Compressive Phase Retrieval via Generalized Approximate Message Passing

Philip Schniter

Joint work with Sundeep Rangan

Supported in part by NSF grant CCF-1018368 and DARPA/ONR grant N66001-10-1-4090.

FFT Workshop – 2/23/2013
Phase Retrieval

- **Goal**: Recover signal $x_0 \in \mathbb{C}^n$ from m magnitude-only measurements
 \[y = |Ax_0 + w|, \]
 where $A \in \mathbb{C}^{m \times n}$ is a known linear transform and $w \in \mathbb{C}^m$ is noise.

- **Motivation**: In many applications, it feasible to measure the intensity, but not the phase, of the Fourier transform of the signal-of-interest:
 - X-ray crystallography,
 - transmission electron microscopy,
 - coherent diffractive imaging,
 - astronomical imaging, etc.

- **Feasibility**: To make the solution to $y = |Ax|$ unique (up to a global phase) w.p.1, $m = 4n - o(n)$ i.i.d Gaussian measurements are necessary [Heinosaari/Mazzarella/Wolf’11] and $m = 4n - 2$ are sufficient [Balan/Casazza/Edidin’06].
Phase Retrieval: Classical Approaches

Most classical approaches are iterative in nature. For example,

- Alternate between...
 - projecting $A\hat{x}$ onto the magnitude constraint y, yielding \hat{z},
 - projecting $A^+\hat{z}$ onto an apriori known support set, yielding \hat{x}.

However, due to the non-convexity of the first projection, it is easy for such algorithms to get trapped in local minima.
Phase Retrieval: Convex Approaches

Recently, some convex relaxations have been proposed.

– Noting that $y_i^2 = |a_i^H x|^2 = \text{tr}(a_i a_i^H X)$ for $X = xx^H$, pose as “min $X \succeq 0 \text{ rank}(X)$ s.t. $\text{tr}(a_i a_i^H X) = y_i^2$ for $i = 1...m$.” (NP hard!)

Relax to “min $\text{tr}(X)$ s.t. $\text{tr}(a_i a_i^H X) = y_i^2$ for $i = 1...m$,” (convex!) known as PhaseLift [Candes/Strohmer/Voroninski’11].

– Another semidefinite program (with similar performance) known as PhaseCut was proposed in [Waldspurger/D’Aspremont/Mallat’12].

It was recently shown [Candes/Li’12] that

- with very high probability, PhaseLift perfectly recovers an arbitrary x from $m \geq c_0 n$ noiseless measurements, where c_0 is a constant,
- and also that PhaseLift can be made robust to noise.
Recall that $m \geq 4n - o(n)$ magnitude measurements are needed for $y = |Ax|$ to have a unique (up to a phase) solution for $x \in \mathbb{C}^n$.

Sometimes we can only afford $m \ll 4n$ magnitude measurements, in which case the problem becomes one of compressive phase retrieval.

For successful compressive phase retrieval (CPR), one needs to leverage additional structure in x, such as sparsity.
Compressive Phase Retrieval: Prior Work

- Assuming knowledge of $\|x_0\|_1$, [Moravec/Romberg/Baraniuk’07]
 - appended this constraint onto the classical RAAR algorithm, and
 - used RIP-based arguments to establish that $m \gtrsim k^2 \log(n/k^2)$ magnitude measurements suffice for recovery.

However, the algorithm was prone to local minima and slow convergence. Also, knowledge of $\|x_0\|_1$ is rarely available in practice.

- Taking a convex approach, [Ohlsson/Yang/Dong/Sastry’12] proposed the following generalization of PhaseLift, which they call CPRL:

$$\min_{X \succeq 0} \text{tr}(X) + \lambda \|X\|_1 + \mu \sum_{i=1}^{m} \left| \text{tr}(a_i a_i^H X) - y_i^2 \right|^2,$$

and performed both RIP and mutual coherence analyses. Seems promising...
Bring out the GAMP

Zed: Bring out the Gimp.

Maynard: Gimp’s sleeping.

Zed: Well, I guess you’re gonna have to go wake him up now, won’t you?

We propose a new approach to CPR based on generalized approximate message passing (GAMP).

Numerical results show

- excellent phase transitions,
- excellent NMSE & robustness to noise,
- excellent runtime,

enabling, e.g., practical compressive image retrieval.
For these numerical results we generated random...

