(s̄2
T).

In our adaptive T-algorithm, we set the threshold Ti so that the true path is

discarded with probability ǫo when the true path is not the best partial path.

Pr
{
M(s̄i

T) > M(s̄i
⋆) + Ti

∣∣∣ M(s̄i
T) > M(s̄i

⋆)
}

< ǫo. (4.4)

Note that this is different from simply setting Ti so that the true path is discarded

with probability ǫo. In the latter case, Ti will increase—thereby increasing search

complexity—at low SNR. Intuition, however, tells us that it is not worthwhile to

search extensively at low SNR because, even if found, the ML path is more likely to

be in error.

With

µi , M(s̄i
T) −M(s̄i

⋆) (4.5)
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we can rewrite (4.4) as

Pr
{
µi > Ti | µi > 0

}
< ǫo. (4.6)

We now analyze the random variable µi. To do this, we define ρi , [ρi, ρi+1, . . . , ρL−1]
T

and construct R̃
i ∈ R(L−i)×(L−i) from the last L − i rows and columns of R̃, i.e.,

[R̃
i
]j,k = [R̃]j+i,k+i. This way, the definition of M(s̄i) in (3.10) can be rewritten as

M(s̄i) = ‖ρi − R̃
i
s̄i‖2. Using the error vector ei , s̄i

⋆ − s̄i
T and the interference

vector ni , ρi − R̃
i
s̄i

T, we find

µi = ‖ρi − R̃
i
s̄i

T‖2 − ‖ρi − R̃
i
s̄i

⋆‖2

= ‖ni‖2 − ‖ni − R̃
i
ei‖2

= 2niT R̃
i
ei − ‖R̃i

ei‖2. (4.7)

Since the statistics of ei are difficult to characterize, we approximate ei by the

simple error event most likely to occur at the ith level, i.e., an error vector of the form

ei = [0, . . . , 0,±1, 0, . . . , 0]T . The partial metric M(s̄i) = ‖ρi − R̃
i
s̄i‖2 suggests that

this error will occur at the index of the “weakest” column of R̃
i
. Thus we assume

[ei]l = ±δl−li for

li , arg min
l

‖r̃i
l‖, (4.8)

where r̃i
l ∈ RL−i denotes the lth column of R̃

i
. In this case,

µi = ±2niT r̃i
li
− ‖r̃i

li
‖2. (4.9)

Recall from our discussion in Section 4.1.1 that the interference vector n is zero-

mean, white, and Gaussian in the case of ZF-GDFE preprocessing; and zero-mean,

white, and non-Gaussian in the case of MMSE-GDFE preprocessing. In the latter
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case, the non-Gaussianity of n is due to a contribution from not-yet-detected PAM

symbols, which we treat as random since their values are unknown when designing

Ti. To proceed further, we approximate n as Gaussian with covariance σ2IL. With

these assumptions,

µi ∼ N
(
−‖r̃i

li
‖2, 4‖r̃i

li
‖2σ2

)
. (4.10)

Using the statistical description (4.10), we can solve for Ti in (4.6) given a particular

ǫo. From Bayes rule we find

Pr{µi > Ti|µi > 0} =





Pr{µi>Ti}
Pr{µi>0} Ti ≥ 0,

1 else,
(4.11)

from which it is straightforward to show that

Ti = 2σ‖r̃i
li
‖Q−1

(
ǫoQ

(‖r̃i
li
‖

2σ

))
− ‖r̃i

li
‖2 (4.12)

using the tabulated function

Q(x) ,
1√
2π

∫ ∞

x
e−

x2

2 dx. (4.13)

From (4.12) we can see that the desired error probability ǫo is “weighted” by an

SNR-dependent quantity; as SNR increases, so does the Q−1(·) term.

4.1.3 Channel Estimation

Here we propose a rank-reduced pilot-aided Wiener channel estimation scheme.

We discuss the pilot pattern first and the estimation scheme later.

We choose a pilot pattern where one out of every P ≥ 2 multicarrier symbols is

used as a pilot. These pilot symbols are then used to estimate the channel coefficients

of the P − 1 multicarrier data symbols in-between. Pilot patterns of this form are
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relatively common, having been used in several other works (e.g., [13,62]). We choose

this pattern over one where each multicarrier symbol contains a mixture of pilot

and data sub-carriers for the following reason. Assuming a significant ICI radius

equal to D, the pilot and data sub-carriers would interfere unless a frequency-domain

guard with radius 2D was placed around each pilot tone. Since Nyquist sampling

considerations imply the need for at least Nh pilot tones, prevention of pilot/data

interference would require that at least (4D + 1)Nh sub-carriers are spared from

data transmission. For many applications of interest (e.g., the setup in Section 4.2),

however, (4D + 1)Nh > N , making this scheme impractical. Since design of optimal

pilot symbols appears to be a challenging problem, we used values obtained from a

semi-exhaustive search.

We now define some quantities that follow from our pilot pattern. Say that, for

all indices m corresponding to pilot symbols, we have s̄(m) = p. For these m, (2.15)

implies that

y(m) = Ph(m) + w(m) (4.14)

h(m)
,

[
diag−D(H̄

(m)T
), . . . , diagD(H̄

(m)T
)
]T ∈ R

(2D+1)L (4.15)

P ,
[
JDD(p) · · · J−DD(p)

]
, (4.16)

where diagk(·) extracts the kth sub-diagonal of its matrix argument, i.e.,

diagk(H̄) ,
[
[H̄ ]k,0, [H̄ ]k+1,1, . . . , [H̄ ]k+L−1,L−1

]T
(4.17)

with modulo-L indexing assumed. Recall that J was defined in (4.3). Our goal is to

estimate the local-ICI coefficients

h(m)
, [h(m+1)T , . . . , h(m+P−1)T ]T (4.18)
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from the pilot observations

y(m) , [y(m)T , y(m+P )T ]T . (4.19)

Say that h(m) = Cg(m), where g(m) ∈ CNβNh contains all complex-baseband time-

domain impulse response coefficients that affect the mth observation with Nβ being

the length of receive pulse bn, and where C is a function of the MCM pulse shapes

{an} and {bn}.

The linear MMSE estimate of h(m) from y(m) is [83]

ĥ
(m)

= RhyR
−1
yy y(m), (4.20)

where Rhy , E
{
h(m)y(m)T

}
and Ryy , E

{
y(m)y(m)T

}
. We can write

Rhy =




R
(1)

hy R
(1−P )

hy

R
(2)

hy R
(2−P )

hy
...

...
R(P−1)

hy R(−1)

hy




(4.21)

Ryy =

[
R(0)

yy R(−P )

yy

R(P )

yy R(0)

yy

]
(4.22)

with

R
(q)

hy , C E{g(m)g(m−q)H}CHP T (4.23)

R(q)

yy , PC E{g(m)g(m−q)H}CHP T + δqσ
2
zI2L (4.24)

Note that E{g(m)g(m−q)H} is easily calculated from the time-domain channel autocor-

relation function.

Because each of the 2Nh real-valued channel taps changes slowly over the pi-

lot/data/pilot interval (i.e., Nβ + PN channel uses), it contributes only K = 1 +

⌈2fDTc(Nβ + PN)⌉ non-negligible singular values to RhyR
−1
yy . Thus, as in [13], opti-

mal rank reduction [83] can be used to significantly reduce the complexity of channel
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estimation with little performance degradation. The optimal rank-2NhK estimate of

h(m) is constructed as follows [83]. From the singular value decomposition (SVD)

RhyR
−1
yy = UΣV H , (4.25)

we build UK and V K from the first 2NhK columns of U and V , respectively, and

we build ΣK from the first 2NhK rows and columns of Σ. We find that

RhyR
−1
yy ≈ UKF H

K (4.26)

for UK ∈ R(P−1)(2D+1)L×2NhK and F K , V KΣK ∈ C2L×2NhK . Note that UK can be

interpreted as the MMSE-optimal order-2NhK basis expansion for h(m) and F H
K can

be interpreted as the linear MMSE estimator of the corresponding basis coefficients

λ(m). The resulting rank-reduced estimation procedure

λ̂
(m)

= F H
Ky(m) (4.27)

ĝ(m) = UKλ̂
(m)

(4.28)

requires only 2NhK[2L + (P − 1)(2D + 1)L] complex MACs per P − 1 frames. In

Section 4.2 we demonstrate that, with K = 2, the complexity of this channel estima-

tion method is on par with that of preprocessed TSA. Experiments have confirmed

that the rank-reduced performance is nearly indistinguishable from the full-rank per-

formance [84].

4.2 Numerical Results

Our experiments employed the ICI/ISI-corrupted MCM system specified in the

real-valued form by (2.15). Uncoded QPSK symbols {s̄(m)

k }N−1
k=0 (i.e., Q = 2) were

communicated over N = 64 MCM subcarriers (i.e., L = 128), and the demodulator
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outputs ȳ(m) were used to detect the QPSK sequence s̄(m). For sequence detection

(SD), we focused on the case where only the “significant” ICI coefficients H̄
(m)

were

known, in which case ISI and residual ICI were treated as unknown interference.

Several methods of SD were examined: MLSD, near-ML TSA, and MMSE-DFE.

In each case, we first apply circular ordering and fast MMSE-GDFE preprocessing to

arrive at the detection problem (3.7), since, in the case of uncoded QPSK, solutions

to (3.7) are known to be ML as shown in Section 3.3. For MLSD, we solve (3.7)

via SE-SpD, while for near-ML TSA, we obtain an approximate solution to (3.7) via

suboptimal tree search. For MMSE-DFE, we decode the bits {s̄(m)

k }L−1
k=0 in the order

s̄(m)

L−1, s̄
(m)

L−2, . . . , s̄
(m)

0 by first making a hard decision on each bit and then subtracting

its (estimated) contribution from ȳ(m) [72].

We assumed a wide sense stationary uncorrelated scattering (WSSUS) Rayleigh

fading channel [85] whose realizations were generated using Jakes method. The chan-

nel had a uniform delay-profile with normalized6 delay spread Nh = Th/Tc = 16 and

a normalized single-sided Doppler spread fDTc ∈ {0.001, 0.003}. These parameters

correspond to, e.g., a system with subcarrier spacing Fs = 20 kHz, carrier frequency

fc = 10 GHz, delay spread Th = 12.25 µs, and effective7 velocities of 138 km/hr and

414 km/hr, respectively. We defined SNR as the ratio of signal energy to noise energy

in (pulse-shaped and sampled) receiver inputs.

Four FFT-based MCM schemes were considered: CP-OFDM [7], ZP-OFDM [8],

Strohmer and Beaver’s “optimal” OFDM (S-OFDM) [9], and PS-MCM [5,17]. Each

6These quantities are normalized to the “channel-use interval” or “chip interval” Tc = 1
NFs

.

7Effective velocity v can result from mobile velocity v/3 in, e.g., a “triple-Doppler” situation,
when the downlink signal bounces off of a reflector traveling directly towards (away from) the base
station at velocity v/3 and is received by a mobile traveling away from (towards) the base station
at velocity v/3.
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of these schemes was allowed the same transmitted energy per information bit. With

the exception of ZP-OFDM, all guarantee white subchannel noise samples (i.e.,

E{w̄(m)w̄(m)T} = σ2/2I). For CP-OFDM and ZP-OFDM, we employed a length-Ng =

16 guard to avoid ISI, yielding a spectral efficiency of 0.8 QPSK-symbols/sec/Hz.

For S-OFDM, N = 64 QPSK symbols were transmitted every 80 channel uses, also

yielding a spectral efficiency of 0.8 QPSK-symbols/sec/Hz. For PS-MCM, N QPSK

symbols were transmitted every N channel uses, yielding a spectral efficiency of 1

QPSK-symbol/sec/Hz. The dilation factor σ of the Gaussian pulse gσ(t) orthogonal-

ized for S-OFDM (see [9, p. 1114]) was numerically optimized to minimize the total

power of ICI plus ISI. The PS-MCM transmitter pulse {an} was length Na = 3
2
N

and the PS-MCM receiver pulse {bn} was length-N rectangular and preceded by 3
2
Nh

zeros.

4.2.1 FER Performance

Figure 4.2 examines the frame8 error rate (FER) performance of the four MCM

schemes with MLSD. When MLSD was too costly, the matched filter bound (MFB)

was used as an approximation. When the MLSD has perfect global -ICI knowledge

[i.e., knowledge of full H̄
(m)

], PS-MCM and ZP-OFDM performed similarly, and sig-

nificantly outperformed S-OFDM and CP-OFDM. S-OFDM performed poorly due

to a high level of ISI. Better S-OFDM performance was observed when the dilation

factor was chosen to decrease ISI and increase ICI (which is incorporated in MLSD),

but, since that was inconsistent with the S-OFDM design methodology in [9], we do

not present those results here. CP-OFDM suffers from high FER because it wastes

energy on a CP that is discarded by the receiver, and because CP-OFDM does not

8We use the terms “frame” and “multicarrier symbol” interchangeably in this paper.
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make for easy extraction of delay diversity with uncoded transmissions. When using

MLSD with global ICI knowledge, all MCM schemes other than S-OFDM benefit

from additional Doppler diversity at higher fDTc. S-OFDM, in contrast, reacts to

the fDTc increase by dilating the pulse in such a way that both ICI and ISI increase,

but the increase in ISI hurts more than the increase in ICI helps. In comparing the

schemes, it is important to remember that PS-MCM operates at 25% higher spectral

efficiency than the other schemes.

When the receiver has only local -ICI knowledge up to ±3 subcarriers [i.e., knowl-

edge of 2D + 1 = 13 diagonals of H̄
(m)

], Fig. 4.2 shows that the MLSD performance

of PS-MCM is indistinguishable from that with global-ICI knowledge. This confirms

that PS-MCM suppresses non-local ICI well below the noise floor over the SNR range

of interest. In contrast, the MLSD performance of ZP-OFDM and CP-OFDM col-

lapse when only the local ICI is known; while S-OFDM avoids this collapse, it does

so at the expense of high ISI power. Note that [1], which applies Viterbi SD to CP-

OFDM under local-ICI knowledge, is lower-bounded by the “CP-OFDM MFB D=6”

trace, and hence performs far worse than the proposed PS-MCM scheme.

Figure 4.3 examines FER performance of the four MCM schemes under MMSE-

DFE detection. It is interesting to note that, when the MMSE-DFE detector is given

perfect global-ICI knowledge, the PS-MCM FER floors at high SNR. This is consistent

with [15], which showed similar MMSE-DFE performance for max-SINR reception-

pulse (MSRP) MCM. We conjecture that max-SINR pulse shaped schemes are more

prone to DFE error because the channel energy is not as well concentrated in the main

diagonal of R̃ as it is for CP-OFDM, ZP-OFDM, and S-OFDM. When the MMSE-

DFE has only local -ICI knowledge up to ±3 subcarriers, the FER performances of
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ZP-OFDM and CP-OFDM collapse, while the performance of PS-OFDM remains the

same as that with global-ICI knowledge. As before, S-OFDM avoids this collapse,

though at the cost of high ISI power. Once again, this confirms that PS-MCM

suppresses non-local ICI well below the noise floor over the SNR range of interest.

Note, however, that in all cases, the MMSE-DFE performances are significantly worse

than their MLSD counterparts in Fig. 4.2. Fortunately, there is no need to use MMSE-

DFE detection on PS-MCM because (as we shall see) TSA can be used to achieve

near-ML performance with MMSE-DFE-like complexity.

