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Introduction Traditional sensing

Traditional sensing

m We'd like to capture analog signals from the physical world and store
them digitally on computers for subsequent processing, transmission,
or reconstruction.

m Examples of “signals” include
m speech or audio waveforms,
m images (i.e., 2D waveforms),

m video (i.e., 3D waveforms).

m The Nyquist theorem says that any bandlimited (i.e., smooth) signal
can be sampled (giving a sequence) and then perfectly reconstructed.

m The Nyquist rate is the minimum sampling rate (i.e., # samples per
unit time) needed for perfect reconstruction.
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Introduction Traditional sensing

Traditional compression

Some signals are intrinsically simple and thus can be compressed without
much loss of quality.

m Audio: MP3 gives roughly 10:1 compression relative to CD (=Nyquist)
m Images: JPEG gives roughly 25:1 compression relative to Nyquist
m Videos: MPEG gives roughly 100:1 compression relative to Nyquist

Compression facilitates efficient storage or transmission:
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Introduction Compressive sensing

Compressive sensing

m Sometimes Nyquist sampling is too expensive.
m For compressible signals, Nyquist sampling is overkill.
m Can we do “compressive’ sampling? Yes!

m Typical ingredients are:
m randomly designed linear measurements
m sparse signal representation

m sophisticated signal reconstruction
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Introduction Compressive sensing

Motivation
In some applications, measurements are costly:

m Magnetic resonance imaging:

m scan time = 30 minutes
m scan time proportional to # samples taken

m Imaging outside visible spectrum:

m CMOS doesn’t work
m high cost per pixel

m Wireless communication:

m pilots inserted to measure channel
m more pilots means less payload

o,
_
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System architecture

m Classical approach:
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Introduction Compressive sensing

Principal challenges in compressive sensing

compressively

{s(t)}te0,r) — sample

{ym}%:l

reconstruct

—

Design of the compressive-measurement scheme

Reconstruction from the compressed measurements

m We focus on recovering the Nyquist-rate signal samples {s,, })_;
m Could easily reconstruct analog {s(t) };¢[o,7) from Nyquist samples.
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Compressive-measurement system design Linear measurements

Simplifying assumptions
For now, assume noiseless linear measurements, e.g.,
T
Ym z/ dm(t)s(t)dt, m=1,...,.M
0
Also assume signal s(t) is bandlimited, in which case Nyquist says
al t
=S s, sinc(— — 1),15 ).
s(t) ;s smc(TS n+ €[0,7)

Putting these together, we get the convenient discrete representation

N T "
?Jm:ZSn/ O (t) sinc (?—n—l—l) dt
0 s

n=1

A
= ém,n

or, in matrix/vector form, for s € RN and y € RM.
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Compressive-measurement system design Linear measurements

Design of linear measurements

Goal: design the matrix ® € RM*N 5o that

any signal s in class S can be reconstructed from y = ®s,

the number of measurements M is minimal.

Key challenge:
There are fewer measurements M than unknowns N.

= Many s satisfy the equation y = ®s. How to find the correct s?

Solution:

m If the signals in class S are sufficiently structured, only one of the s
satisfying “y = ®s" will be valid!

m Examples of structured signals include sparse signals, signals on
manifolds, signals that can be expressed as low-rank matrices, etc.
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SRR
Sparsity

m Many real-world signals are approximately sparse in a known basis.
m For example, natural images are sparse in the discrete wavelet

transform (DWT) basis:

wavelet coeffs

(sorted)

1 megapixel image

zoom in

(log, , sorted)

Typically: 99% signal energy captured by only 2.5% of DWT coefficients!
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S
K-sparse in the dictionary W

m We say that a signal class S is K-sparse in the dictionary ¥ if each
s € S can be written as
s=Wx

for some K-sparse vector x (i.e.,  has at most K nonzero elements).

m Usually orthonormal dictionaries ¥ are used (e.g., DWT, DCT, DFT),
but overcomplete dictionaries may also be considered.

m Geometrically, a K-sparse vector € RY lives in a
union of (%) subspaces, each of dimension K:
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Compressive-measurement system design Sparsity

Merging sparsity with linear compression

Recall. ..

m Linear measurement model: y = ®s for & ¢ RM*N

m Sparse signal model: s =Wx for K-sparse x ¢ RV

Together. ..
m Compressive sensing model: y = ®¥ x for A € RM*N
£ A
Questions:

What properties of A ensure the recovery of x?
Given dictionary ¥, how can we design ® to ensure agood A7

UNC'16 14 / 35
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P C T
Restricted isometry property

m Recall model: |y = Az for A € RM*N and K-sparse & € RV,

m Note: if signals 1 # @2 map to the same y, they can't be recovered!

