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Introduction Traditional sensing

Traditional sensing

We’d like to capture analog signals from the physical world and store
them digitally on computers for subsequent processing, transmission,
or reconstruction.

Examples of “signals” include
speech or audio waveforms,
images (i.e., 2D waveforms),
video (i.e., 3D waveforms).

The Nyquist theorem says that any bandlimited (i.e., smooth) signal
can be sampled (giving a sequence) and then perfectly reconstructed.

The Nyquist rate is the minimum sampling rate (i.e., # samples per
unit time) needed for perfect reconstruction.
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Introduction Traditional sensing

Traditional compression

Some signals are intrinsically simple and thus can be compressed without
much loss of quality.

Audio: MP3 gives roughly 10:1 compression relative to CD (=Nyquist)
Images: JPEG gives roughly 25:1 compression relative to Nyquist
Videos: MPEG gives roughly 100:1 compression relative to Nyquist

Compression facilitates efficient storage or transmission:

{s(t)}t∈[0,T )
Nyquist
sample compress

{sn}Nn=1 store or
transmit

{ck}Kk=1
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Introduction Compressive sensing

Compressive sensing

Sometimes Nyquist sampling is too expensive.

For compressible signals, Nyquist sampling is overkill.

Can we do “compressive” sampling? Yes!

Typical ingredients are:
randomly designed linear measurements
sparse signal representation
sophisticated signal reconstruction
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Introduction Compressive sensing

Motivation

In some applications, measurements are costly:

Magnetic resonance imaging:
scan time ≈ 30 minutes
scan time proportional to # samples taken

Imaging outside visible spectrum:
CMOS doesn’t work
high cost per pixel

Wireless communication:
pilots inserted to measure channel
more pilots means less payload
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Introduction Compressive sensing

System architecture

Classical approach:

{s(t)}t∈[0,T )
Nyquist
sample compress

{sn}Nn=1 reconstruct
{ck}Kk=1

New approach:

{s(t)}t∈[0,T )
compressively

sample reconstruct
{ym}Mm=1

Nyquist rate N
T � compressive

sampling rate M
T & information rate K

T
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Introduction Compressive sensing

Principal challenges in compressive sensing

{s(t)}t∈[0,T )
compressively

sample reconstruct
{ym}Mm=1

1 Design of the compressive-measurement scheme

2 Reconstruction from the compressed measurements
We focus on recovering the Nyquist-rate signal samples {sn}Nn=1

Could easily reconstruct analog {s(t)}t∈[0,T ) from Nyquist samples.
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Compressive-measurement system design Linear measurements

Simplifying assumptions

1 For now, assume noiseless linear measurements, e.g.,

ym =

∫ T

0

φm(t) s(t) dt, m = 1, . . . ,M

2 Also assume signal s(t) is bandlimited, in which case Nyquist says

s(t) =

N∑
n=1

sn sinc
( t

Ts
− n+ 1

)
, t ∈ [0, T ).

Putting these together, we get the convenient discrete representation

ym =

N∑
n=1

sn

∫ T

0

φm(t) sinc
( t

Ts
− n+ 1

)
dt︸ ︷︷ ︸

, Φm,n

or, in matrix/vector form, y = Φs for s ∈ RN and y ∈ RM .
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Compressive-measurement system design Linear measurements

Design of linear measurements

Goal: design the matrix Φ ∈ RM×N so that
1 any signal s in class S can be reconstructed from y = Φs,
2 the number of measurements M is minimal.

Key challenge:
There are fewer measurements M than unknowns N .

⇒ Many s satisfy the equation y = Φs. How to find the correct s?

Solution:
If the signals in class S are sufficiently structured, only one of the s
satisfying “y = Φs” will be valid!
Examples of structured signals include sparse signals, signals on
manifolds, signals that can be expressed as low-rank matrices, etc.
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Compressive-measurement system design Sparsity

Sparsity

Many real-world signals are approximately sparse in a known basis.
For example, natural images are sparse in the discrete wavelet
transform (DWT) basis:

Typically: 99% signal energy captured by only 2.5% of DWT coefficients!
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Compressive-measurement system design Sparsity

K-sparse in the dictionary Ψ

We say that a signal class S is K-sparse in the dictionary Ψ if each
s ∈ S can be written as

s = Ψx

for some K-sparse vector x (i.e., x has at most K nonzero elements).

Usually orthonormal dictionaries Ψ are used (e.g., DWT, DCT, DFT),
but overcomplete dictionaries may also be considered.