Figure 4.4 shows the FER performance of various TSAs operating on DS-channel

PS-MCM with perfect knowledge of ±3 subcarriers of local ICI (i.e., D = 6). For

the M-algorithm, we set M = 8, and, for the T-algorithm, we set T = 0.4 when

fDTc = 0.001 and T = 0.5 when fDTc = 0.003. For both algorithms, these were the

computationally cheapest parameter settings which guaranteed near-ML performance

over the SNR range of interest. For the adaptive T-algorithm, we set ǫo = 10−5 and

limited the maximum list size to 8. For the Fano algorithm of [70], we set9 the

bias b = σ2/2 and the “step size”= σ2. For the Schnorr-Euchner’s sphere decoder

(SE-SpD), we initialized the squared sphere radius at 1.2 times the average squared

Euclidean distance between the observation and the ML point. From Fig. 4.4 we see

that, with the exception of MMSE-DFE, all TSAs give near-ML performance. In fact,

the ML and SE-SpD traces are identical since MMSE-GDFE preprocessed SE-SpD

yields ML performance with uncoded QPSK (i.e. see Section 3.3). The MMSE-DFE

error floor is consistent with that observed in [15] for MSRP-MCM.

9These settings were personally suggested by the authors of [70].
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Figure 4.2: ML and MFB performance of several MCM schemes using global ICI
(“full H”) or local ICI (”D=6”) at (a) fDTc = 0.001; (b) fDTc = 0.003.
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MSTP−MCM D=6
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Figure 4.3: MMSE-DFE performance of several MCM schemes using global ICI (“full
H”) or local ICI (”D=6”) at (a) fDTc = 0.001; (b) fDTc = 0.003.
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Figure 4.4: Performance of several TSAs on doubly selective PS-MCM with perfect
knowledge of local ICI (i.e., D = 6) at (a) fDTc = 0.001; (b) fDTc = 0.003.
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4.2.2 Complexity

Figure 4.5 compares the average complexity of the TSAs and the Viterbi algorithm

used in [1] when operating on PS-MCM10 with perfect knowledge of ±3 subcarriers

of local ICI (i.e., D = 6). Here “complexity” is measured in real MAC operations

per decoded frame and is plotted on a log (base-L) scale, as in other near-ML TSA

studies (e.g., [69, 70]). For the TSAs, we plot the average number of operations

required to achieve the FER performance of Fig. 4.4, including that required for

PS-MCM demodulation, circular ordering, and fast MMSE-GDFE preprocessing.

For the reasons discussed in Section 3.2.1, both the SE-SpD and Fano algorithms

exhibit reasonable complexity at high SNR but explosive complexity at low SNR. As

expected, the M-algorithm has the same complexity at all SNRs. Interestingly, the

T-algorithm has almost the same complexity as the M-algorithm. Remarkably, the

adaptive T-algorithm yields DFE-like complexity at high SNR and complexity that

is no higher than that of the M- and T-algorithms at low SNR. As discussed in Sec-

tion 4.1.2, the adaptive T-algorithm’s excellent low-SNR complexity is a consequence

of its BrFS nature, while its excellent high-SNR complexity is a consequence of the

fact that it uses channel knowledge to intelligently guide the search process.

The D = 6 Viterbi complexity is much larger than that of the near-ML BrFS algo-

rithms and the MMSE-DFE. Furthermore, the Viterbi complexity plotted in Fig. 4.5

(i.e., L(2D + 1)Q(4D+1) = L3.39) is valid only when where D edge subcarriers are

inactive. For our case, where all subcarriers are active, the “tail-biting” Viterbi

approach proposed in Chapter 3 would be an admissible MLSD with complexity

10Since Viterbi complexity is invariant to the channel realization, the values reported in Fig. 4.5
apply equally well to CP-OFDM transmission, as was used in [1].
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L(2D + 1)Q(4D+1) = L5.10 (which is well outside the range of Fig. 4.5). In conclu-

sion, Fig. 4.5 shows that, by sacrificing a fraction-of-a-dB in performance relative to

MLSD, TSA can be implemented with near-MMSE-DFE complexity, even when all

subcarriers are active.
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Figure 4.5: Number of real MAC operations per frame for doubly selective PS-MCM
reception at (a) fDTc = 0.001; (b) fDTc = 0.003. Viterbi complexity above assumes
inactive edge subcarriers (as in [1]); for active subcarriers, the tail-biting version
would require L5.10 MACs/frame.
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4.2.3 Effect of Imperfect Channel Estimates

In Figures 4.6-4.7 we investigate the effect of channel estimation error on TSA

performance in DS-channel PS-MCM. For this, we use the rank-2NhK pilot-aided

Wiener estimator proposed in Section 4.1.3 with K = 2. With pilot-spacing P = 2,

Fig. 4.6 shows that imperfect channel estimates yield an SNR loss of about 1dB at

fDTc = 0.001 and about 2dB at fDTc = 0.003 for all the TSAs examined, i.e., MMSE-

DFE, the M-algorithm, the adaptive T-algorithm, and MLSD. For our parameter

choices, the channel estimation complexity reported in Section 4.1.3 translates into

about L2.4 real MACs per frame, which is comparable to the complexity of pre-

processed TSA. With pilot-spacing P = 3, Fig. 4.7 shows that imperfect channel

estimates yield a significantly higher SNR loss, especially at fDTc = 0.003, making

this choice impractical. A more thorough investigation of reduced-rank pilot-aided

Wiener channel estimation appears in [84].
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Figure 4.6: Performance of several TSAs operating on doubly selective PS-MCM with
rank-reduced pilot-aided estimates of local-ICI (i.e., D = 6) at (a) fDTc = 0.001; (b)
fDTc = 0.003, using pilot spacing P = 2
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Figure 4.7: Performance of several TSAs operating on doubly selective PS-MCM with
rank-reduced pilot-aided estimates of local-ICI (i.e., D = 6) at (a) fDTc = 0.001; (b)
fDTc = 0.003, using pilot spacing P = 3
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CHAPTER 5

NEAR-OPTIMAL NONCOHERENT EQUALIZATION

In this chapter, we approach the problem of near-optimal soft noncoherent equal-

ization via basis expansion (BE) channel modeling and soft TSA. Our use of generic

BE modeling [41, 58, 86] described in Chapter 2 allows an efficient and unified treat-

ment of different channels (e.g., time-variant ISI channels, frequency-variant ICI

channels, and sparse versions of those channels), and our use of soft TSA leverages

recent ideas from the flat-fading multiple-input multiple-output (MIMO) literature

(e.g., [87, 88]) that facilitate an efficient tradeoff between performance and complex-

ity. Furthermore, when BE channel modeling is used, we reason that TSA is more

appropriate than trellis-search, since channel parameters have a global rather than

local influence.

The contributions of this chapter are as follows. Within the framework of generic

BE channel modeling, we first derive the optimal soft noncoherent equalizer, which re-

quires the computation of a noncoherent metric for every possible bit sequence. Next,

we show that each these metrics can be recursively computed, meanwhile establishing

links to per-sequence BE-coefficient estimation. Due to the high complexity of opti-

mal equalization, we then propose a practical near-optimal equalizer based on the M-

algorithm, with O(NN2
b N2

H) complexity, where N denotes the block length and NbNH
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the number of BE coefficients. Taking a different approach, we then show that the

Bayesian EM (EMB) algorithm [28] can also be used to design practical near-optimal

BE-based soft noncoherent equalizers. For this, we first derive the EMB iteration,

which alternates between soft coherent MAP equalization and a particular form of

soft BE-coefficient estimation. For the former, we propose O(NNbNH)-complexity

TSA as an alternative to conventional trellis-based processing, and for the latter, we

propose a low-complexity (O(NN2
b N2

H)) sequential-Bayes scheme [83].

Within the existing literature, we are not aware of other sequential or EM-based

near-optimal soft noncoherent equalizers for BE-modeled DS channels that are suit-

able for turbo reception (apart from our preliminary work [89, 90]). However, BE-

based channel estimators have been used in non-turbo receivers, and they have been

combined in “ad hoc” ways with soft coherent equalizers for turbo reception, as de-

scribed below. In [30], Antón-Haro, Fonollosa, and Fonollosa proposed a scheme for

EM-based blind channel tracking in uncoded GMSK systems using a polynomial BE

channel model. Their scheme does not easily generalize to generic BE models, generic

codes, and pilot-aided transmission, though. In [52], El-Mahdy proposed a noncoher-

ent sequence detector which used the Viterbi algorithm with per-path BE-coefficient

tracking. It is not applicable to turbo reception, though, and BER performance

shows an error floor. In [91], Cui and Tellambura proposed a polynomial BE-based

sequence detection scheme for ICI-corrupted OFDM. Their technique uses an ad-hoc

alternation of (hard) equalization and (hard) channel estimation and is incompatible

with turbo reception. More recently [40], Fang, Rugini, and Leus combined a soft

coherent equalizer (based on linear MMSE [33]) with a soft BE-modelled channel es-

timator for turbo equalization of ICI-corrupted OFDM. Unlike our (EM-derived) soft
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BE-coefficient estimator, which applies BE in the frequency domain and costs only

O(NN2
b N2

H), they apply BE in the time domain, with a cost of O(N3). A related

turbo equalization/channel-estimation scheme for ICI-corrupted OFDM is the one

recently proposed by Liu and Fitz [36, 39]. It iterates between soft coherent equal-

ization, which uses a reduced-state approximation of optimal trellis-based MAP, and

soft channel estimation, which uses periodic insertion of OFDM symbols with 100%

pilot subcarriers, and SVDs, and requires ≈ KN2 operations, for very large K (e.g.,

K = 31360 in the simulations).

In Section 5.1 we describe the system model, in Section 5.2 the optimal soft

noncoherent equalizer and its sequential approximation, and in Section 5.3 the EM-

based equalizer. In Section 5.4 we discuss implementational details, in Section 5.5 we

present numerical results.

5.1 Basis Expansion Modeling

The equalizer employs an Nb-term BE model for the variation of the composite

channel over the block. Recalling (2.6), we rewrite the BE model with the dth “cyclic”

diagonal of H (j), i.e., h
(j)

d ,
[
[H (j)]0,−d, [H

(j)]1,1−d, . . . , [H
(j)]N−1,N−1−d

]T
, as

h
(j)

d = Bη
(j)

d , d = 0, . . . , NH − 1, (5.1)

where B ∈ CN×Nb is a matrix of basis vectors and η
(j)

d ∈ CNb is a vector of BE

coefficients. Note that the approximation in (5.1) can be made arbitrarily accurate

via large enough Nb. With single-carrier modulation, the BE models channel variation

in the time domain, so that Nb = ND suffices (with appropriate choice of B and α).

With multi-carrier modulation, the BE models channel variation in the frequency

domain, so that Nb = Nh suffices, with B being a truncated DFT matrix [41]. In
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either case, NbNH = NhND. Under the BE model (5.1), the received vector y(j) from

(2.6) becomes

y(j) = A(j)θ(j) + z(j), (5.2)

where θ(j)
, [η(j)T

0 , . . . , η(j)T
NH−1]

T ∈ CNbNH and

A(j) ,
[
D0(s

(j))B, . . . ,DNH−1(s
(j))B

]
. (5.3)

The receiver infers the information bits {b(j)
m } using the “turbo” principle: “soft”

information on the coded bits x(j), in the form of log-likelihood ratios (LLRs), is itera-

tively refined through alternating soft-equalization and soft-decoding steps, as shown

in Fig. 5.1. The equalizer’s task is to produce extrinsic LLRs given the observation

y(j) and the prior LLRs provided by the decoder (or, in the first turbo iteration, from

pilots).

soft non-
coherent
equalizer

soft-input
soft-output

decoder

Π

Π−1

y {b̂m}

Le(x|y)

La(x)

L(x|y)
+

+

−

−

Figure 5.1: Turbo receiver with soft noncoherent equalizer.

The equalizers we propose are “noncoherent” in that they treat the channel re-

alization θ(j) as unknown. They treat the statistics as known, however, and assume

that w(j) ∼ CN (0, σ2I) and θ(j) ∼ CN (θ̄
(j)

, Rθ) for full rank Rθ. The selection of

θ̄
(j)

and Rθ is discussed in Section 5.4.1.
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In Section 5.2, we describe the optimal noncoherent equalizer and a practical

implementation based on TSA, and in Section 5.3 we describe equalization based on

the Bayesian EM algorithm. Because the equalization procedure is invariant to block

index j, we suppress the “(j)” notation in the sequel.

5.2 Sequential Noncoherent Equalization

5.2.1 Optimum Soft Noncoherent Equalization

The log-likelihood ratio (LLR) of coded bit xk given y, i.e.,

L(xk|y) , ln
Pr[xk = 1|y]

Pr[xk = 0|y]
, k ∈ {0, . . . , Nsq − 1}, (5.4)

can be written in the form [87]

L(xk|y) = ln

∑
x:xk=1 p(y|x) exp lT x

∑
x:xk=0 p(y|x) exp lT x

, (5.5)

where l , [La(x0), . . . , La(xNsq)]
T such that La(xk) , ln(P [xk = 1]/P [xk = 0]) is the

a priori LLR of xk. The “extrinsic” LLR Le(xk|y) , L(xk|y)−La(xk) then becomes

Le(xk|y) = ln

∑
x:xk=1 exp µ(x)

∑
x:xk=0 exp µ(x)

− La(xk) (5.6)

using the noncoherent MAP sequence metric

µ(x) , ln p(y|x) + lT x. (5.7)

Since θ and z in (5.2) are both Gaussian distributed, we have

y|x ∼ CN (Aθ̄, ARθA
H + σ2IN), (5.8)

where A depends on the coded bits x through the corresponding symbols s. Thus,

with Φ , ARθA
H + σ2IN , we get

µ(x) = −‖y − Aθ̄‖2
Φ

−1 − ln(πN detΦ) + lT x. (5.9)

69



The sequence metrics µ(x) can be evaluated using an Ns-stage Q-ary tree, where,

the partial metrics

µ(xn) , ln p(yn|xn) + lT
nxn (5.10)

are evaluated recursively. In (5.10), xn , [xT
0 , . . . , xT

n ]T with xi , [xiq, . . . , xiq+q−1]
T ,

ln , [lT0 , . . . , lTn ]T with li , [La(xiq), . . . , La(xiq+q−1)]
T , and yn , [y0, . . . , yn]

T . Note

that xi and li correspond to the ith symbol. The recursion is derived in Appendix B.1

and summarized in Table 5.1, where bH
n denotes the nth row of B. It is straightforward

to show that each recursion consumes N2
b N2

H + 3NbNH + 7 multiplications.

Table 5.1: Fast recursion for µ(xn)
from the old quantities:

µ(xn−1), θ̂n−1, Σ−1
n−1, [sn−1, . . . , sn−NH+1],

and the inputs:
yn, sn, ln, xn,

calculate the new quantities:

µ(xn), θ̂n, Σ−1
n , [sn, . . . , sn−NH+2],

using the recursion:
an = [snb

H
n , · · · , sn−NH+1b

H
n ]H

dn = Σ−1
n−1an

αn = (1 + aH
n dn)−1

en = yn − aH
n θ̂n−1

Σ−1
n = Σ−1

n−1 − αndndH
n

µ(xn) = µ(xn−1) − αn

σ2 |en|2 + ln( αn

πσ2 ) + lTnxn

θ̂n = θ̂n−1 + αnendn,
initializing (iff n = 0) with:

µ(x−1) = 0, θ̂−1 = θ̄, Σ−1
−1 = σ−2Rθ.

In the Table 5.1, the quantity θ̂n can be written (see Appendix B.1):

θ̂n = θ̄ + RθA
H
n Φ−1

n (yn − Anθ̄), (5.11)
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which can be recognized as the xn-conditional MMSE estimate of θn from yn. Using

this fact, Appendix B.2 shows that

µ(xn) = − 1
σ2‖yn − Anθ̂n‖2 + lTnxn − ln(πN detΦn)

− ‖θ̂n − θ̄‖2
R−1

θ
. (5.12)

From (5.12), we see that the noncoherent MAP metric µ(x) is the sum of a “coherent

MAP metric” − 1
σ2‖yn − Anθ̂n‖2 + lTnxn, a “bias term” − ln(πN detΦn), and a term

−‖θ̂n − θ̄‖2
R−1

θ

which penalizes the deviation of the conditional estimate θ̂ from the

prior statistics θn ∼ CN (θ̄, Rθ). Thus, the recursive MAP sequence metric evaluation

implicitly uses per-survivor processing (PSP) [47].