RA\I

‘ /“I‘Rl A /
A]Q/ / Az

Az

m In general, for our measurement system to be information preserving,
we want that ||z — (EQHQ |Axy — Axsl|2 for all K-sparse @1, xs, or

1-6< \dHQ <146 forall 2K-sparse d. “RIP"
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Compressive-measurement system design RIP and randomness

Ensuring RIP with randomness

m Testing a given matrix for RIP is an NP-hard (combinatorial) problem.

m Fortunately, if A is randomly drawn with independent zero-mean
sub-Gaussian entries (e.g., normal, +1), then with high probability
it will satisfy RIP if

N
M > 0(Klog - ).

m Similarly, if ® is constructed randomly in the same way, then
A = ®W will satisfy RIP for any orthonormal ¥.

m In practice, semi-random ® are preferable, e.g.,

Create ® = JF D, where D is a diagonal matrix with random =+1s,
F' is the N-FFT matrix, and J randomly selects M outputs.
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Compressive-measurement system design Practical examples

Example: Single-pixel camera (Rice Univ.)

single photon
detector

image
reconstruction
or
processing
random ((
pattern on __ o eatFr— =
DSP
DMD array Revr
target 11000 measurements 1300 measurements
65536 pixels (16%) (2%)

RERER
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Compressive-measurement system design Practical examples

Other examples

Random demodulator: Integrator Sample-and-Hold ~Quantizer
z(t) X pe(t) K
z(t) / > y[n]
pelt)
Pseudorandom|
Number  [«Seed
Generator

Compressive multiplexor: ¥ [®F
Tuner xl(t)

x4(t) is
W/2 Hz wide

= 20

fonip = W Hz

A
m pa(t)
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Sparse-signal recovery schemes

Signal recovery from compressive measurements

M
compressively {Ymtm=1

{s(t) hefo,r) — sample

reconstruct —

m So far we've talked about the design of the compressive sampler.
Now we'll shift focus to signal reconstruction from compressed y.

m In particular, we'll talk about how to reconstruct the Nyquist-rate
signal samples s from

y==®s +w with additive measurement noise w!
=®¥x 4w
=Azx+w where x is approximately K-sparse

In fact, recovering @ is enough, since we can then construct s = Y.
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Sparse-signal recovery schemes

Sparse reconstruction

Goal: estimate € RY from y = Ax + w € RM where

m x is approximately K-sparse (although K is unknown)
m M < NbutM>K

m A is RIP-like (all subsets of K columns are nearly orthonormal)

Popular methods:

m Convex methods based on /;-regularization
m Greedy search

m Bayesian inference
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ST
Best sparse fit — the ¢, technique

Find the sparsest x that explains y up to a specified tolerance of ¢:
T =argmin |z|p st |ly— Az|s <e.
TN

#£ nonzero coefs

Unfortunately, this is NP-hard; we'd need to check all (%) ~ NX possible
supports!

Let's think about this problem geometrically. ..
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Sparse-signal recovery schemes Convex methods

A toy example

Consider y = A x + w with 1-sparse .
° o o offe ° M=2
I O M N e
° K=1

m The set of x such that ||y — Az||2 < € is described by an e-thin rod.
T3
Ty

2y~
1@: |ly—Az|z <€}

m The /g technique would check increasingly large support hypotheses
until it finds one whose signal subspace intersects the e-rod. In this
example, it would recover the true x if € = 0.
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x =argmin |z,
€
2 |znl?

P =/f

The geometry of constrained ¢,-minimization
Now consider, for some fixed p > 0, the optimization problem:
st. |ly — Axl]2 <e.
~——
it touches the e-rod:

~
—/
/)
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The solution can be found by growing the /,-ball until
pk1 p=1
\\

// R
- I =

= N :

— - 7\7777///
— |
Solution usually sparse Solution is not sparse;
and problem is convex! < LS when e = 0.