Geometrically, a K-sparse vector x ∈ RN lives in a
union of

(
N
K

)
subspaces, each of dimension K:
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Compressive-measurement system design Sparsity

Merging sparsity with linear compression

Recall. . .
Linear measurement model: y = Φs for Φ ∈ RM×N

Sparse signal model: s = Ψx for K-sparse x ∈ RN

Together. . .
Compressive sensing model: y = ΦΨ︸︷︷︸

, A

x for A ∈ RM×N

Questions:
1 What properties of A ensure the recovery of x?
2 Given dictionary Ψ, how can we design Φ to ensure agood A?

Phil Schniter (OSU/Duke) A Primer on Compressive Sensing UNC’16 14 / 35



Compressive-measurement system design RIP and randomness

Restricted isometry property

Recall model: y = Ax for A ∈ RM×N and K-sparse x ∈ RN .

Note: if signals x1 6= x2 map to the same y, they can’t be recovered!

In general, for our measurement system to be information preserving,
we want that ‖x1−x2‖2 ≈ ‖Ax1−Ax2‖2 for all K-sparse x1,x2, or

1− δ ≤ ‖Ad‖
2
2

‖d‖22
≤ 1 + δ for all 2K-sparse d. “RIP”
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Compressive-measurement system design RIP and randomness

Ensuring RIP with randomness

Testing a given matrix for RIP is an NP-hard (combinatorial) problem.

Fortunately, if A is randomly drawn with independent zero-mean
sub-Gaussian entries (e.g., normal, ±1), then with high probability
it will satisfy RIP if

M ≥ O
(
K log

N

K

)
.

Similarly, if Φ is constructed randomly in the same way, then
A = ΦΨ will satisfy RIP for any orthonormal Ψ.

In practice, semi-random Φ are preferable, e.g.,

Create Φ = JFD, where D is a diagonal matrix with random ±1s,
F is the N -FFT matrix, and J randomly selects M outputs.
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Compressive-measurement system design Practical examples

Example: Single-pixel camera (Rice Univ.)
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Compressive-measurement system design Practical examples

Other examples

Random demodulator:

Compressive multiplexor:
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Sparse-signal recovery schemes

Signal recovery from compressive measurements

{s(t)}t∈[0,T )
compressively

sample reconstruct
{ym}Mm=1

So far we’ve talked about the design of the compressive sampler.
Now we’ll shift focus to signal reconstruction from compressed y.

In particular, we’ll talk about how to reconstruct the Nyquist-rate
signal samples s from

y = Φs + w with additive measurement noise w!
= ΦΨx+w

= Ax+w where x is approximately K-sparse

In fact, recovering x is enough, since we can then construct s = Ψx.
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Sparse-signal recovery schemes

Sparse reconstruction

Goal: estimate x ∈ RN from y = Ax+w ∈ RM where
x is approximately K-sparse (although K is unknown)

M � N but M ≥ K
A is RIP-like (all subsets of K columns are nearly orthonormal)

Popular methods:
Convex methods based on `1-regularization

Greedy search

Bayesian inference
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Sparse-signal recovery schemes Convex methods

Best sparse fit — the `0 technique

Find the sparsest x that explains y up to a specified tolerance of ε:

x̂ = arg min
x
‖x‖0︸ ︷︷ ︸

# nonzero coefs

s.t. ‖y −Ax‖2 ≤ ε.

Unfortunately, this is NP-hard; we’d need to check all
(
N
K

)
≈ NK possible

supports!

Let’s think about this problem geometrically. . .
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Sparse-signal recovery schemes Convex methods

A toy example

Consider y[
•
•

] = A[
• • •
• • •

] x••
•


+ w[
•
•

] with 1-sparse
M = 2
N = 3
K = 1

x.

The set of x such that ‖y −Ax‖2 ≤ ε is described by an ε-thin rod.

x1
x2

x3

{x : ‖y −Ax‖2 ≤ ǫ}

1

The `0 technique would check increasingly large support hypotheses
until it finds one whose signal subspace intersects the ε-rod. In this
example, it would recover the true x if ε = 0.
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Sparse-signal recovery schemes Convex methods

The geometry of constrained `p-minimization

Now consider, for some fixed p > 0, the optimization problem:
x̂ = arg min

x
‖x‖p︸ ︷︷ ︸

p
√∑

n |xn|p

s.t. ‖y −Ax‖2 ≤ ε.

The solution can be found by growing the `p-ball until it touches the ε-rod:

This suggests to use the `1 norm as a surrogate for the `0 norm!
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Sparse-signal recovery schemes Convex methods

LASSO

x̂ = arg min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ ε

Convex! Can be solved very efficiently.

For A satisfying 2K-RIP, LASSO guarantees that

‖x̂− x‖2 ≤ C1√
K
‖x− xK‖1 + C2‖w‖2

where xK is the best K-sparse approximation of x and C1, C2 are
constants that depend on the RIP δ. Wow!