5.2.2 Practical Sequential Soft Noncoherent Equalization

From (5.6), computation of exact soft outputs Le(xk|y) is impractical because it

requires evaluating and summing µ(x) for all 2Nsq hypotheses of x. However, we

expect the set {exp µ(x)} to be dominated by a few “significant” bit vectors x, which

we collect into the set S. Thus, we reason that near-optimal soft outputs will result

from restricting the summations in (5.6) to x ∈ S, i.e.,

Le(xk|y) ≈ ln

∑
x∈S∩{x:xk=1} exp µ(x)

∑
x∈S∩{x:xk=0} exp µ(x)

− La(xk). (5.13)

If desired, the “max-log” approximation
∑

x:xk=x exp µ(x) ≈ maxx:xk=x µ(x) could be

applied for further simplification:

Le(xk|y) ≈ max
x∈S∩{x:xk=1}

µ(x) − max
x∈S∩{x:xk=0}

µ(x)−La(xk). (5.14)

To find the significant bit vectors S and their metrics {µ(x)}x∈S , we suggest

a suboptimal breadth-first TSA such as the M-algorithm or the T-algorithm [66].
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The M-algorithm is particularly convenient because it yields a complexity that is

invariant to channel realization and SNR. With search breadth M and the recursion

in Table 5.1, soft noncoherent equalization consumes only O(M2qNN2
hN2

D) operations

(since NbNH = NhND and |S| = 2q). Furthermore, when the symbol constellation S

satisfies a multi-level bit mapping, the complexity can be made nearly independent

of q, as discussed in [88], which is useful when q is large.

Note that S ∩ {x : xk = 1} or S ∩ {x : xk = 0} may be empty for some k, which

would make Le(xk|y) infinite. For this, a simple solution is to clip Le(xk|y) [88]. Note

also that (arbitrarily placed) pilot symbols are easily incorporated by setting their a

priori bit LLRs li to very large values.

5.3 Equalization via the Bayesian EM Algorithm

5.3.1 Exact Bayesian-EM Soft Equalization

In this section, we propose a soft noncoherent equalizer based on the Bayesian

EM (EMB) algorithm [28]. Given the iteration-i parameter estimate θ̂[i], the “incom-

plete data” y, and the “missing data” s, the EMB algorithm specifies the following

iteration-(i+1) parameter estimate (for i ≥ 1):

θ̂[i+1] , arg max
θ

E
{
ln p(y, s|θ)

∣∣∣y, θ̂[i]
}

+ ln p(θ). (5.15)

As before, we treat θ ∼ CN (θ̄, Rθ). It is well known that the EMB estimates will

converge to θ̂MAP , arg maxθ p(θ|y) iff11 the initialization θ̂[0] is within the region-

of-convergence of the global maximum of p(θ|y). The choice of θ̂[0] is discussed in

the sequel.

11Since p(θ|y) is generally not unimodal in θ, the EM algorithm may converge to a local maximum
other than the global maximum.
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Due to the independence between data and channel, p(y, s|θ) = p(y|s, θ)p(s),

where y|s, θ ∼ CN (Aθ, σ2I). Plugging the resulting pdfs into (5.15) and simplifying,

we get

θ̂[i+1] = arg min
θ

E
{
‖y − Aθ‖2

∣∣∣y, θ̂[i]
}

+ σ2‖θ − θ̄‖2
R−1

θ
. (5.16)

Zeroing the partial derivative w.r.t θ̂ gives

θ̂[i+1] =
(
C + σ2R−1

θ

)−1(
ĀHy + σ2R−1

θ θ̄
)

(5.17)

= θ̄ +
(
C + σ2R−1

θ

)−1(
ĀHy − Cθ̄

)
(5.18)

for Ā , E{A |y, θ̂[i]} and C , E{AHA |y, θ̂[i]}. Recalling (5.3), we can write

Ā =
[
D0(m)B, . . . ,DNH−1(m)B

]
(5.19)

C = ĀHĀ +




BHD0(v)B 0
. . .

0 BHDNH−1(v)B


 , (5.20)

using the vector m , [m0, . . . , mN−1]
T of posterior means mn , E{sn|y, θ̂[i]}, and

the vector v , [v0, . . . , vN−1]
T of posterior variances vn , E{|sn − mn|2 |y, θ̂[i]},

computed as

mn =
∑

s∈S

s Pr[sn = s|y, θ̂[i]] (5.21)

vn =
∑

s∈S

|s − mn|2 Pr[sn = s|y, θ̂[i]]. (5.22)

In (5.21)-(5.22), the symbol probabilities {p(sn|y, θ̂[i])}N−1
n=0 can be calculated from

the posterior bit LLRs

L(xk|y, θ̂[i]) , ln
Pr[xk = 1|y, θ̂[i]]

Pr[xk = 0|y, θ̂[i]]
. (5.23)
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With QPSK (i.e., S = {±1±j}) for example, we find that mn = tanh{1
2
L(x2n|y, θ̂[i])}+

j tanh{1
2
L(x2n+1|y, θ̂[i])} and vn = 2 − |mn|2. The posterior LLRs can be written as

L(xk|y, θ̂[i]) = ln

∑
x:xk=1 exp µ(x|θ̂[i])

∑
x:xk=0 exp µ(x|θ̂[i])

, (5.24)

using the coherent MAP sequence metric (recall (5.12)):

µ(x|θ̂[i]) , ln p(y|x, θ̂[i])p(x) (5.25)

= − 1
σ2‖y − Aθ̂[i]‖2 + lT x. (5.26)

We identify (5.18)–(5.22) as the “M-step” and (5.24)–(5.26) as the “E-step” of

the EM recursion. The M-step updates the channel estimate θ̂[i+1] using the latest

posterior bit LLRs {L(xk|y, θ̂[i])}NsQ−1
k=0 , and the E-step updates the posterior LLRs

using the latest channel estimate. In this way, the EM-based noncoherent equalizer

iterates between “soft” channel estimation and soft coherent equalization. The LLR

inputs La(xk) for the first EM iteration (i=0) come from the decoder, and the LLRs

outputs L(xk|y, θ̂[K−1]) from the last EM iteration (i = K−1) are passed to the

decoder.

Regarding the choice of θ̂[0], observe that the simple choice θ̂[0] = 0 leads to

µ(x|θ̂[0]) = − 1
σ2‖y‖2 + lT x, of which the constant term − 1

σ2 ‖y‖2 cancels in (5.24),

leading to L(xk, y, θ̂[0]) = La(xk), which is a reasonable choice for 0th iteration poste-

riors. The 0th iteration posteriors can be improved, however, through a more informed

choice of θ̂[0]. For example, θ̂[0] could chosen as the MMSE estimate of θ based on

pilots in the current and neighboring blocks. An even more informative choice for θ̂[0]

would be the LMMSE estimate of θ based on previously demodulated symbols, in ad-

dition to pilots, in the current and/or neighboring blocks. The details are essentially

the same as those discussed for the selection of θ̄ in Section 5.4.1.
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5.3.2 Practical EM-Based Soft Noncoherent Equalization

One can observe two potential challenges for practical implementation of the EM-

based equalizer:

1. calculation of the posterior LLRs in (5.24), and

2. the (NbNH × NbNH) matrix inversion in (5.18).

Recall that (5.24) is essentially coherent MAP equalization, a well-understood

problem. One option is to generate an estimate of H from θ̂[i] and then to leverage

the NH-banded structure of H via the forward-backward algorithm [22], consuming

O(NHN2q2NH) operations. Another option is to compute approximate LLRs using

only the “significant” bit vectors found during a breadth-first TSA, as proposed for

the noncoherent case in Section 5.2.2. The coherent tree-search is simpler, though:

comparing the coherent metric (5.26) to the noncoherent metric (5.12), we see that

the coherent metric update can skip the calculation of dn, αn, Σ−1
n and θ̂n, and set

µ(xn|θ̂[i]) = µ(xn−1|θ̂[i]) − σ−2|en|2 + lTnxn, thus consuming only O(M2qNNbNH)

operations per EM iteration. This will be cheaper than the forward-backward for

large enough NH . (The max-log approximation, discussed after (5.13), could also be

employed here.)

We now propose an approach to circumvent the matrix inversion in (5.18): a

sequential method and an iterative method. If we assume that v ≈ 0, then C ≈ ĀHĀ

and (5.18) becomes

θ̂[i+1] ≈ θ̄ +
(
ĀHĀ+σ2R−1

θ

)−1
ĀH(y−Āθ̄), (5.27)

facilitating the application of the sequential-Bayes recursion summarized in Table 5.2,

with complexity O(NN2
hN2

D). We justify v ≈ 0 by noting that, as the turbo iterations

75



proceed, the symbol estimates should become more reliable, thereby reducing the

variances vn. (In Section 6.4, we demonstrate numerically that this approximation is

benign.)

Table 5.2: N -step computation of θ̂[i+1]

Σ−1
−1 = σ−2Rθ and θ̂−1 = θ̄

for n = 0, 1, 2, . . . , N − 1,
an = [mnbH

n , · · · , mn−NH+1b
H
n ]H

dn = Σ−1
n−1an

αn = (1 + aH
n dn)−1

en = yn − aH
n θ̂n−1

Σ−1
n = Σ−1

n−1 − αndnd
H
n

θ̂n = θ̂n−1 + αnendn

end

θ̂[i+1] = θ̂N−1

5.3.3 Refinement of the Prior

Though (5.26) specifies the use of the priors {La(xk)}Nsq−1
k=0 at every EM iteration,

we have observed that performance improves significantly if the most recently calcu-

lated posteriors {L(xk|y, θ̂[i−1])}Nsq−1
k=0 are used in place of the priors in (5.26) for

EM iterations i ≥ 2.

5.4 Implementation Details

5.4.1 Choice of θ̄
(j)

and Rθ

Recall that both the sequential noncoherent (SNC) equalizer of Section 5.2 and

the EMB equalizer of Section 5.3 employ the channel prior θ(j) ∼ CN (θ̄
(j)

, Rθ). There
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are several methods to choose θ̄
(j)

. In the simplest case, one could assume Rayleigh

fading and set θ̄
(j)

= 0. However, improved performance generally results when θ̄
(j)

is

more informative. Thus, one might instead set θ̄
(j)

equal to the MMSE estimate of θ(j)

based on pilots in the current and neighboring blocks. This estimator would be linear

and a function of the assumed correlation12 between θ(j) and {θ(i)}i6=j and, for a given

pilot pattern, could be computed offline and implemented using only O(NbNHNP )

operations, where NP denotes the total number of pilot observations used for the

estimate. Reduced-rank techniques can be used to further reduce the complexity.

Details can be found in [84].

A yet more informative choice for θ̄
(j)

would be when, in addition to pilots, the

previously estimated symbols {s(i)}i6=j in current13 and/or neighboring blocks are

used to compute the LMMSE estimate of θ(j). In this case, the estimator cannot be

computed in advance and so estimation would be potentially more complex than in

the pilot-only case. However, iterative approximation techniques shown in Table 5.2

could be used to avoid matrix inversion.

The simplest choice of the channel covariance Rθ would be based on assumed

worst-case spreading (e.g., maximal Doppler spread). While, conceivably, pilots

and/or previously demodulated symbols could be used to estimate Rθ, our numeri-

cal experiments have not suggested that performance improvements result from this

approach.

12The estimation would also be a function of the assumed mean of θ(j), which for this purpose we
could set to zero.

13Soft symbol estimates for the current block are available only after the first turbo iteration.
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5.4.2 Pilot and Guard Patterns

In Section 7.1, we assumed that the last NH −1 symbols in s are zero-valued

guards, so that H acts causally on the first N−NH +1 symbols. With this guard,

the last NH − 1 columns of H become inconsequential; zeroing them (w.l.o.g) yields

a lower-triangular NH-banded matrix. The banded property was exploited for both

noncoherent and coherent TSA.

In choosing the pilot pattern, one goal is that the pilots are maximally informative

about the BE parameters θ, e.g., that they minimize the MMSE of the MMSE-optimal

θ estimate. For DS channels whose time-variation obeys a complex-exponential BE

model [86], and for estimators which use only pilots within the current block, the

MMSE-optimal pilot pattern has been derived for single-carrier zero-padded schemes

in [54], and for general affine precoded schemes (including multi-carrier schemes)

in [92], showing similarity to earlier heuristic proposals in, e.g., [93]. Another goal is

that the pilot pattern does not introduce too much redundancy, i.e., that the overall

pilot/data scheme attains the maximum achievable rate. For DS channels whose

time-variation obeys a complex-exponential BE model, the maximum achievable rate

was derived in [94], in addition to a pilot-based system which achieves this rate. The

optimal pilot pattern for a practical suboptimal transmitter and receiver, however, is

difficult to derive in closed form.

We now discuss the interaction of pilots and the noncoherent TSA performed by

the SNC equalizer. For the optimal MAP equalizer discussed in Section 5.2.1, a single

pilot symbol is sufficient to resolve the inherent channel/data phase ambiguity of the

noncoherent metric µ(x). For the practical SNC equalizer based on suboptimal TSA,

however, we want that the per-survivor channel estimates θ̂n are well adjusted before
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the suboptimal TSA prunes paths. For this reason, in-block pilots placed near the

beginning of the block are especially effective. As discussed earlier, pilots outside

the demodulation block can be leveraged simply by initializing θ̂n (i.e., by setting

θ̄) as an MMSE estimate of θ based on those pilots. Pilots are especially important

during the first turbo iteration, when the in-block a priori data LLRs are zero; for

later turbo iterations, the a priori data LLRs returned by the decoder help to “guide”

the suboptimal TSA.

For the EMB noncoherent equalizer of Section 5.3, pilots can be leveraged both

through the choice of the prior mean θ̄ as well as the initialization θ̂[0], as previously

discussed.

Based on all of the aforementioned considerations, we use the pilot patterns shown

in Fig. 5.2(b)-(c) for the numerical experiments in Section 5.5. In both single- and

multi-carrier cases, we use a total of Np pilot/guards per N -length block. In the

single-carrier case, each block contains Np−Nh +1 non-zero leading pilots and Nh−1

zero-valued guards. In the multi-carrier case, each block contains L ≥ 1 pilot/guard

clusters, where each cluster contains ND−1 leading14 zero-valued guards and Np/L−

ND + 1 trailing non-zero pilots. The cluster pattern repeats every P = N/Np blocks,

and the cluster locations are staggered15 so that each subcarrier appears in a cluster

exactly once every P blocks.

14Here, we use only leading guards because the frequency-domain channel is causal. When
Np = NhND and L = Nh, this multi-carrier pattern is equivalent to the “Kronecker delta” pat-
tern discussed in [92, 93] for (non-causal) frequency-domain channels.

15Note that, by cyclically the elements of both y and s, it is possible to place NH −1 guards at the
end of the block while maintaining the “circularly banded” structure of H illustrated in Fig. 5.2(a).

79



fr
eq

time

ti
m

e

... ...... ...

data
pilot
guard

a) b) c)

Figure 5.2: For N = 32, NH = 3, and Np = 8, illustration of a) H (j) support, b)
single-carrier pilot pattern, and c) multi-carrier pilot pattern with P = 4 and L = 2.

5.4.3 Complexity

The computation complexity of the proposed equalizers (per turbo iteration) is

summarized in Table 5.3, where K denotes the number of EM iterations. When

interpreting these complexities, it is important to keep in mind that the block size N

is typically chosen to be a small multiple of the channel length Nh (e.g., N ∼ 4Nh).