Solution definitely sparse
A Primer on Compressive Sensing

but problem is NP hard
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Sparse-signal recovery schemes Convex methods

T = argmin ||z|; st |y— Ax|2<e
X
m Convex! Can be solved very efficiently.

m For A satisfying 2K-RIP, LASSO guarantees that
|2 — )2 < Fhlle -z + Callwllz

where x ¢ is the best K-sparse approximation of « and C1, C5 are
constants that depend on the RIP §. Wow!

m In the special case when x is K-sparse, this simplifies to

& — 22 < Caflwlla-
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Sparse-signal recovery schemes Greedy search

Greedy search

Main ideas:

m If we can correctly recover the support A of x (i.e., the locations of
nonzeros), then determining the non-zero amplitudes is easy, e.g.,

Y Ap T

zy = (AY Ay 1Ay

(least squares) as

m Estimate the support sequentially:
m Find the column of A most “similar’ to y and store its index.
m Subtract the effect of this column from y.

m Repeat (until residual is sufficiently small)!

Famous algorithms include MP, OMP, IHT, CoSaMP, Subspace Pursuit
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Ersalcs
Bayesian Methods

In the Bayesian approach, one . ..

m models the signal using a prior pdf p(x),
m models the measurement process using a likelihood function p(y|x),

m performs inference via Bayes rule, yielding the posterior pdf

p(zly) = Z 'p(y|x)p(x) where Z is a scaling constant,

m often summarizes the posterior pdf by a point estimate like

)

_ /gcp(::c|y) dx MMSE estimate

8)

= argmax p(x|y) MAP estimate
€T

and possible other statistics that quantify estimate uncertainty.
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Ersalcs
Bayesian interpretation of LASSO

If we assume ...
m additive white Gaussian noise of variance o2

m i.i.d Laplacian signal with rate \/o?

then
n likelihood: p(ylz) = G—tmmexp(—sklly — Azl3)
a prior: p(@) = Gerbyrexp(— 2 al)
for which the maximum aposteriori (MAP) estimate is
2 = arg max p(z|y) = argmaxlog (2~ 'p(ylz)p(x))
— argmin 41y — Az[3 + Al
which is an unconstrained version of the LASSO problem.
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Sparse-signal recovery schemes Bayesian methods

The relevance vector machine (RVM)

m The RVM is based on the conditionally Gaussian priors
p(el) = [Ty N (@a:0,0,") and  p(ar) = [[,-; T(n:0.0)
p(w|B) ~ [IM_, N(wm;0,871) and B ~T1(0,0)

Note that, as “precision” «;, — oo, the coefficient x,, is zeroed.

m The conditional posterior is (due to Gaussianity) simply

p=pSAly
p(xly, e, B) ~ N(p,3)  for {EZ(BATA+D(O¢))_1.

m In practice, {a, 3} are estimated using the EM algorithm and then
plugged into p and X to approximate the posterior p(x|y).

m The RVM (also known as “SBL" and “BCS") is relatively slow.
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et
Other Bayesian methods

m Bayesian matching pursuits:
m Greedy methods that use probabilistic support selection.

m Approximate message passing (AMP):

m Inspired by methods from statistical physics and information theory.
m Near-optimal in terms of speed and accuracy if A is large & random.
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Sparse-signal recovery schemes Phase transition curves

Phase transition curve (PTC) under large random A

When examining a given algorithm'’s performance as a function of
sampling ratio % and sparsity ratio A—I; one finds a very sharp transition
between perfect success and complete failure as N, M, K — oc.

LASSO:

Sle
%

(] 01

In some cases (e.g., LASSO), the PTC can be determined analytically.
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Sparse-signal recovery schemes Phase transition curves

Algorithm comparison 1

Recall: higher PTC = better algorithm.

0.9H/ —EM-GM-AMP
——RVM via BCS

0.81|-—--Subspace Pursuit
—— OMP

- LASSO via AMP

0.6L | ——LASSO theory 4

0.3

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
delta

Here, the non-zero elements of « were drawn independent zero-mean Gaussian.
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Sparse-signal recovery schemes Phase transition curves

Algorithm comparison 1

Recall: higher PTC = better algorithm.

0.9 — EM-GM-AMP 1
——RVM via BCS

08 -—--Subspace Pursuit ]
0.7H|——omP |
----- LASSO via AMP

—— LASSO theory

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
delta

Here, the non-zero elements of x were = 1.
More structure = possibility for better performance.
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Conclusions

Compressive sensing . ..

m merges sampling and signal compression into a single operation
m is motivated by applications where cost-per-sample is high

m uses random linear measurements

m exploits the inherent sparsity of natural signals

m requires sophisticated algorithms for signal reconstruction.
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