- signals \mathbf{x}_0 as k-sparse, $n=512$-length, Bernoulli-circular-Gaussian,
- matrices $\mathbf{A} = \Phi \mathbf{F}$, where $\Phi \in \mathbb{C}^{m \times n}$ is i.i.d circular Gaussian and \mathbf{F} is the $n \times n$ DFT matrix,
- noise \mathbf{w} as circular white Gaussian (added prior to taking magnitude),

and we monitored the phase-corrected normalized reconstruction MSE

$$NMSE \triangleq \min_{\theta} \frac{||\hat{\mathbf{x}} - e^{i\theta} \mathbf{x}_0||_2^2}{||\mathbf{x}_0||_2^2}.$$
Phase transition

PR-GAMP’s empirical success rate, averaged over 500 realizations, was

\[\text{prGAMP success@} -40\text{dB, rdft, N=512, snr=100dB, avg=500} \]

where success \(\triangleq \{ \text{NMSE} < 10^{-4} \} \).

Philip Schniter (OSU)
Comparison to phase-oracle GAMP

Comparing the 50%-success contours of PR- and phase-oracle GAMP:

![Graph showing comparison between PR-GAMP and phase-oracle GAMP.]

we see that PR-GAMP requires about $4 \times$ the number of measurements as phase-oracle GAMP. (Very interesting!)
PR-GAMP’s median NMSE, measured over the same 500 realizations, was showing that recovery is very accurate above the phase transition.
Noise Robustness of PR-GAMP

The median NMSE, measured over 2000 realizations:

![Graph showing NMSE vs SNR](image)

shows that PR-GAMP loses about 3 dB at medium-to-high SNR.
Comparison to CPRL [Ohlsson/Yang/Dong/Sastry’12]

Empirical success rate (and median runtime) over 100 realizations:

<table>
<thead>
<tr>
<th></th>
<th>((m, n) = (20, 32))</th>
<th>((m, n) = (30, 48))</th>
<th>((m, n) = (40, 64))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = 1:)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPRL</td>
<td>0.96 (4.9 sec)</td>
<td>0.97 (51 sec)</td>
<td>0.99 (291 sec)</td>
</tr>
<tr>
<td>PR-GAMP</td>
<td>0.83 (0.4 sec)</td>
<td>0.94 (0.3 sec)</td>
<td>0.99 (0.3 sec)</td>
</tr>
<tr>
<td>(k = 2:)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPRL</td>
<td>0.55 (5.8 sec)</td>
<td>0.55 (58 sec)</td>
<td>0.58 (316 sec)</td>
</tr>
<tr>
<td>PR-GAMP</td>
<td>0.72 (0.4 sec)</td>
<td>0.92 (0.3 sec)</td>
<td>1.0 (0.3 sec)</td>
</tr>
</tbody>
</table>

Note:

- CPRL runtime limited us to these **toy problems**.
- CPRL succeeds when sparsity \(k = 1\), but not when \(k \geq 2\). GAMP instead suffers when problem dimensions are very small.
- CPRL’s runtime grows very quickly with problem dimensions! GAMP’s runtime is invariant to the dimension of these toy problems.
Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:

original image

PR-GAMP (-29.7dB NMSE)

PR-GAMP runtime: only 11.1 sec.
Compressive Image Recovery: Details

- Measurements were collected using
 \[A = \begin{bmatrix} B_1 & B_2 \end{bmatrix} \begin{bmatrix} F & F \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} \]

 with banded i.i.d-Gaussian \(B_i \) (10 nonzero entries per column), Fourier \(F \), and binary masks \(M_i \).

- Over 100 random measurement & noise realizations, we observed
 - 89% success rate, where “success” meant \(\text{NMSE} < -27 \text{ dB} \), and
 - median runtime of 13.4 sec.
So what’s the approach?