In this case, the complexities of the Table 5.1-based SNC-equalizer as well as the

Table 5.2-based EM-equalizer, grow cubically with the channel length Nh. While we

should not forget that the complexity EM-based equalizers scales with number of EM

iterations, K, we show in Section 5.5 that K is usually much less than 10.
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Table 5.3: Summary of computational complexity
Sequential algorithm using Table 5.1 O(M2qNN2

hN2
D)

EM-based algorithm using Table 5.2 O(KNN2
hN2

D)

5.5 Numerical Results

For the numerical experiments, Jakes method [95] was employed to generate re-

alizations of a wide-sense stationary uncorrelated (WSSUS) Rayleigh fading channel

with temporal autocorrelation ρm = J0(2πfDTsm) and uniform delay-power profile

σ2
l = 1/Nh Here, fD denotes the normalized single-sided Doppler spread and J0(·) the

0th-order Bessel function of the first kind. The values fDTs = 0.002 and Nh = 3 were

assumed unless otherwise noted.

The transmitter employed rate-R = 1
2

irregular low density parity check (LDPC)

codes with average column-weight 3, generated by the publicly available software [96].

The coded bits were mapped to QPSK symbols (i.e., q=2) and partitioned into data

blocks of length Ns, each of which was merged with Np pilot/guards, as discussed

in Section 5.4.2, to form a transmission block of length N = Ns+Np. So that each

codeword spanned J = 32 data blocks, (JqNs, RJqNs)-LDPC codes were employed.

Throughout, we used block length N = 64 with Np = 8 pilot/guards per block.

Though our soft noncoherent equalizers can be applied to either single- or multi-

carrier communication, we mainly present single-carrier experiment here and a brief

multi-carrier experiment follows in the later part of the section, and more realistic

multi-carrier experiments for ncT-BE will be presented in Chapter 6. Our single-carrier

soft noncoherent equalizer used the Karhunen Lóeve (KL) BE [58] with Nb = 3 to
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model channel variation. In other words, B was constructed column-wise from the

Nb principal eigenvectors of Rh , E{hdh
H
d } and diagonal Rθ was constructed from

the Nb principal eigenvalues of Rh. Since the channel was Rayleigh, we set θ̄ = 0

as the channel mean for the first turbo iteration. The M-algorithm used the search

parameter M = 64, where the LLR magnitudes were clipped to 2.3 for noncoherent

TSA (ncT) based LLR and 8 for coherent TSA (cT) based LLR. The LDPC decoder

by MacKay and Neal [97] was used with a maximum of 60 LDPC iterations, and

equalization/decoding were iterated using a maximum of 8 turbo iterations. We

specify the maximum number of iterations because the receiver breaks out of both

the LDPC and turbo loops as soon as the LDPC syndrome check indicates error-free

decoding. The initialization of channel parameter θ̂[0] for the EM algorithm was

done by MMSE estimation as in (5.27) but with only pilots. The iteration number of

EM was set to K = 3, unless otherwise noted. Through experiments, the simplified

EM-recursion in Table 5.2 was used.

In this section, to precisely refer to the algorithms, we use a naming convention

as follows. The proposed sequential algorithm is denoted as

• noncoherent TSA coupled with BE-channel estimation: “ncT-BE,”

and the proposed EM-based algorithm as

• coherent TSA coupled with soft BE-channel estimation after K iterations:

“(cT+sBE)K .”

5.5.1 Effect of System Parameters

Figure 5.3 shows coded BER of sequential algorithm (ncT-BE) under different

choices of the search width for M-algorithm: M ∈ {16, 32, 64, 128}. The figure shows
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that performance increases with M , although gains from the use of M > 64 are quite

small (e.g., ≈ 0.2 dB). Since EM-based algorithm ((cT+sBE)3) shows almost the same

traces, we omit them for brevity.
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Figure 5.3: Coded BER vs. Eb/No for ncT-BE with M-algorithm parameter M ∈
{16, 32, 64, 128}.

In Figure 5.4, traces for coded BER versus the maximum number of turbo iter-

ations for ncT-BE and (cT+sBE)3 algorithms are shown. There, ncT-BE shows fast

convergence, i.e., even at 4th iteration the performance almost saturates, showing

small gain toward 8th iteration. The performance of (cT+sBE)3, however, improves
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very slowly along the iterations. With full 16 iterations, it outperforms that of ncT-

BE. The slow convergence of (cT+sBE)K along the iterations is more prominent on

higher Doppler, which will be seen in Section 5.5.2.
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Figure 5.4: BER vs. Eb/No for turbo iterations ∈ {1, 4, 8}. ncT-BE and (cT+sBE)3

schemes were tested.

Figure 5.5 shows the effect of Np, the number of pilots per block, on coded BER

of ncT-BE. As predicted in Section 5.4.2, performance increases with Np until Np = 6,

after which it saturates and with Np = 12 the performance starts to degrade. This

is because beyond the saturation point the improvement in channel estimation error
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was canceled out by the penalty on Eb/No, as too much energy on pilot was invested

for small improvement in (implicit) channel estimate. Theoretically, noncoherent

equalizers need no pilot or at least one (for symmetric constellations) to work. Thus,

we demonstrate the ability of ncT-BE in that it can run with only one pilot symbol.

It doesn’t show severe performance degradation, e.g., just 1.5 dB away form that of

Np = 6 with almost the same slope of error curve (i.e., diversity order).
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Figure 5.5: ncT-BE algorithm’s BER vs. number of pilots ∈ {1, 3, 6, 9, 12}.
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5.5.2 Performance Comparison

In Fig. 5.6, the soft noncoherent equalizers (ncT-BE and (cT+sBE)K) proposed in

Section 5.2 and Section 5.3 were compared to several other soft noncoherent equaliz-

ers:

• coherent TSA coupled with exact soft BE-channel estimation after K iterations:

“(cT+esBE)K ,”

• coherent TSA using a soft BE-channel estimate non-iteratively : “cT+sBE,”

• coherent TSA using a soft Gauss-Markov estimate non-iteratively : “cT+sGM,”

and two genie-aided performance bounds:

• coherent TSA based on a perfect estimate of the channel H : “cT+pH,”

• coherent TSA based on a BE-channel estimate constructed using perfect LLR

feedback : “cT+pllrBE.”

We now elaborate on the procedures cT, sBE, esBE, sGM, pH, and pllrBE mentioned

above. As discussed in Section 5.3.2, coherent TSA (cT) uses the M-algorithm to

sequentially maximize the metric ln p(x|y, Ĥ) for externally supplied Ĥ—a direct

application of the MIMO technique [88]. Soft BE-channel estimation (sBE) uses the

simplified EM-recursion (5.27) and Table 5.2, while exact soft BE-channel estimation

(esBE) uses the “exact” recursion (5.18). Finally, soft Gauss-Markov channel estima-

tion (sGM) refers to the Kalman technique proposed in [37], for which we employed

a second-order Gauss-Markov (GM) model.

Figure 5.6 shows that the proposed (cT+sBE)3 approach, a simplification of the

expensive (cT+esBE)3 approach, gives almost identical performance. Furthermore,
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the proposed ncT-BE and (cT+sBE)3 performs only 2 dB from the perfect-CSI bound

cT+pH and only 1.7 dB from the perfect-LLR-feedback bound cT+pllrBE. The traces

cT+sBE and cT+sGM can be used to compare between the use of BE versus GM

channel models; it can be seen that they are almost the same except high SNR, where

the BE approach shows slightly better performance. To see the gain from multiple

EM iterations, one can compare (cT+sBE)3 (where K = 3) to cT+sBE (where K = 1);

about 0.5 dB improvement can be observed. No additional gains were observed for

K > 3.

Figure 5.7 shows the performance under very quickly varying channel with fDTs =

0.005. ncT-BE still performs well with 3 dB gap from the cT+pllrBE bound, also outper-

forming all other schemes considered in this simulation. However, (cT+sBE)3 performs

bad indicating worse error slope. As we indicated in Fig. 5.4, (cT+sBE)3 converge

slowly so that 3 LDPC- and 8 turbo-iterations were not sufficient, underperforming to

cT+sGMṪhus, for comparison, we show additional traces for (cT+sBE)6 and cT+sBE

with doubled (16) turbo iterations, which display much improved performance to

match cT+sGM with 16 turbo iterations.

5.5.3 Robustness to Statistical Mismatch

Though the proposed noncoherent equalization schemes operated without knowl-

edge of the channel state, it did assume knowledge of channel distribution in the form

of the BE coefficient covariance matrix Rθ. We now examine the robustness of the

schemes to knowledge of Doppler spread fDTs, the most important parameter in the

construction of Rθ, by comparing the required Eb/No to achieve 10−2 BER versus fDTs

performance of the equalizers with perfect knowledge of fDTs to ones which assume
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Figure 5.6: BER vs. Eb/No for various equalization schemes under fDTs = 0.002.
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Figure 5.7: BER vs. Eb/No for various equalization schemes under very high Doppler
with fDTs = 0.005.
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the fixed value fDTs = 0.002. Figure 5.8 demonstrates that the proposed equalization

scheme is robust to mismatch in Doppler-spread: the “mismatched” scheme stays

close to the “matched” scheme over the entire range of tested Doppler spreads. Note

that, as fDTs decreases, the BER for the matched scheme increases due to a lack of

diversity; Likewise, the BER for the matched scheme increases sharply with fDTs due

to the limitations of the Nb = 3 BE model. Similar behavior was observed for soft

noncoherent equalizers in multi-carrier transmission in [98].
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Figure 5.8: Required Eb/No to achieve 10−2 BER vs. true fDTs for fDTs-matched and
fixed-fDTs (i.e. mismatched) reception.

90



5.5.4 Multi-carrier Transmission

We tested the noncoherent equalization algorithms considered in Section 5.5.2

under the multi-carrier transmission scenarios. As described in Section 7.1, the multi-

carrier transmission scheme employed transmission pulse shaping as in [5] to confine

the frequency-domain channel matrix to be banded, so that NH = ND and Nb =

Nh with B being the truncated DFT matrix. The receivers for the multi-carrier

transmission were equipped with pilot pattern as described in [98]. In this experiment,

the length of the channel impulse response was set to unchanged (Nh = 3) and the

frequency spread (ND) was set to 3. The BE covariance matrix Rθ was constructed

as in [98]. The EM iteration number was set to K = 6. Experiments were performed

on two different scenarios on the pilot configuration: In the first scenario, number

of pilots was set to Np = 16 and a single (L = 1) received symbol was taken for

the noncoherent equalization. In the second scenario, Np = 9 pilots were set and at

the receiver not only the current received symbol, but also three adjacent received

symbols (e.g., y(j−1), . . . , y(j+2)), thus total of L = 4 received symbols, were taken

for s(j)’s equalization. In the later scenario, the receiver effectively used as many

as LNp = 36 pilots for a single equalization. For the comparison to the GM-based

channel model, cT+sGM algorithm was implemented for the frequency domain to

track the channel variation along the frequency axis (not along the time axis).

The BER performance traces of the noncoherent equalizers under the first scenario

(L = 1) are shown in Fig. 5.9. The turbo iteration was set to 16 for all equalizers.

ncT-BE outperforms others, displaying neither error floor (cT+sGM) nor insufficient

error slopes ((cT+sBE)6 and cT+sBE). The bad performance of EM-based algorithms

and GM-based algorithm is caused by noisy initial channel estimate. To see the
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impact of this on the performance, in the next experiment we increased the effective

pilot numbers, thereby improving the quality of the initial channel estimate.

In Fig. 5.10, we can see that with multiple (L = 4) symbols, the equalizers perform

much better. Here, the turbo iteration was set as half (8) as that of the previous

scenario. Note that (cT+sBE)6 outperformed ncT-BE slightly and cT+sGM by 2 dB.

Three BE-based noncoherent equalizer algorithms performed almost the same in this

experiment.

Throughout the experiments in this section, the ncT-BE consistently performed

well regardless of the Doppler, transmission scheme and iteration number. (cT+sBE)K

has lower complexity, and, in the easy channels (e.g., with fDTs = 0.002 with sufficient

pilots) it performed as well as ncT-BE, whereas in the difficult channels (e.g., with

fDTs = 0.005 and/or with insufficient pilots) it underperformed.
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Figure 5.9: BER vs. Eb/No for various frequency-domain equalization schemes under
fDTs = 0.002 using L = 1.
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Figure 5.10: BER vs. Eb/No for various frequency-domain equalization schemes under
fDTs = 0.002 using L = 4.
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CHAPTER 6

APPLICATION TO UAC COMMUNICATION

The underwater acoustic channel (UAC) has been referred to as “quite possi-

bly nature’s more unforgiving wireless medium” [99]. The physical characteristics

of the UAC are highly dependent on the distance and relative movement between

the transmitter and receiver; the proximity, roughness, and motion of the scattering

surfaces; and the presence of ambient interference. However, the factors that pose

the primary challenges for data communication over the UAC can be summarized as

simultaneously large delay- and Doppler-spreads, limited bandwidth, and limited re-

ceiver complexity. These challenges can be understood as follows. Large delay-spread

implies that single-carrier communication will be plagued by inter-symbol interfer-

ence (ISI) that, for practical signal bandwidths, spans hundreds of symbols. Large

Doppler-spread then implies that this ISI response will change quickly in time. Since

optimal mitigation of this long and quickly-varying ISI response becomes computa-

tionally infeasible, practitioners have resorted to simple sub-optimal strategies such

as the adaptive decision-feedback equalization (DFE) [100, 101]. However, these im-

plementable single-carrier techniques perform far short of optimal and fail altogether

in very highly spread environments such as the surf zone [102].
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As an alternative, multi-carrier modulation (MCM) has been proposed to increase

the symbol interval and thereby decrease the ISI span. While a number of MCM

proposals for the UAC have been made over the years (see, e.g., the recent work

[103–105]), none seem to have been successful enough to displace single-carrier/DFE

as the practical method of choice. The primary difficulty in applying MCM to the

doubly dispersive UAC is that, as the symbol interval is increased (to reduce ISI span),

the subcarrier spacing must be decreased (to preserve data rate and transmission

bandwidth), making the system more susceptible to Doppler-spread-induced inter-

carrier interference (ICI). Thus, barring a decrease in spectral efficiency, ISI reduction

comes at the expense of ICI escalation.

A close look at recent MCM proposals helps to illuminate the challenges in ap-

plying MCM to the UAC. The works [103] and [104], for example, proposed classical

ZP-OFDM signaling schemes assuming that the Doppler-spread was small enough to

induce negligible ICI. For these schemes, the universal ICI bound16 in [106] implies

that an ICI power of −25 dB (which we consider to be “negligible”) occurs when

fDTs = 0.03, where fD denotes the single-sided Doppler-spread and Ts the MCM-

symbol duration. Since Ts was chosen as 7Th (as 3.4Th) in [103] (in [104]), where

Th denotes delay-spread, we deduce that these schemes can handle UACs with a

delay/Doppler-spread product of at most fDTh = 0.004 (fDTh = 0.009). The surf-

zone channels17 described in [102], however, yield fDTh ≈ 0.1, which is 25× (10×) as

severe. As another example, in the non-traditional MCM approach [105], the symbol

length was chosen shorter than that needed for perfect ISI-suppression, in order to

16The analysis in [106] confirms that this bound is tight for fDTs = 0.03.

17For these channels it was found that fD ≈ 15 Hz and Th ≈ 7 ms.
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tolerate high Doppler-spread while keeping ICI negligible. The resulting ISI-span was

short enough to enable the use of sophisticated joint estimation/detection techniques

(i.e., LMS/Viterbi per-survivor processing [47]), which were shown to significantly

outperform the traditional adaptive DFE. But [105] only demonstrated the ability to

handle fDTh = 0.0035 via simulation and fDTh ≈ 0.002 experimentally, which are over

30 times milder than the surf-zone channels discussed in [102]. Thus, the literature

seems to fall short of an MCM scheme that is suitable for communication over highly

spread UACs.