In the special case when x is K-sparse, this simplifies to

‖x̂− x‖2 ≤ C2‖w‖2.

Phil Schniter (OSU/Duke) A Primer on Compressive Sensing UNC’16 25 / 35



Sparse-signal recovery schemes Greedy search

Greedy search

Main ideas:
If we can correctly recover the support Λ of x (i.e., the locations of
nonzeros), then determining the non-zero amplitudes is easy, e.g.,

xΛ = (AH
ΛAΛ)−1AH

Λ y

(least squares)

Estimate the support sequentially:
Find the column of A most “similar” to y and store its index.
Subtract the effect of this column from y.
Repeat (until residual is sufficiently small)!

Famous algorithms include MP, OMP, IHT, CoSaMP, Subspace Pursuit
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Sparse-signal recovery schemes Bayesian methods

Bayesian Methods

In the Bayesian approach, one . . .
models the signal using a prior pdf p(x),

models the measurement process using a likelihood function p(y|x),

performs inference via Bayes rule, yielding the posterior pdf

p(x|y) = Z−1p(y|x)p(x) where Z is a scaling constant,

often summarizes the posterior pdf by a point estimate like

x̂ =

∫
x p(x|y) dx MMSE estimate

x̂ = arg max
x

p(x|y) MAP estimate

and possible other statistics that quantify estimate uncertainty.

Phil Schniter (OSU/Duke) A Primer on Compressive Sensing UNC’16 27 / 35



Sparse-signal recovery schemes Bayesian methods

Bayesian interpretation of LASSO

If we assume . . .
additive white Gaussian noise of variance σ2

i.i.d Laplacian signal with rate λ/σ2

then
likelihood: p(y|x) = 1

(2πσ2)M/2 exp(− 1
2σ2 ‖y −Ax‖22))

prior: p(x) = 1
(2σ2/λ)M

exp(− λ
σ2 ‖x‖1)

for which the maximum aposteriori (MAP) estimate is

x̂ = arg max
x

p(x|y) = arg max
x

log
(
Z−1p(y|x)p(x)

)
= arg min

x

1
2‖y −Ax‖22 + λ‖x‖1

which is an unconstrained version of the LASSO problem.
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Sparse-signal recovery schemes Bayesian methods

The relevance vector machine (RVM)

The RVM is based on the conditionally Gaussian priors

p(x|α) =
∏N
n=1N (xn; 0, α−1

n ) and p(α) =
∏N
n=1 Γ(αn; 0, 0)

p(w|β) ∼∏M
m=1N (wm; 0, β−1) and β ∼ Γ(0, 0)

Note that, as “precision” αn →∞, the coefficient xn is zeroed.

The conditional posterior is (due to Gaussianity) simply

p(x|y,α, β) ∼ N (µ,Σ) for

{
µ = βΣATy

Σ =
(
βATA+D(α)

)−1
.

In practice, {α, β} are estimated using the EM algorithm and then
plugged into µ and Σ to approximate the posterior p(x|y).

The RVM (also known as “SBL” and “BCS”) is relatively slow.
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Sparse-signal recovery schemes Bayesian methods

Other Bayesian methods

Bayesian matching pursuits:
Greedy methods that use probabilistic support selection.

Approximate message passing (AMP):
Inspired by methods from statistical physics and information theory.
Near-optimal in terms of speed and accuracy if A is large & random.
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Sparse-signal recovery schemes Phase transition curves

Phase transition curve (PTC) under large random A

When examining a given algorithm’s performance as a function of
sampling ratio M

N and sparsity ratio K
M , one finds a very sharp transition

between perfect success and complete failure as N,M,K →∞.

LASSO:

K
M ↑ → M

N

In some cases (e.g., LASSO), the PTC can be determined analytically.

Phil Schniter (OSU/Duke) A Primer on Compressive Sensing UNC’16 31 / 35



Sparse-signal recovery schemes Phase transition curves

Algorithm comparison 1

Recall: higher PTC = better algorithm.
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EM−GM−AMP

RVM via BCS

Subspace Pursuit

OMP

LASSO via AMP

LASSO theory

Here, the non-zero elements of x were drawn independent zero-mean Gaussian.
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Sparse-signal recovery schemes Phase transition curves

Algorithm comparison 1

Recall: higher PTC = better algorithm.
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LASSO theory

Here, the non-zero elements of x were = 1.
More structure ⇒ possibility for better performance.
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Conclusions

Conclusions

Compressive sensing . . .
merges sampling and signal compression into a single operation

is motivated by applications where cost-per-sample is high

uses random linear measurements

exploits the inherent sparsity of natural signals

requires sophisticated algorithms for signal reconstruction.
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