1. Formulate as a **Bayesian inference** problem by assuming
 - \(y_i = |\langle A x \rangle_i + w_i | \quad \forall i \)
 - \(w_i \sim \mathcal{CN}(0, \nu^w) \) i.i.d
 - \(p(x) = \prod_j p_X(x_j) \) for sparsity promoting \(p_X \)

2. Use **GAMP**, a state-of-the-art **loopy belief propagation** method, to approximate the marginal posterior pdfs \(\{p_{X_j|Y(\cdot|y)}\}_{j=1}^n \).
Generalized Approximate Message Passing (GAMP)

- The evolution of GAMP:
 - The original AMP [Donoho/Maleki/Montanari’09] solves the LASSO problem \(\min_x \| y - A x \|_2^2 + \lambda \| x \|_1 \) popular in compressive sensing, i.e., MAP estimation of i.i.d Laplacian signal, thru dense \(A \), in AWGN.
 - The Bayesian AMP [Donoho/Maleki/Montanari’10] extended the above to a generic i.i.d signal prior and MMSE estimation.
 - The generalized AMP [Rangan’10] extended the above to generic i.i.d likelihoods \(p_{Y|Z}(y_i | a_i^H x) \), for both MAP and MMSE inference.

- In the end, GAMP produces a sophisticated iterative thresholding alg, whose complexity is dominated by one application of \(A \) and \(A^H \) per iteration with relatively few iterations (e.g., tens). Very fast!

- Rigorous large-system analyses (under i.i.d sub-Gaussian \(A \)) have established that GAMP follows a state-evolution trajectory whose fixed-points have nice properties [Rangan’10], [Javanmard/Montanari’12].
GAMP Heuristics (Sum-Product)

1. Message from y_i node to x_j node:
 \[
 p_{i \rightarrow j}(x_j) \propto \int \left[p_{Y|Z}(y_i; \sum_r a_{ir} x_r) \prod_{r \neq j} p_{i \leftarrow r}(x_r) \right] \text{d}x_r
 \]
 \[
 \approx \int p_{Y|Z}(y_i; z_i) \mathcal{N}(z_i; \hat{z}_i(x_j), \nu_i^z(x_j)) \approx \mathcal{CN}
 \]

 To compute $\hat{z}_i(x_j), \nu_i^z(x_j)$, the means and variances of $\{p_{i \leftarrow r}\}_{r \neq j}$ suffice, thus Gaussian message passing!

 Remaining problem: we have $2mn$ messages to compute (too many!).

2. Exploiting similarity among the messages $\{p_{i \leftarrow j}\}_{i=1}^m$, GAMP employs a Taylor-series approximation of their difference, whose error vanishes as $m \rightarrow \infty$ for dense A (and similar for $\{p_{i \rightarrow j}\}_{j=1}^n$ as $n \rightarrow \infty$).

 Finally, need to compute only $O(m+n)$ messages!
Require: Matrix A, sum-prod $\in \{\text{true, false}\}$, initializations \hat{x}^0, ν_x^0

$t = 0$, $\hat{s}^{-1} = 0$, $\forall i,j : S_{ij} = \vert A_{ij} \vert^2$

repeat

$\nu_p^t = S \nu_x^t$, $\hat{p}^t = A \hat{x}^t - \hat{s}^{t-1}.\nu_p^t$ (gradient step)

if sum-prod then

$\forall i : \nu_z^t_i = \text{var}(Z_i \mid y_i)$, $\hat{z}^t_i = E(Z_i \mid y_i)$ for $p_{Z_i \mid Y_i}(z \mid y) \propto p_{Y \mid Z}(y \mid z)CN(z; \hat{p}_i^t, \nu_{p_i}^t)$

else

$\forall i : \nu_z^t_i = \nu_{p_i}^t \text{prox}_{-\nu_{p_i}^t} \log p_{Y \mid Z}(y_i,.) (\hat{p}_i^t)$, $\hat{z}^t_i = \text{prox}_{-\nu_{p_i}^t} \log p_{Y \mid Z}(y_i,.) (\hat{p}_i^t)$,

end if

$\nu_s^t = (1 - \nu_z^t./\nu_p^t)./\nu_p^t$, $\hat{s}^t = (\hat{z}^t - \hat{p}^t)./\nu_p^t$ (dual update)

$\nu_r^t = 1./\left(S^T \nu_s^t\right)$, $\hat{r}^t = \hat{x}^t + \nu_r^t.A^T \hat{s}^t$ (gradient step)

if sum-prod then

$\forall j : \nu_{x_j}^t = \text{var}(X_j \mid \hat{r}_j^t)$, $\hat{z}_j^t = E(X_j \mid \hat{r}_j^t)$ for $p_{X_j \mid R_j}(x \mid r) \propto p_{X}(x)CN(x; r, \nu_{r_j}^t)$