The general problem of communicating over doubly dispersive channels, i.e., those

with simultaneously large delay and Doppler spreads, has received significant atten-

tion from theoreticians over the last two decades. Most of the theoreticians have

approached this problem through the design of MCM pulse-shapes which minimize

total ISI/ICI power (e.g., [9, 107–109]), with the goal of making ISI/ICI negligible.

But, even with optimized pulses, ISI/ICI remains18 non-negligible for channels whose

delay/Doppler product fDTh is commensurate with that of the surf-zone—a funda-

mental consequence of the Balian-Low theorem from Gabor theory [9]. This fact led

the authors to propose a non-traditional approach in which a small ICI span (e.g., 1

or 2 subcarriers) is tolerated and MCM pulse shapes are designed to minimize resid-

ual ISI/ICI power [5]. In this case, near-perfect residual-ISI/ICI suppression can be

accomplished without loss of spectral efficiency, and high-performance dominant-ICI

mitigation can be accomplished with low complexity. In this paper, we discuss how

such an approach can be applied for communication over the UAC.

18The ISI/ICI power is significant unless the MCM subcarrier/symbol spacing is increased to
about twice the Nyquist spacing, thereby incurring a significant decrease in spectral efficiency which
would be very undesirable for the bandwidth-limited UAC.
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The aforementioned ISI/ICI mitigation schemes require (implicitly or explicitly)

accurate channel state information (CSI). Maintaining this CSI is especially difficult

when the channel is doubly dispersive, due to the typically large number of channel

coefficients and their fast rate-of-change. Pilot-aided transmission (PAT) [110] is

a practical means of aiding data reception in the presence of channel uncertainty.

PAT is often used with decoupled channel-estimation/data-decoding, where a channel

estimate is first obtained via pilots and later used for coherent data decoding. To

minimize the MMSE of pilot channel estimates, it is necessary to keep the channel

estimates free of interference from unknown data [92] (especially at high SNR), though

doing so with a doubly dispersive channel requires time/frequency guards have been

shown to sacrifice achievable spectral efficiency [111]. When PAT is used with joint

estimation/decoding (JED), however, there is no need to separate pilots and data,

allowing spectrally efficiency communication over the doubly dispersive channel [111].

These facts motivate the consideration of PAT with JED for the UAC.

As one would expect, the complexity of optimal JED is prohibitive. Practical

JED requires the use of simplified channel models and approximations of the opti-

mal maximum a posteriori (MAP) decoding metric. For example, it is common to

model the channel as first-order Gauss-Markov and to apply trellis-based decoding

methods with either forward-backward or fixed-lag MAP processing [31]. Still, this

framework does not appear practical for highly dispersive channels like the UAC,

whose impulse response spans hundreds of symbols and changes quickly. With this

in mind, the authors proposed a novel noncoherent equalizer [89] which uses soft

tree-search and leverages a basis-expansion model (BEM) [86] for the time-varying

channel. The result is near-MAP performance with a per-symbol complexity that
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scales as only O(N2
hD2), where Nh = Th/Tc denotes the delay-spread (in chips) and

D = ⌈fDTcN⌉ the single-sided Doppler spread (in subcarriers). Here, Tc denotes the

“chip” (or channel use) interval, i.e., inverse transmission bandwidth. With surf-zone

UAC parameters, however, the complexity remains prohibitive. For example, if 512

subcarriers were used to transmit a 14 kHz bandwidth signal over the surf-zone UAC

from [102], one can expect Nh ≈ 100 and fDTcN ≈ 0.55, for which the N2
h dependence

may be problematic.

The key to solving the complexity riddle may lie in the sparse nature of realistic

UAC responses [112,113]. For example, if only 1/3 of the channel’s Nh delay taps are

significant, then a reception algorithm whose complexity is quadratic in the active

delay taps (versus total delay taps) will save by a factor of 9. But designing a

receiver capable of leveraging sparsity in this manner is non-trivial, especially for

MCM schemes like [103–105]. In fact, most sparsity-leveraging algorithms are based

on adaptive DFE (e.g., [113]), whose performance is known to fall far short of optimal.

Another challenge to leveraging sparsity is accurate tracking of the locations of sparse

taps, which can change quite rapidly (see, e.g., [102]). While clever order-recursive

matching-pursuit algorithms have been proposed for this purpose (e.g., [113]), their

complexity remains quadratic in the non-sparse channel length Nh, which (as we have

seen) can be very large; we would like something that is much simpler.

In this paper, we propose a turbo JED receiver, building on our earlier work [89,

114], that operates in a pulse-shaped MCM framework and which takes full advantage

of sparsity in the channel delay profile. Our approach uses a (sparse) Fourier-BEM to

model frequency-domain channel variation and a fast tree-search to compute the soft

noncoherent equalizer outputs. In addition, we propose a simple pilot-aided means
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of tracking the channel’s quickly-varying delay-power profile. The performance of

our algorithm is evaluated numerically using simulated channels whose sparsity and

delay/Doppler spreads mimic those of the surf-zone channels from [102]. The proposed

scheme is found to exhibit excellent BER performance relative to genie-aided bounds,

while maintaining high spectral efficiency and relatively low complexity.

6.1 System Model

First we describe a discrete-time complex-baseband model of our system, which

includes coded multicarrier modulation (MCM) and a sparse doubly dispersive chan-

nel.

At the transmitter, information bits are rate-R coded and mapped to 2q-ary scalar

data symbols. Groups of Ns scalar data symbols are then combined with scalar

pilot/guard symbols to form transmission blocks of length N ≥ Ns. (Pilot and guard

details will be given later.) Using N subcarriers, the jth MCM-symbol is composed of

the scalar symbols {c(j)

k }N−1
k=0 corresponding to the coded bits {x(j)

n }Nsq−1
n=0 . In particular,

the nth scalar symbol is mapped from the coded bits x(j)
n , [x(j)

nq, . . . , x
(j)

nq+q−1]
T .

6.1.1 Modifications for Noncoherent Soft Equalization

In Section 5.2.2, we describe a noncoherent soft equalization scheme based on tree

search. A frequency-domain guard pattern that facilitates this tree search will now

be described.

From (A.15), it can be seen that every element in y(j) sees contributions from

2D+1 subcarriers. For tree search, we would like that the first observation contains a

contribution from only one unknown scalar symbol, the second contains contributions

from only two unknown scalar symbols, the third from only three unknown scalar

100



symbols, and so on. One way to ensure this is to set {c(j)

〈k〉N}
D−1
k=−D = 0, i.e., to “turn

off” the first and last D subcarriers—a technique commonly used to prevent adjacent-

channel interference in channelized systems. Note that the resulting loss in spectral

efficiency will be small when 2D ≪ N .

To proceed further, it is convenient to define the D-shifted quantities c̆(j)

k = c(j)

〈k+D〉N

and c̆(j)
, [c̆(j)

0 , . . . , c̆(j)

N−1]
T , noticing that the last 2D elements in c̆(j) constitute a zero-

valued guard interval. Since Dk(c̆
(j)) = Dk−D(c(j)) for any k, we can rewrite (A.15)

as

y(j) = A(j)θ(j) + w(j) (6.1)

A(j) ,
[
D2D(c̆(j))B(j), . . . ,D0(c̆

(j))B(j)
]

(6.2)

and see that, for each k ∈ {0, . . . , N − 1}, the observations {y(j)

d }k
d=0 depend only on

{c̆(j)

d }k
d=0. The now “causal” ICI channel allows us to write the partial observation

y
(j)

k , [y(j)

0 , . . . , y(j)

k ]T as

y
(j)

k = A
(j)

k θ(j) + w
(j)

k , (6.3)

where w
(j)

k , [w(j)

0 , . . . w(j)

k ]T and where A
(j)

k appends a new row a
(j)H
k ∈ C(2D+1)Na

with each k:

A
(i)
k =




a
(j)H
0
...

a(j)H
k


 (6.4)

a
(j)H
k = [c̆(j)

k−2Db
(j)H
k , . . . , c̆(j)

k b
(j)H
k ]. (6.5)

In (6.5), b
(i)H
k denotes the kth row of B(i). Note that the full-block quantities y

(j)

N−1,

A
(j)

N−1, c̆
(j)

N−1, and w
(j)

N−1 are identical to the previously defined y(j), A(j), c̆(j), and w(j),

respectively.
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6.2 Noncoherent Soft Equalization

As illustrated in Fig. 6.1, the receiver consists of a soft noncoherent equalizer and

a soft decoder, connected in a “turbo” configuration, as well as a delay-power profile

(DPP) estimator. The DPP estimator uses the observations and pilots to estimate

the active-tap indices L(j), as will be described in Section 6.3. The equalizer uses

the observations y(j), as well as any a priori information provided by the decoder, to

generate soft information on the coded bits x(j) , [x(j)T
0 , . . . , x(j)T

Ns−1]
T , leveraging its

knowledge of the pilot symbols and statistical channel structure, including L(j). The

decoder then uses the soft equalizer outputs (from possibly many MCM-symbols) to

refine the soft information on the coded bits, leveraging its knowledge of the code

structure. After a sufficient number of turbo iterations, the decoder outputs a hard

estimate of the information bits.

soft non-
coherent
equalizer

soft
decoder

DPP
estimator

pilots

y(j)

recovered
bits

Le(xk|y(j))

La(xk)

L(j)

Figure 6.1: Receiver structure.
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6.3 Tracking Sparsity

In this section, we present an efficient means of learning the active-tap locations

L(j) and compensating for the fact that, in practice, “inactive” taps are non-zero (but

small).

6.3.1 Active-Tap Identification

To estimate the locations of active taps, we compute a pilot-based minimum mean-

squared error (MMSE) estimate of the non-sparse BEM coefficient vector θ̆
(j)

,

[θ̆
(j)T

−D , . . . , θ̆
(j)T

D ]T and from that estimate the DPP {σ(j)2
l }Nh−1

l=0 as follows.

̂
σ

(j)2
l =

D∑

d=−D

∣∣∣∣[θ̆
(j)

d ]l

∣∣∣∣
2

. (6.6)

Note that this approach permits accurate DPP estimation even when the channel

gain h(j)

n,l varies significantly over the MCM-symbol interval. Once the DPP has been

estimated, we set19 L(j) as the largest Na indices of the DPP. Note that the ability to

assign L(j) directly from the DPP is a consequence of our BEM’s orthogonality (i.e.,

F ). Without BEM orthogonality, estimating L(j) becomes much more complicated

(e.g., [113]).

As illustrated in Fig. 6.2, our pilot pattern employs Np = N/P pilot/guard subcar-

riers per MCM-symbol and repeats after every P MCM-symbols. Each MCM-symbol

contains K ≥ 1 pilot clusters, where each cluster is comprised of Np − 2KD non-zero

pilots with D zero-valued guards on either edge. The cluster locations are staggered

so that each subcarrier is used in a cluster exactly once every P MCM-symbols. Note

19Note that this approach yields a fixed complexity; if a fixed performance was more important,
one could set L(j) to be the indices of DPP values that lie above a threshold.
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that, on average, P−1
P

subcarriers are used for data. We experiment with different

choices of K in Section 6.4.

fr
eq

time

......

data

pilot

guard

Figure 6.2: Illustration of pilot pattern with N = 32, P = 4, K = 2, Np = 8, and
D = 1. The columns represent c̆(j−P+2), . . . , c̆(j+2P−3), respectively.

The pilots play a twofold20 role. First, as discussed in Section 5.4.2, they have the

potential to significantly improve the complex/performance tradeoff of suboptimal

tree-search. Second, they facilitate the tracking of active taps L(j). Recall that DPP

sparsity can lead to significant reductions in equalization complexity since the latter

is quadratic in the number of modelled taps (i.e., Na = |L(j)|). The guards also play a

20Note that pilots could also be used for adjustment of large timing clock offsets and carrier
frequency offsets. For example, the receiver’s sampling and carrier frequencies could be adjusted
so that the support of the measured delay/Doppler profile stays close to the origin. There is no
need to compensate for small timing/carrier offsets, though, since they are subsumed by the doubly
dispersive channel.
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twofold role. First, as described in Section 6.1.1, they facilitate tree-search by making

the ICI channel (6.1) appear causal. Second, they ensure that Np − 2KD subcarriers

in y(j) will be free of interference from unknown data, thereby improving the quality

of pilot-based estimates of L(j).

We now detail our pilot-based DPP estimation procedure, assuming power-of-two

P . At even symbol indices j, we use the pilot-only subcarriers in {y(j), . . . , y(j+P−1)} to

jointly estimate the channel vectors {θ̆(j+P/4)

, . . . , θ̆
(j+3P/4−1)}. Here, estimates for the

P/4 left and right “edge” vectors are not attempted because we anticipate that they

would be unreliable. However, since estimation is performed at every even symbol

index i, all channel vectors will eventually be estimated. (See Fig. 6.2 for a P = 4

example.) Notice that a total of P (Np − 2KD) = N − 2PKD scalar observations

are used to estimate P
2
(2D + 1)Nh scalar BEM coefficients during every other MCM-

symbol index. Since MMSE estimation is implemented by multiplication with a (fixed

and known) P
2
(2D +1)Nh × (N −2PDK) matrix, the cost of DPP estimation is only

P
4
(2D+1)Nh(N −2PDK) multiplications per MCM-symbol. Recalling Section 5.2.2,

this cost is small relative to that of iterative noncoherent soft equalization.

The MMSE estimator matrix can be designed as follows. Say that we collect the

pilot-only observations from {y(j), . . . , y(j+P−1)} into the vector y(j) ∈ CN−2PKD and

the corresponding noise samples {wk} into the vector w(j). Then, considering (6.1)

with non-sparse coefficients θ̆
(j)

, we can write

y(j) = Aθ̆
(j)

+ w(j), (6.7)
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where A is a block-diagonal pilot matrix (with P blocks) and θ̆
(j)

, [θ̆
(j)T

, . . . , θ̆
(j+P−1)T

]T .

The MMSE estimate of θ̆
(j)

from y(j) is then

θ̂
(j)

= Rθ̆A
H(ARθ̆A

H + σ2I)−1y(j), (6.8)

where Rθ̆ denotes the autocovariance matrix for θ̆
(j)

, which can be constructed from

the WSSUS model (A.18)-(A.20) under an a priori uniform DPP, i.e., σ
(j)2

l
(j)
ν

= N−1
h

for ν ∈ {0, . . . , Nh − 1} and l(j)ν = ν. Finally, DPP estimates of {σ(j+P/4)2
l , . . . ,

σ
(j+3P/4−1)2
l }Nh−1

l=0 are computed via (6.6).

6.3.2 Residual Tap Compensation

Because non-active channel taps are ignored by the non-coherent equalizer, they

have the effect of contributing additional noise. Because the size and number of

non-active channel taps can vary, so can the power of the additional noise. Thus, it

should be tracked for use by the equalizer. Fortunately, doing so is relatively easy.

For example, after the noncoherent sequence detection algorithm has estimated A(j)

and θ(j) in (6.1), the residual interference ŵ(j)
, y(j) − Â

(j)
θ̂

(j)
can be computed

and its energy calculated to retrieve an estimate of the effective noise power σ(j)2.

This estimate could then be employed for noncoherent equalization of the (j + 1)th

MCM-symbol, since the sparsity is not expected to change significantly from one

MCM-symbol to the next.

6.4 Numerical Results

Numerical tests of the proposed multicarrier system were conducted using MAT-

LAB, with Rayleigh channel coefficients generated according to Jakes method [95].

106



6.4.1 Setup

Two types of channel were considered, a “perfectly sparse” channel and a “sparse”

channel; the latter aims to be realistic while the former is useful as a reference.

The impulse response of the “perfectly sparse” channel had Nc = 5 nonzero fad-

ing coefficients spread over Nh = 100 chip intervals. These coefficients were sam-

ples of zero-mean circular21 Gaussian random processes, each with identical power

σ2
l = 1/Nc and autocorrelation ρn = J0(2πfDTcn). Here, J0(·) denotes the 0th-order

Bessel function of the first kind, and fDTc = 0.0005 was chosen for the single-sided

normalized Doppler spread. Our choice of {fDTc, Nh} corresponds to, for example,

Doppler spread 10 Hz and delay spread 10 ms if the transmission bandwidth was

1
Tc

= 10 kHz, or Doppler spread 5 Hz and delay spread 20 ms if the transmission

bandwidth was 1
Tc

= 5 kHz. Furthermore, it corresponds to a delay/Doppler-spread

product of 2fDTh = 2fDTcNh = 0.1, matching that of the surf-zone channel from [102].

To generate the more realistic “sparse” channel model, 2% of the active-tap energy

was leaked into the inactive taps. This was accomplished by convolving the “perfectly

sparse” impulse response {hn,l}Nh−1
l=0 , at each time n, with the truncated sinc sequence

[−0.0721, 0.0739, 0.9893, 0.0739,−0.0721].

To model a time-varying DPP, the discrete delays of the active taps were varied

in time as follows. While the delays of the first and second taps were fixed at 2 and

15 chips, the delay of the third changed from 30 to 34 chips with a period of 225

MCM-symbol intervals. Furthermore, the delay of the fourth changed from 56 to 66

chips, and then back, with a period of 60 MCM-symbol intervals, and the delay of the

21Here, and throughout the paper, we refer to the complex-baseband equivalent model of the
channel.
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fifth changed from 87 to 97 chips, and then back, with a period of 60 MCM-symbol

intervals. Thus, it can be seen that the delay spread of the “sparse” channel was

Nh = 100. As a consequence of the time-varying tap delays, the effective (normalized

single-sided) Doppler spread is actually larger than fDTc = 0.0005.

At the transmitter, information bits were coded via rate-R = 1
2

irregular low

density parity check (LDPC) codes with average column-weight 3, generated via the

publicly available software [96]. The coded bits were then mapped to BPSK symbols

(i.e., Q = 1) and partitioned into data blocks of length Ns = N − Np, each of

which was merged with Np = 128 pilot/guard symbols to form an MCM-symbol of

length N = 512. We used random BPSK pilots arranged as in Fig. 6.2 with P = 4,

D = 1, and K = 2 (unless otherwise noted). So that each codeword spanned exactly

J = 32 MCM-symbol intervals, (JQNs, RJQNs)-LDPC codes were employed. For

the MCM pulses {αn} and {βn}, we used the “transmitter optimized max-SINR”

design from [5], which specifies a smooth modulation pulse of length Nα = 1.5N and

a rectangular demodulation pulse of length Nβ = N . Since we employed no MCM

guard interval, our modulation efficiency (taking the pilots/guards into account) was

0.75 symbols/sec/Hz.

The receiver employed an ICI radius of D = ⌈fDTcN⌉ = 1 and used Na = 10 sparse

taps in its BEM. For noncoherent soft equalization, sequential algorithm described in

Table 5.1 is employed with the LLR clipping threshold set at 3.0. The M-algorithm

used a search breadth of M = 32. A maximum of 60 sum-product decoding iterations

were allowed, while a maximum of 8 turbo (i.e., equalization/decoding) iterations

were allowed. Note, however, that decoder and turbo iterations are terminated as
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soon as the LDPC decoder senses that the bits have been decoded without error

(which usually happens very quickly).

6.4.2 BER versus Number of Pilot Clusters K

We first investigated the bit error rate (BER) versus the number of pilot clusters

K. As will be seen, the proper choice of K is quite important. However, the theory

of choosing K (e.g., [92,115]) is based on simplified (e.g., non-sparse) channel models

and MSE-minimization (rather than coded-BER minimization) and thus falls short

of being useful. In Fig. 6.3, we plot the BER versus K ∈ {1, 2, 4, 8, 16, 32}. Since we

fix Np = 128, these values of K correspond to cluster sizes of {128, 64, 32, 16, 8, 4},

respectively. Figure 6.3 shows that K = 2 yields the minimum BER, with K = 1

also performing quite well. Thus, for our setup, a few large clusters seems to perform

better than many smaller clusters.

6.4.3 BER versus SNR

Next we investigated BER versus Eb/No, i.e., the ratio of energy-per-information-

bit to noise power-spectral-density. (Note that pilot/guards to not contribute to the

information-bit energy.) In addition to simulating the BER of the proposed soft

noncoherent receiver, we also simulated the BER of several genie-aided reference

receivers. In one reference receiver, we replace our soft noncoherent equalizer with

the soft coherent equalizer from [88] that uses an MMSE estimate of θ(j) computed

under the assumption that, in addition to the pilot/guards, all data subcarriers are

known for the purpose of estimating θ(j). Notice that this “genie-aided-θ̂ coherent

reference” upper bounds the performance of any noncoherent equalizer with a bound

tighter than that of coherent equalization under perfect channel knowledge. Since,
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Figure 6.3: BER versus number of pilot clusters for the “sparse” channel at Eb/No=
9 dB.
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however, both the noncoherent and genie-aided-θ̂ equalizers still need to track the

active coefficients L(j), we consider these two schemes with perfectly known L(j) as

additional references.

Fig. 6.4 shows BER versus Eb/No for the “perfectly sparse” channel. The per-

formance of the proposed soft noncoherent receiver is very close to the genie-aided-θ̂

coherent receiver; less than 1.5 dB SNR loss (at 10−2 BER) can be observed. It can

also be seen that reception under estimated L(j) performs nearly as well as reception

under perfectly known L(j).
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Figure 6.4: BER versus SNR for the “perfectly sparse” channel. The noncoherent
soft equalizer is compared to coherent soft equalizer with genie-estimated θ(j) for both
true and estimated L(j).
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Fig. 6.5 shows BER versus Eb/No for the more realistic “sparse” channel. Here

again, the proposed noncoherent receiver performs less than 1.5 dB worse (at 10−2 BER)

than the genie-aided-θ reference, and both schemes suffer by less than 1 dB when an

imperfect estimate of L(j) is used. Since Na ≪ Nh, many residual channel taps remain

unmodeled. Thus even the best selection of L(j) leaves about 1.6% of the received

signal energy as unmodeled and thus acting as noise. The resulting noise floor could

be suppressed, at the expense of receiver complexity, by increasing Na.
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Figure 6.5: BER versus SNR for the “sparse” channel. The noncoherent soft equalizer
is compared to coherent soft equalizer with genie-estimated θ(j) for both true and
estimated L(j).
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CHAPTER 7

MAXIMUM-DIVERSITY PRECODING

We first characterize the maximum achievable diversity order for noncoherent (co-

herent) communication over the DS channel, and find (for wide-sense stationary un-

correlated scattering (WSSUS) channels with limited time-frequency spread) that the

diversity order equals the product of temporal and spectral diversity orders, thereby

coinciding with the maximum diversity order for coherent communication over the

DS channel [42,116]. For our analysis, we leverage certain asymptotic results from the

noncoherent pairwise error probability (PWEP) analysis in [117,118]. Next, we show

that (under mild channel conditions) almost any affine precoder facilitates maximum

diversity reception. We also show that linear precoding [119, 120] does not facilitate

maximum diversity reception for commonly used symbol alphabets (e.g., uncoded

QAM or PSK) for noncoherent channel. But for coherent channel, we establish the

fact that almost any linear precoding facilitates the maximum diversity reception

(under mild channel condition), which is shown as a special case of affine precoding

results. Recall that linear (affine) precoding [121] refers to the general class of schemes

which combine linear processing of the information symbols (with additive training).

It is interesting to note that, while the maximum-diversity precoder proposed for the

coherent case in [42] led to a high degree of transmit-signal redundancy, both the
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affine noncoherent precoders and linear coherent precoders considered here are not

rate-constrained in any way.

7.1 System Model

For convenience of the discussion, we consider a reverse indexing of the codeword

and channel, i.e., consider block transmission of a codeword c = [cN−1, cN−2, . . . , c0] ∈

C, where C ⊂ CN is a finite set of candidate codewords, hℓ , [hN−1,ℓ, hN−2,ℓ, . . . , h0,ℓ]
T .

The random vector hℓ, can be expressed (without loss of generality) using its Karhunen-

Lòeve (KL) expansion as hℓ = Bℓθℓ, where Bℓ ∈ C
N×Nb is a fixed basis matrix such

that BH
ℓ Bℓ = INb

, and where θℓ ∈ CNb is a zero-mean circular Gaussian random

vector. The parameter Nb ≤ N quantifies the degrees of variation in the channel

tap. In cases of practical interest, the channel varies slowly enough that Nb ≪ N .

We furthermore assume that our channel exhibits WSS uncorrelated scattering (WS-

SUS), so that θ , [θT
0 , . . . , θT

Nh−1]
T ∼ CN (0, Rθ), where Rθ has full rank NhNb. In

addition, we assume that each tap has the same Doppler profile, so that Bℓ = B ∀ℓ.

Using bH
n to denote the row of B such that hn,ℓ = bH

n θℓ, the model (A.2) can be

rewritten, for n ∈ {0, . . . , N − 1}, as

y = Cθ + w, (7.1)

where

C =




cN−1b
H
N−1 · · · cN−Nh

bH
N−1

...
...

c1b
H
1 · · · c−Nh+2b

H
1

c0b
H
0 · · · c−Nh+1b

H
0




. (7.2)

For simplicity, we assume that cn = 0 for n < 0, as occurs when block transmissions

are separated by zero-valued guards with duration ≥ Nh − 1. However, we note that
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such guards may not be needed in the high-SNR regime, where good estimates of

{cn}n<0 are available from previously detected blocks and thus do not pose a problem

when detecting the unknown codeword c.

We assume that the receiver knows the channel statistics, i.e., B and Rθ, but not

the channel realization. In this case, the noncoherent ML estimate of c ∈ C has the

well known form [53,117]

ĉML,nc = arg min
c∈C

yHΦ−1y + log detΦ (7.3)

Φ , CRθC
H + σ2IN . (7.4)

On the other hand, the coherent ML estimate of the codeword is expressed as

ĉML,c = arg min
c∈C

‖y − Cθ‖2. (7.5)

7.2 Diversity-Order Analysis

In this section, we quantify the diversity order attained by the noncoherent ML

detector over DS channel via pairwise error probability (PWEP) analysis, leveraging

the work of Brehler and Varanasi [117] and Siwamogsatham, Fitz, and Grimm [118].

7.2.1 Noncoherent Receiver

Let ck denote the kth codeword in C, and let the corresponding versions of C and

Φ be denoted by Ck and Φk, respectively. Then Ekl, the event that ck is transmitted

and cl 6=k is chosen by the ML detector, becomes

Ekl = {yHΦ−1
k y + log detΦk > yHΦ−1

l y + log detΦl}. (7.6)
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A closed-form expression for the PWEP Pr{Ekl} has been derived [117, 118] for the

high-SNR asymptotic case, i.e., σ2 → 0. Adapted to the specifics of our model, the

result can be summarized as follows:

Lemma 3 (High-SNR PWEP for Noncoherent Detector [117, 118]) If the ma-
trix

M kl , CH
k (IN − C l(C

H
l C l)

−1CH
l )Ck (7.7)

has full rank NhNb, then, as σ2 → 0,

Pr{Ekl} →
(

1

σ2

)−NhNb

det(RθM kl)
−1

NhNb−1∑

m=0

(
2NhNb − m

NhNb

)
ηm, (7.8)

where

ηm ,





(−ζlk)meζlk

m!
, for ζlk ≤ 0

ζm
lk

m!
, for ζlk > 0

(7.9)

ζkl , N log
det(CH

k Ck)

det(CH
l C l)

(7.10)

Lemma 3 establishes that the maximum achievable diversity order equals NhNb,

and that achieving this maximum diversity order requires that M kl be full rank for

all k and all l 6= k.

We now translate the full-rank condition on M kl to a more convenient form.

Lemma 4 M kl has full rank NhNb if and only if [Ck, Dlk] has full rank 2NhNb,
where Dlk , C l − Ck.

proof : From (7.7), we see that M kl shares the rank of Π⊥
l CkC

H
k , where Π⊥

l ,

IN −C l(C
H
l C l)

−1CH
l accomplishes projection onto the null space of C l. Since Ck ∈

CN×NbNh , full rank M kl occurs iff the following two conditions are satisfied: Ck has

full rank NbNh, and the column space of Ck is contained in the null space of C l, i.e.,

the column spaces of Ck and C l share no common subspace. In other words, M kl

has full rank iff [Ck, C l] has full rank 2NhNb. Furthermore, since rank is not affected
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by subtracting the first NhNb columns from the last, the rank of [Ck, C l] equals the

rank of [Ck, Dlk]. �

Lemma 4 states that, for full diversity noncoherent detection, the following must

hold for all k and l 6= k: both the codeword matrix Ck and the codeword-difference

matrix Dlk must be full rank, and their column spaces must not intersect. Notice that

the full-rank condition requires that N ≥ 2NhNb. This latter condition specifies the

maximum degree of time-frequency spreading for which maximum-diversity reception

is possible. Notice that the condition N ≥ 2NhNb is stronger than N > NhNb, the

condition for an “underspread” channel.

Linear Precoding

We refer to the class of schemes in which the codewords are generated according

to

c = Ps, (7.11)

for general P ∈ CN×Ns, as linear precoders [119, 120]. In this case, we associate the

kth codeword ck with the kth symbol vector sk ∈ S, where S ⊂ CNs is a finite set.

Lemma 5 Linear precoding does not facilitate maximum-diversity detection when
∃sk, sl ∈ S and a ∈ C such that sk = asl, i.e., when S contains symbol vectors which
differ only by a scale factor.

proof : With linear precoding, sk = asl implies Ck = aC l, and hence [Ck, Dlk] =

[Ck, (1 − a)Ck]. Since this [Ck, Dlk] has rank of at most NhNb, Lemmas 3 and 4

establish that this rank is insufficient for maximum-diversity detection. �

The situation described in Lemma 5 is common and arises, e.g., when s is com-

posed of uncoded QAM or PSK symbols.
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Affine Precoding

We refer to the class of schemes in which the codewords are generated according

to

c = Ps + t, (7.12)

for general P ∈ C
N×Ns and t ∈ C

N , as affine precoders [121]. Here again, we associate

the kth codeword ck with the kth symbol vector sk ∈ S, where S ⊂ C
Ns is a finite set.

The affine precoder described in (7.12) is parameterized by a precoding matrix P and

a (superimposed) training vector t. In this section, we demonstrate that almost any

choice of {P , t} is sufficient to facilitate maximum-diversity detection under some

mild channel conditions. Before stating our result, we define B̃ as the matrix created

from the top N − Nh + 1 rows of B, i.e.,

B̃ ,




bH
N−1

bH
N−2
...

bH
Nh−1




. (7.13)

Lemma 6 If N ≥ 2NhNb, if B̃ is full rank, and if [P , t] is chosen randomly from a
distribution whose support contains an open ball in CN×(Ns+1), then [Ck, Dlk] is full
rank w.p.1. ∀k and ∀l 6= k.

proof : See Appendix C.1. �

We now make some observations. First, Lemma 6 holds for general Ns, i.e., for

precoders of arbitrary rate. Second, the rank condition on B̃ is quite mild, and states

that the first Nh − 1 samples (out of N ≥ 2NhNb) of each tap trajectory are not

essential to experiencing the Nb degrees of variation in channel tap. This is expected

behavior for WSS channels. (Recall that B satisfied BHB = INb
.)
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Systematic Precoding

We refer such precodings having the form

c =

[
P ′

INs

]
s + t

as systematic precodings, where P ′ ∈ CNp×Ns with N = Np + Ns.