else

$\forall j : \nu_{x_j}^{t+1} = \nu_{r_j}^t \text{prox}_{-\nu_{r_j}^t} \log p_X(.) (\hat{r}_j^t)$, $\hat{x}_{j}^{t+1} = \text{prox}_{-\nu_{r_j}^t} \log p_X(.) (\hat{r}_j^t)$,

end if

$t \leftarrow t + 1$

until Terminated

Note connections to Arrow-Hurwicz, primal-dual, ADMM, proximal FB splitting,...
To apply GAMP to phase retrieval, we need a likelihood function \(p_{Y|Z}(\cdot|\cdot) \) relating the noisy magnitude measurements \(\{y_i\}_{i=1}^{m} \) to the corresponding noiseless transform outputs \(\{z_i\}_{i=1}^{m} \) (recalling that \(z_i \triangleq [Ax]_i \)).

- When \(Z \) and \(W \) are both circular, one can show that
 \[
 Y = |Z + W| \iff Y = e^{j\Theta}(Z + W)\bigg|_{\Theta \sim U[0,2\pi)}
 \]
 in the sense that both models yield the same \(p_{Z|Y}(\cdot|\cdot) \).

- Assuming \(W \sim \mathcal{CN}(0, \nu^w) \), we then margin out \(\Theta \) to obtain
 \[
 p_{Y|Z}(y|z) = \frac{1}{\pi \nu^w} e^{-\frac{(|y| - |z|)^2}{\nu^w}} I_0(\rho) e^{-\rho} \quad \text{for} \quad \rho \triangleq \frac{2|y| |z|}{\nu^w},
 \]
 where \(I_0(\cdot) \) is the 0th-order modified Bessel function of the first kind.

Other models are also possible, e.g., \(Y = |Z| + W \) or \(Y = |Z|^2 + W \).
GAMP for Phase Retrieval: Signal Prior

For compressive phase retrieval, we need a structured signal prior $p_X(\cdot)$.

- **Separable priors** constrain $p_X(x) = \prod_{j=1}^{n} p_X(x_j)$ with, e.g.,
 - sparsity promotion: $p_X(x_j) = \lambda f_X(x_j) + (1-\lambda)\delta(x_j)$
 - real-valuedness: $p_X(x_j)$ supported on $x_j \in \mathbb{R}$
 - non-negativity: $p_X(x_j)$ supported on $x_j \in \mathbb{R}^+ \cup \{0\}$

 and are directly supported by GAMP.

- **Non-separable priors** model structure across $\{x_j\}$, e.g.,
 - structured sparsity:

 $\begin{cases}
 p_X(x) = \sum_{s \in \{0,1\}^n} p_S(s) \prod_{j=1}^{n} p_X|S(x_j|s_j) \\
 p_S(s) = \text{block, Markov field/chain/tree, ...}
 \end{cases}$

 but are not directly supported by GAMP.

- In any case, we want the assumed $p_X(\cdot)$ to match the empirical distribution of the true $\{x_j\}_{j=1}^{n}$, which is apriori unknown.
The basic GAMP algorithm is limited by two major assumptions:
1. separable $p(y|z) = \prod_i p_{Y_i|Z_i}(y_i|z_i)$ and $p(x) = \prod_j p_{X_j}(x_j)$
2. that are well matched to the data.

The EM-turbo-GAMP framework circumvents these limitations by learning [Vila/Schniter’12] possibly non-separable [Schniter’10] priors:
PR-GAMP: Ongoing Work

PR-GAMP is a work-in-progress. Things we are working on include:

- Derivation of the state evolution.
- Automatic learning of signal prior $p_X(\cdot)$ via the EM-GM approach from [Vila/Schniter’12].
- Exploitation of the hidden-Markov-tree support structure of natural images via the turbo approach from [Som/Schniter’10].
- MAP formulation of PR-GAMP.
- Connections to optimization algorithms.
(Compressive) phase retrieval is a longstanding problem that is experiencing a rebirth through compressive sensing and convex relaxation.

We proposed a new approach to CPR based on generalized approximate message passing (GAMP).

Empirical results show an excellent phase transition (4× meas of phase-oracle), excellent noise robustness (∼3 dB worse than phase-oracle), and excellent runtime (many orders of magnitude faster than convex relaxation).

As a practical demonstration, we accurately recovered a 64k-pixel image from 32k noisy measurements in only 11 seconds.
All of these methods are integrated into **GAMPmatlab**: http://sourceforge.net/projects/gampmatlab/

Thanks!
Bibliography