This form of precodings can facilitate near-ML sequential detection at very low

complexity (e.g., O(N) in [89]). With this precoding, it can be seen from (7.1) that

the zeroth observation y0 contains contribution from only one unknown symbol s0,

the first observation y1 contains contributions from only two unknown symbols, s0

and s1, and so on. Otherwise, i.e., if the matrix P were full matrix (without INs),

then all the data symbols would contribute to the observation for every time instance,

in which case the symbols could not be decoded by the sequential decoders.

Lemma 7 For the maximum diversity, we need Np ≥ NhNb − 1.

proof : For the maximum diversity, we need Dlk to be full rank as a necessary

condition. Considering the worst case, i.e., the lower Ns elements of cl − ck are all

zero except one position, the minimum Np required for Dlk to have NhNb nonzero

rows is NhNb − 1 over all k and l 6= k. �

Again, we establish in this section that almost any choice of {P ′, t} is sufficient

to facilitate the maximum diversity under some conditions. To do this, we define B̆

as the matrix created from the top Np − Nh + 1 rows of B, i.e.,

B̆ ,




bH
N−1

bH
N−2
...

bH
Ns+Nh−1




. (7.14)
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Lemma 8 If N ≥ 2NhNb and Np ≥ NhNb − 1, if B̆ is full rank, and if entries of
{P ′, t} are chosen randomly from a distribution whose support contains an open ball
in CN+NpNs, then [Ck, Dlk] is full rank w.p.1. ∀k and ∀l 6= k.

proof : See Appendix C.2. �

7.2.2 Coherent Receiver

We will follow the similar approach for the noncoherent receiver in Section 7.2.1.

Then Ekl, the event that ck is transmitted and cl 6=k is chosen by the coherent ML

detector, becomes

Ekl = {‖y − Ckθ‖2 > ‖y − C lθ‖2}. (7.15)

A closed-form expression for the PWEP Pr{Ekl} has been derived [117, 118] for the

high-SNR asymptotic case, i.e., σ2 → 0. Adapted to the specifics of our model, the

result can be summarized as follows:

Lemma 9 (High-SNR PWEP for Coherent Detector [117, 118]) If the matrix

M kl , (Ck − C l)
H(Ck − C l) (7.16)

has full rank NhNb, then, as σ2 → 0,

Pr{Ekl} →
(

1

σ2

)−NhNb

det(RθM kl)
−1

(
2NhNb − 1

NhNb

)
. (7.17)

We now state the full-rank condition on M kl for coherent detector in a more

convenient form than Lemma 9.

Lemma 10 M kl = (Ck −C l)
H(Ck −C l) has full rank NhNb if and only if Dlk has

full rank NhNb,

Proof: This is obvious from the definition of Dlk. �

The following Lemma states that almost all linear precoding ficilitates the maximum-

diversity coherent ML detection.
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Lemma 11 If N ≥ NhNb, if B̃ is full rank, and if P is chosen randomly from a
distribution whose support contains an open ball in CN×(Ns+1), then Dlk is full rank
w.p.1. ∀k and ∀l 6= k.

Proof: We follow the same approach as the proof of Lemma 6: characterizing

the P which causes Dlk to be rank deficient, and showing that these problematic P

are avoided w.p.1. We set α = 0 and t = 0 in (C.1) and examine the rank deficiency

condition to conclude that p /∈ N (H) w.p.1. �

7.3 Numerical Examples

Figure 7.1 plots average PWEP versus SNR (σ−2) for a randomly chosen affine

precoder assuming an energy-preserving two-tap (i.e., Nh = 2) channel whose time

evolution is governed by Jakes’ model with fDTs = 0.003. By “average” PWEP, we

mean that the PWEP is averaged across symbol pairs. Our experiments assumed

N = 8, for which the channel model yields Nb = 2 (see Fig. 2.1). To demonstrate

that the results hold for general Ns, Fig. 7.1 investigates Ns ∈ {6, 8, 10}, which covers

the cases that Ns > N , Ns = N , and Ns < N . In all cases, it can be seen that

the asymptotic slope of the average PWEP equals −NbNh = −4, which confirms

full-diversity reception.
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Figure 7.1: Average PWEP versus SNR for N = 8, Nh = Nb = 2, and various Ns.
The dashed line confirms the asymptotic slope of −4.
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CHAPTER 8

CONCLUSIONS

8.1 Summary of the Work

The problems in DS channel equalization have been an active research topics

since channel estimation and optimal equalization are not straightforward compared

to those in singly-selective channels. In response, we proposed practical near-optimal

equalization schemes for both coherent receivers and noncoherent receivers. To achieve

these tasks, efficient and near-optimal procedures for channel and symbol estimation

methods were inevitable.

For efficient modeling of DS channel, we adopted basis expansion modeling and

provided a unified description of the channel regardless whether the channel is mod-

eled in time domain or in the frequency domain. The unified channel model could

be made possible when we use cyclic-prefixed single-carrier modulation for the time-

domain modeling and pulse-shaped multi-carrier modulation for the frequency-domain

modeling.

For efficient near-optimal symbol estimation methods, we proposed to use tree-

search algorithms (TSAs), which are suitable for both coherent equalization and

noncoherent equalizations. Then, we discussed the performance of TSA prepro-

cessing, and established that MMSE-GDFE preprocessing does not compromise the
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ML-optimality of minimum-distance decisions for systems (including generic MIMO

systems) with uncoded constant modulus signaling. This property holds for systems

of arbitrary size (i.e., over- or under-determined linear channels), though not for

non-constant modulus constellations (e.g., PAM and QAM). The result is attractive

because MMSE-GDFE pre-processing is known to yield significant reductions in the

average search complexity of optimal TSAs (e.g., SpD), especially in moderate-to-low

SNR ranges and/or with ill-conditioned/under-determined linear channels.

As a coherent receiver structure for optimal (or near-optimal) DS channel equal-

izer, we proposed a means of high-spectral-efficiency MCM with practically realizable

near-ML TSA suitable for communication over the DS channel. Our solution con-

sisted of three components: 1) MCM that guarantees a small number of significant

ICI/ISI coefficients while maintaining high spectral efficiency and white subchannel

noise samples; 2) near-ML SD which leverages the pulse-shaped DS-channel ICI/ISI

structure for low complexity over a wide SNR range; and 3) rank-reduced pilot-aided

BE parameter estimation of significant ICI/ISI coefficients. Because traditional MCM

schemes (i.e., CP-OFDM, ZP-OFDM, and S-OFDM) were shown (numerically) to

yield too many non-negligible ISI/ICI coefficients, we utilized the PS-MCM scheme

previously proposed by the authors in [5,17]. PS-MCM used in this research combined

a SINR-maximizing transmission pulse with a rectangular reception pulse, permitting

ICI/ISI truncation with negligible loss in performance. Because traditional ML and

near-ML TSAs (e.g., Viterbi, Fano, and sphere decoders) were shown (numerically)

to incur high search complexity when used with the PS-MCM DS channel, a novel

TSA was proposed. The new TSA combines a fast MMSE-GDFE preprocessor with

a channel-adaptive T-algorithm, of which both components were specifically tuned
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to the PS-MCM DS-channel’s ICI/ISI structure. The new TSA demonstrated FER

performance indistinguishable from that of MLSD with a complexity that is approxi-

mately quadratic in the frame length, i.e., similar to that of fast MMSE-DFE. Finally,

the use of rank-reduced pilot-aided channel estimates was observed to cause only a

small loss in FER performance (relative to perfect channel knowledge) without sig-

nificantly increasing the overall receiver complexity.

For near optimal noncoherent equalization, we proposed two schemes for use in

a turbo receiver: sequential algorithm and Bayesian EM algorithm. For sequential

algorithm, we started from the optimal noncoherent metric and we derived a novel

fast algorithm to efficiently evaluate the metric. The other soft noncoherent equalizer

was based on the use of the Bayesian EM algorithm to estimate the channel param-

eters, and it manifested as iterations between a soft coherent equalizer and a soft

channel estimator. The proposed receivers modeled the channel via basis expansion

(BE), and performed soft TSA. Efficient operations were accomplished using fast al-

gorithms whose overall complexities grow linearly in the block size and quadratically

in the number of BE parameters. Numerical studies show that two soft noncoher-

ent equalizers perform equally well in mid-Doppler and remain robust to mismatch

assumed Doppler spread. In particular, the sequential algorithm based noncoherent

equalizer performs well in very high Doppler.

We also presented a novel multicarrier strategy for communication over UACs with

simultaneously large delay and Doppler spreads. A multicarrier scheme employing a

smooth transmission pulse was chosen to transform a time-varying ISI span of one

hundred taps to an ICI span of three taps. Careful design of the pulse eliminated the

need for a bandwidth-wasting cyclic (or zero) prefix. A turbo receiver, which passes
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soft bit information between a noncoherent equalizer and an off-the-shelf decoder,

was then described. The complexity of the noncoherent equalizer, which requires

knowledge of the channel’s statistics but not its realizations, is relatively low due

to the use of suboptimal TSA and the leveraging of sparsity in the channel’s delay-

power profile. Although the noncoherent equalizer can function with only a single

pilot subcarrier, a more extensive pilot pattern is proposed to track the (time-varying)

sparsity profile as well as to reduce the complexity of near-optimal TSA. Simulations

with highly spread channels showed that the performance of the proposed noncoherent

algorithm was about 1.5 dB away from coherent detection using a genie-estimated

channel.

Finally, we have characterized the maximum diversity-order that can be attained

for both noncoherent detection and coherent detection of block transmissions under

DS channels, and we have provided a set of sufficient conditions under which this

maximum diversity-order can be attained. Specifically, we have shown that almost

any affine (linear) precoder will facilitate maximum-diversity noncoherent (coherent)

ML detection. In addition, we have shown that linear precoding does not facilitate

maximum-diversity detection for certain commonly used symbol alphabets.

8.2 Possible Future Research

To further improve the fast coherent/noncoherent equalization algorithms, other

tree searching algorithms (TSAs) could be considered. Although the biggest advan-

tage of the M-algorithm is the complexity that is invariant to SNRs and channel
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realizations, its performance is known to be inferior to other TSAs such as the adap-

tive T-algorithm in Chapter 4, Schnorr-Euchner (SE) sphere decoder [69] and Fano

sequential decoder [70].

As shown in [70], TSAs can successfully be used as the joint coherent detection

and decoding algorithms, where the channel structure and the code structure are

both taken care of. In response, one could pursue a practical joint noncoherent

receiver structure that jointly performs equalization, channel estimation and decoding

together without performing three tasks in three different modules.

The max-diversity condition could be refined by using the fact that Nb is a function

of N , i.e., Nb = φ(N), where φ(·) is a monotonically increasing function. With

proper identification and/or approximation of the function φ(·), the noncoherent max-

diversity condition N ≥ 2NbNh could provide more insightful relationship between

the block length and the number of channel parameters.

We can see from Lemma 6 that the focus was taken on the diversity gain of the

precoders, while no attention is paid on the coding gain. Thus, in an effort to get

practical precoding schemes for the DS channel, structured affine precoding schemes

should be pursued so that not only the maximum diversity, but also an excellent

coding gain could be achieved. Toward this end, packing in complex Grassmannian

space [122] or a few Grassmannian noncoherent code design methods in [123,124] for

singly selective channel could provide useful tools for the design of the precoder with

good coding gain.
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APPENDIX A

FOURIER BASIS REPRESENTATION OF MCM

CHANNEL COEFFIECINTS

The transmitted sequence {tn} is generated by transforming the ith MCM-symbol

sequence {c(i)
k }N−1

k=0 with an N -point inverse discrete Fourier transform (DFT), apply-

ing an Nα-point modulation pulse {αn}Nα−1
n=0 to its cyclic extension, and superimposing

the result N samples behind the contribution from the (i − 1)th MCM-symbol:

tn =
∞∑

i=−∞
αn−iN

1√
N

N−1∑

k=0

c
(i)
k ej 2π

N
kn. (A.1)

(See [5] for a slightly more general scheme.) A noisy linear time-varying channel then

produces the received samples

rn =
Nh−1∑

l=0

hn,ltn−l + vn, (A.2)

where {hn,l}Nh−1
l=0 denotes the length-Nh discrete impulse response at time n, and

where {vn} is zero-mean circular white Gaussian noise (CWGN) with covariance

σ2. In relation to the ith MCM-symbol, we define r(i)
n , riN+n, v(i)

n , viN+n, and

h
(i)
n,l , hiN+n,l and rewrite (A.2) as

r(i)
n =

Nh−1∑

l=0

h
(i)
n,l

∞∑

ℓ=−∞
αℓN+n−l

1√
N

N−1∑

k=0

c
(i−ℓ)
k ej 2π

N
k(n−l) + v(i)

n . (A.3)
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For demodulation, the receiver applies the length-Nβ pulse {βn}Nβ−1
n=0 prior to an N -

point DFT, yielding the frequency-domain observations {y(i)

d }N−1
d=0 :

y
(i)
d =

1√
N

Nβ−1∑

n=0

r(i)
n βne−j 2π

N
dn. (A.4)

Putting (A.1)-(A.4) together, it is straightforward to show that

y
(i)
d =

∞∑

ℓ=−∞

N−1∑

k=0

H
(i,ℓ)
d−k,kc

(i−ℓ)

k + w
(i)
d , (A.5)

where

H
(i,ℓ)
d,k ,

1

N

Nβ−1∑

n=0

Nh−1∑

l=0

h
(i)
n,lβnαℓN+n−le

−j 2π
N

(dn+kl)

(A.6)

w
(i)
d ,

1√
N

Nβ−1∑

n=0

βnv(i)
n e−j 2π

N
dn. (A.7)

In writing (A.5), we used the fact that H (i,ℓ)

d,k is N -cyclic in the indices d and k. Note

that H
(i,ℓ)
d,k can be interpreted as the response, at MCM-symbol i and subcarrier k+d,

to a frequency-domain impulse applied at MCM-symbol i− ℓ and subcarrier k. Using

y(i) , [y
(i)
0 , . . . , y

(i)
N−1]

T , c(i) , [c
(i)
0 , . . . , c

(i)
N−1]

T , and w(i) , [w
(i)
0 , . . . , w

(i)
N−1]

T , (A.5)

can be written in vector form as

y(i) =
∞∑

ℓ=−∞

N−1∑

k=0

Dk(c
(i−ℓ))H

(i,ℓ)
−k + w(i) (A.8)

H
(i,ℓ)
d , [H

(i,ℓ)
d,−d, H

(i,ℓ)
d,−d+1, . . . , H

(i,ℓ)
d,N−1−d]

T ∈ C
N , (A.9)

where Dk(·) denotes the diagonal matrix created from the k-place cyclic downward

shift of its vector argument, i.e., [Dk(c)]d,d = c〈d−k〉N .

Although from (A.1) it can be seen that no time-domain guard is employed by

the transmitter, it is possible (see, e.g., [5]) to design pulses {αn} and {βn} that yield

both negligible ISI (i.e., H
(i,ℓ)
d,k ≈ 0 for ℓ 6= 0) and negligible ICI beyond a radius of
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D , ⌈fDTcN⌉ subcarriers (i.e., H
(i,ℓ)
d,k ≈ 0 for D < d < N − D). Here, fD denotes the

single-sided Doppler spread in Hz and Tc denotes the sampling (or “chip”) interval in

seconds. With zero ISI and an ICI radius of D, (A.8) becomes

y(i) =
D∑

k=−D

Dk(c
(i))H

(i,0)
−k + w(i). (A.10)

A.1 A Sparse Frequency-Domain BEM

From (A.6) and (A.9) it can be seen that

H
(i,0)
d = F θ̆

(i)

d (A.11)

θ̆
(i)

d ,
√

ND(f∗
d)(H

(i) ⊙ P)T f
d
∈ C

N , (A.12)

where H
(i), P ∈ CNβ×N are defined element-wise as [H(i)]n,l , h

(i)
n,l and [P ]n,l ,

βnαn−l, where F denotes the unitary N -DFT matrix (i.e., [F ]n,m = 1√
N

e−j 2π
N

nm) with

dth column fd ∈ CN , and where f
d

, [e−j 2π
N

d·0, e−j 2π
N

d·1, . . . , e−j 2π
N

d(Nβ−1)]T denotes

the latter’s Nβ-length (cyclic) extension. Equation (A.11) can be recognized as an

N th-order BEM for the frequency-domain channel vector H
(i,0)
d ; the columns of F

are the basis vectors and elements of θ̆
(i)

d are the BEM coefficients.

The BEM order can be reduced if the impulse response is known to be sparse. In

particular, if only Na < Nh taps of the impulse response {h(i)

n,l}Nh−1
l=0 are non-zero over

the time duration n ∈ {0, . . . , Nβ −1}, then only Na columns of H
(i) will be non-zero,

implying that only Na BEM coefficients in θ̆
(i)

d will be non-zero. More precisely, let

us denote the set of channel taps active during the ith MCM-symbol interval by

L(i) =
{
l : h(i)

n,l 6= 0 for some n ∈ {0, . . . , Nβ − 1}
}
, (A.13)

where |L(i)| = Na. Constructing B(i) ∈ CN×Na from the columns of F with indices

in L(i), and constructing θ
(i)
d ∈ CNa from the corresponding elements of θ̆

(i)

d , (A.11)
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can be restated as

H
(i,0)
d = B(i)θ

(i)
d . (A.14)

Using this sparse BEM, (A.10) can be rewritten as

y(i) =
[
DD(c(i))B(i), . . . ,D−D(c(i))B(i)

]
θ(i) + w(i) (A.15)

θ(i)
, [θ(i)t

−D, . . . , θ(i)t
D ]T . (A.16)

Notice that the BEM can change with the MCM-symbol index.

A.2 Covariance of the BE Parameter

Finally, we investigate the crosscovariance matrix R
(i)
θd,θk

, E{θ(i)
d θ

(i)H
k } for later

use in tree-search. We assume that the channel obeys the wide-sense stationary

uncorrelated scattering (WSSUS) assumption over the duration of one MCM-symbol,

i.e.,

E{h(i)

n,lh
(i)∗
n−m,l′} = ρ(i)

m σ
(i)2
l δl−l′ for n ∈ {0, . . . , Nβ − 1}, (A.17)

where {σ(i)2
l }Nh−1

l=0 is the delay-power profile (DPP) and {ρ(i)
m } is the normalized (i.e.,

ρ
(i)
0 = 1) tap autocorrelation sequence during the ith MCM-symbol interval. Fur-

thermore, we assume that {ρ(i)
m } is invariant to i and thus suppress the superscript

notation. It can be shown straightforwardly that R
(i)
θd,θk

is diagonal with elements

[
R

(i)
θd,θk

]
ν,ν

= σ
(i)2

l
(i)
ν

Nβ−1∑

m=−Nβ+1

ρmγ
(i)
d,k,m,ν, (A.18)

where l(i)ν denotes the index of the νth sparse tap (i.e., L(i) = {l(i)0 , l
(i)
1 , . . . , l

(i)
Na−1}) and

γ
(i)
d,k,m,ν =

1

N

∑

p,q:p−q=m

βpᾰd,p−l
(i)
ν

β∗
q ᾰ

∗
k,q−l

(i)
ν

(A.19)

ᾰd,p , αpe
−j 2π

N
dp. (A.20)
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The values {[R(i)
θd,θd

]ν,ν}N−1
d=0 can be interpreted as a sampling of the (pulse-shaped)

Doppler spectrum of the νth sparse tap.
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APPENDIX B

DERIVATIONS FOR NONCOHERENT EQUALIZATION

ALGORITHMS

B.1 A Fast Recursive Update for µ(xn) (Table 5.1)

First we write (5.10) as

µ(xn) = −‖yn − Anθ̄‖2
Φ

−1
n
− ln(πn+1 detΦn) + lT

nxn (B.1)

Φn , AnRθA
H
n + σ2In+1, (B.2)

In the sequel, we use ỹn , yn − Anθ̄ and θ̃n , θ̂n − θ̄. In the two sections below,

we derive fast recursions for the first two terms in (B.1): µ1(xn) , ỹH
n Φ−1

n ỹn and

µ2(xn) , ln
(
πn+1 detΦn

)
. Together, these recursions yield Table 5.1.

B.1.1 Recursion for µ1(xn)

Rewriting Φn with the aid of An =
[

An−1

aH
n

]
, where aH

n denotes the nth row of A,

we have

Φ−1
n =

[
Φn−1 An−1Rθan

aH
n RθA

H
n−1 aH

n Rθan + σ2

]−1

=

[
P n pn

pH
n pn

]
, (B.3)
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for the block-inverse quantities

P n , Φ−1
n−1 + p−1

n pnp
H
n (B.4)

pn , −Φ−1
n−1An−1Rθanpn (B.5)

p−1
n , σ2 + aH

n

(
Rθ − RθA

H
n−1Φ

−1
n−1An−1Rθ

)
an. (B.6)

Writing µ1(xn) using (B.3) and ỹn =
[

ỹn−1

ỹn

]
, we get

µ1(xn) = ỹH
n−1P nỹn−1 + 2ℜ{ỹH

n−1pnỹn} + pn|ỹn|2. (B.7)

Using the sn−1-conditional MMSE estimate of θ̃ from ỹn−1:

θ̃n−1 = RθA
H
n−1Φ

−1
n−1ỹn−1, (B.8)

we see that rH
n−1pn = −θ̃n−1anpn. Applying this relationship to (B.4)-(B.6), we can

rewrite (B.7) as

µ1(xn) = ỹH
n−1Φ

−1
n−1ỹn−1 + pnθ̃

H

n−1ana
H
n θ̃n−1

− 2pnℜ{θ̃
H

n−1anỹn} + pn|ỹn|2 (B.9)

= µ1(xn−1) + pn|ỹn − aH
n θ̃n−1|2. (B.10)

Now we concentrate on pn. Defining Σn−1 and applying the matrix inversion

lemma (MIL):

Σn−1 , AH
n−1An−1 + σ2R−1

θ (B.11)

σ2Σ−1
n−1 = Rθ − RθA

H
n−1Φ

−1
n−1An−1Rθ, (B.12)

we see from (B.6) that p−1
n = σ2(1 + aH

n Σ−1
n−1an). Using the fact that Σn = Σn−1 +

ana
H
n , a second application of the MIL yields Σ−1

n = Σ−1
n−1 − αndnd

H
n for

dn , Σ−1
n−1an (B.13)

αn , (1 + aH
n dn)−1 = pnσ

2. (B.14)
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Together, this gives a fast update for pn = αn/σ
2.

Finally, we tackle θ̃n. Using the MIL again,

Φ−1
n = σ−2(In+1 − AnΣ

−1
n AH

n ), (B.15)

which applied to (B.8) yields

θ̃n = 1
σ2 Rθ

(
Σn − AH

n An

)
Σ−1

n AH
n ỹn (B.16)

= Σ−1
n AH

n ỹn (B.17)

=
(
Σ−1

n−1 − αndnd
H
n

)(
AH

n−1ỹn−1 + anỹn

)
. (B.18)

Expanding (B.18) and applying aH
n Σ−1

n an = α−1
n − 1, we get

θ̃n = θ̃n−1 + dnỹn − αndnaH
n θ̃n−1 − αndn(α−1

n −1)ỹn

= θ̃n−1 + αn(ỹn − aH
n θ̃n−1)dn. (B.19)

Notice that, in (B.10) and (B.19), ỹn − aH
n θ̃n−1 = yn − aH

n θ̂n−1.

B.1.2 Recursion for µ2(xn)

From (B.3), we can write

Φn =

[
Φn−1 φn

φH
n φn

]
, (B.20)

The Schur complement γn , φn − φH
n Φ−1

n−1φn obeys [125]

det(Φn) = γn det(Φn−1). (B.21)

Identifying φn and φn from (B.3),

γn = σ2 + aH
n Rθan − aH

n RθA
H
n−1Φ

−1
n−1An−1Rθan

= σ2

αn
(B.22)
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using (B.12) and (B.14) for (B.22). Finally, taking the log of (B.21),

µ2(xn) = µ2(xn−1) + ln πσ2

αn
. (B.23)

B.2 Derivation of (5.12)

The derivation is performed for full-block vectors rather than partial ones (e.g.,

x rather than xn), but applies to both. Applying the MIL to Φ−1, the first term of

(5.9) becomes

ỹHΦ−1ỹ = 1
σ2

(
ỹH ỹ − ỹHAΣ−1AH ỹ

)
, (B.24)

where Σ , AHA + σ2R−1
θ = ΣN−1 (via (B.11)). Writing

ỹHAΣ−1AH ỹ = 2ℜ{ỹHAΣ−1AH ỹ} − ỹHAΣ−1AH ỹ

and plugging in θ̃ , Σ−1Aỹ = θ̃N−1 (via (B.17)), we find

ỹHΦ−1ỹ = 1
σ2

(
ỹH ỹ − 2ℜ{ỹHAθ̃} + θ̃

H
Σθ̃

)
(B.25)

= 1
σ2‖ỹ − Aθ̃‖2 + ‖θ̃‖2

R−1
θ

. (B.26)

The definitions of ỹ and θ̃ from Appendix B.1 then yield (5.12).
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APPENDIX C

PROOFS FOR CHAPTER 7

C.1 Proof of Lemma 6

Our strategy is to characterize the [P , t] which cause [Ck, Dlk] to be rank deficient,

and show that these problematic [P , t] are avoided w.p.1. In the sequel, we consider

arbitrary k and arbitrary l 6= k, and we use the abbreviations s = sk, δ = sl − sk,

and [C, D] = [Ck, Dlk].

Rank deficiency occurs when ∃[ α
β ] 6= 0 such that [C, D][ α

β ] = 0N . We would like

to rewrite [C, D][ α
β ] so that the role of [P , t] is explicit. From the construction of

C, and from the partitions α = [αT
0 , αT

1 , . . . , αT
Nh−1]

T and β = [βT
0 , βT

1 , . . . , βT
Nh−1]

T
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where αℓ, βℓ ∈ C
Nb , we rewrite [C, D][ α

β ] = [F , G][ c
d ] with

F =




bH
N−1α0 · · ·bH

N−1αNh−1 0 · · · 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . .

. . . 0
...

. . . 0 bH
Nh−1α0 · · · bH

Nh−1αNh−1
...

. . .
. . . 0

. . .
...

0 · · · · · · · · · 0 bH
0 α0




G =




bH
N−1β0 · · ·bH

N−1βNh−1 0 · · · 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . .

. . . 0
...

. . . 0 bH
Nh−1β0 · · · bH

Nh−1βNh−1
...

. . .
. . . 0

. . .
...

0 · · · · · · · · · 0 bH
0 β0




.

for c defined in (7.12) and d , Pδ. Here we used the fact that {dn = 0}n<0 and

{cn = 0}n<0. Using pH
n to denote the row of P such that cn = pH

n s, we can then

write

[
c

d

]
=




sT 1
. . .

. . .
sT 1

δT 0
. . .

. . .
δT 0




[
p

t

]

p = [pH
N−1, p

H
N−2, . . . , p

H
0 ]T

t = [tN−1, tN−2, . . . , t0]
T .

Putting these together, we have

[C, D]

[
α

β

]
= [H , F ]

[
p

t

]
(C.1)

with

H =




bH
N−1(α0sT + β0δT ) · · · bH

N−1(αNh−1sT + βNh−1δT ) 0 · · · 0

0
.
.
.

.
.
.

.
.
. 0

.

.

.

.

.

. 0
.
.
.

.
.
.

.
.
. 0

.

.

.
.
.
. 0 bH

Nh−1
(α0sT + β0δT ) · · · bH

Nh−1
(αNh−1sT + βNh−1δT )

.

.

.
.
.
.

.
.
. 0

.
.
.

.

.

.

0 · · · · · · · · · 0 bH
0 (α0sT + β0δT )




138



and with F as defined earlier. Thus, [C, D][ α
β ] = 0N becomes equivalent to [ p

t ] ∈

N ([H , F ]).

Notice that, if [H , F ] 6= 0N×N(Ns+1), then N ([H, F ]) is a strict subspace of

CN(Ns+1). In this case, our assumptions on the distribution of [ p
t ] imply that the

set N ([H, F ]) has measure zero, so that [ p
t ] /∈ N ([H, F ]) w.p.1. Thus, we need to

show that [H , F ] 6= 0 for all s, for all nonzero δ, and for all nonzero [ α
β ]. To do this,

we consider two cases.

Case 1) α 6= 0: Here we show that [H , F ] 6= 0 by showing that F 6= 0. Since α 6=

0, we know that αℓ 6= 0 for some ℓ. The assumption of full rank B̃ then implies that

B̃αℓ 6= 0 for some ℓ, which ensures that bH
n αℓ 6= 0 for some n ∈ {Nh − 1, . . . , N − 1}.

The latter condition implies F 6= 0. Clearly, this occurs for any {s, δ}.

Case 2) α = 0: Here it is evident that β 6= 0, F = 0, and

H =




bH
N−1β0δ

T · · ·bH
N−1βNh−1δ

T 0 · · · 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . .

. . . 0
...

. . . 0 bH
Nh−1β0δ

T · · · bH
Nh−1βNh−1δ

T

...
. . .

. . . 0
. . .

...

0 · · · · · · · · · 0 bH
0 β0δ

T




Thus, we need to show that there is no combination of s, nonzero δ, and nonzero β

that yields H = 0. But, since δ 6= 0, the condition H = 0 is equivalent to G = 0.

Now, since B̃ is full rank and βℓ 6= 0 for some ℓ, we know that bH
n βℓ 6= 0 for some

n ∈ {Nh − 1, . . . , N − 1}, which ensures that G 6= 0. Clearly, this occurs for any s

and any nonzero δ.
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C.2 Proof of Lemma 8

We follow the same procedure as the proof of Lemma 6 to arrive at

[C, D]

[
α

β

]
= [H1, H2, F ]



p′

e

t




p′ = [pH
N−1, . . . , p

H
Ns

]T

e = [eT
0 , . . . , eT

Ns−1]
T ,

where we define eT
n as the nth row vector of INs. Also H1 ∈ CN×NpNs and H2 ∈

CN×N2
s are defined such that H = [H1, H2]. The matrices C, D, H and F and the

vectors α, β and pH
n are defined as in the proof of Lemma 6. It can be easily seen

that the equation [C, D][ α
β ] = 0 becomes

[H1, F ]

[
p′

t

]
= −H2e. (C.2)

We can see that if [H1, F ] 6= 0, then the solution of [ p′

t
] is a set of measure zero

with respect to CN+NpNs . More specifically, under the condition of [H1, F ] 6= 0,

when H2e ∈ R([H1, F ]), the solution is uniquely determined, and when H2e 6∈

R([H1, F ]), there is no solution. The condition “[H1, F ] = 0 and H2e = 0” only

yields the solution [ p′

t
] being CN+NpNs. Thus, as long as [H1, F ] 6= 0, the solution of

[ p′

t
] is at most a point (i.e., a set of measure zero). This implies that with [H1, F ] 6= 0

and with the distribution of [ p′

t
], the solution [ p′

t
] occurs with probability zero.
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Then, with full rank B̆, when we consider the cases α = 0 and α 6= 0 (as in the

proof for Lemma 6), it can be seen that we cannot have [H1, F ] = 0 for any nonzero

[ α
β ], for any s and for any nonzero δ, implying that [C, D] is full rank w.p.1 for all

k and l 6= k.
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