Adaptive Compressive Noncoherent Change Detection

Phil Schniter

International BASP Frontiers Workshop
Villars-sur-Ollon
1/30/2013
Outline:

1. Noncoherent Change Detection

2. Compressive Noncoherent Change Detection

3. Adaptive Sensing
Change Detection:

• Given a **reference signal** (or image) \(r \in \mathbb{C}^N \) and a **signal-under-test** \(x \in \mathbb{C}^N \), how do we detect the pixels that are changed?

• Set up a model:

\[
\forall n: \quad x_n = s_n c_n + (1 - s_n)(r_n + d_n) \quad \text{with unknown}\ldots
\]

\[
\begin{cases}
 s_n \in \{0, 1\} & \text{change indicators} \\
 c_n & \text{values of changed pixels} \\
 d_n & \text{small variations at “unchanged” pixels,}
\end{cases}
\]

where \(c_n \sim \text{i.i.d } p_C(\cdot) \), \(d_n \sim \text{i.i.d } p_D(\cdot) \), \(s_n \sim \text{i.i.d } p_S(\cdot) \)

• Various optimal detectors can be formulated as a **likelihood ratio test**:

\[
LR(x_n, r_n) = \frac{p(x_n, r_n | s_n = 1)}{p(x_n, r_n | s_n = 0)} = \frac{p_C(x_n)}{p_D(x_n - r_n)}
\]

• Intuition: look for outliers in **difference signal** \(x_n - r_n \).
Noncoherent Change Detection:

- Now suppose that r and x are phase incoherent.

- One application is radar image change detection in foliage, where pixel phases can vary significantly across looks due to wind-induced motion.

- A possible model is:

\[
\forall n : x_n = s_n c_n + (1 - s_n)(r_n e^{j\theta_n} + d_n)
\]

where $\theta_n \sim i.i.d \mathcal{U}[0, 2\pi)$ implies complete phase uncertainty.

- Change detection is still a textbook problem,

\[
\text{GLR}(x_n, r_n) : \frac{p_C(x_n)}{\min_{\theta_n} p_D(x_n - r_n e^{j\theta_n})} = \frac{p_C(|x_n|)}{p_D(|x_n| - |r_n|)} \quad \text{for circular C & D}.
\]

Intuition: look for outliers in magnitude difference $|x_n| - |r_n|$.
Compressive Noncoherent Change Detection:

Now consider noisy compressive linear observations $y \in \mathbb{C}^M$ with $M < N$:

$$y = Ax + w, \quad w \sim \mathcal{CN}(0, \nu^w I)$$

Challenges:

- The signal x is not directly observed:
 - \Rightarrow Cannot implement standard noncoherent detection without $|x_n|$.

- The signal x is generally non-sparse/compressible:
 - \Rightarrow Cannot use standard sparse-reconstruction to recover x from y.

Opportunities:

- With sparse changes, we know most magnitudes $|x_n|$, approximately, and thus have a strong prior on x.

- In practice, the change-pattern s is not i.i.d, but spatially clustered.
Proposed Approach:

We assume the generative mixture model

\[x_n = s_n c_n + (1 - s_n)(r_n e^{j\theta_n} + d_n) \quad \text{and} \quad y = Ax + w \]

\[
\begin{align*}
 s_n &\sim \{0, 1\} \text{ Markov} \\
 c_n &\sim \mathcal{CN}(0, \nu^r) \text{ i.i.d} \\
 d_n &\sim \mathcal{CN}(0, \nu^d) \text{ i.i.d, } \nu^d \ll \nu^r \\
 \theta_n &\sim \mathcal{U}[0, 2\pi) \text{ i.i.d}
\end{align*}
\]

leading to the factor graph

and then perform inference via “turbo” approximate-message-passing.
Numerical Example:

- We compare two schemes:

 ![Flowchart](image)

- Simulation parameters:
 - signal length $N = 200$,
 - changes: 1D Markov chain with rate 0.1 and avg cluster length $= 11$.
 - reference-to-disturbance ratio $\frac{\nu_r}{\nu_d} = 30$ dB,
 - signal-to-noise ratio $= 15$ dB,
 - sensing matrix: $\{A_{mn}\} \sim \text{i.i.d } \mathcal{N}(0, M^{-1})$
Numerical Example:

- **AMP-based joint reconstruction-and-change-detection** outperforms the conventional method in both NSER and NMSE, even when the conventional detector can exploit clustered changes.
Adaptive Sensing:

- Now consider the **multi-step** observation model
 \[y_t = A_t x + w_t, \quad t = 1 \ldots T \]
 and the **adaptation** of \(A_t \) (s.t. \(\|A_t\|_F^2 \leq \mathcal{E} \))
 using knowledge gained from previous measurements \(y_{t-1} \triangleq \{ y_{\tau} \}_{\tau=1}^{t-1} \).

- To infer \(x \), the approach known as **Bayesian experimental design** chooses \(A_t \) to maximize the **mutual information** \(I(X; Y_t) \) between random vectors \(X \sim p(x|y_{t-1}) \) and \(Y_t \sim p(y_t|y_{t-1}; A_t) \).

- For **Gaussian signal and noise**, we previously established that the design of MI-maximizing \(A_t \) is a **waterfilling** problem [Schniter CAMSAP 11].

- Since **turbo-AMP** produces an accurate **Gaussian posterior approximation**, it partners well with waterfilling-based adaptation. For **structured-sparse signal recovery**, this combination has been shown to yield recovery-MSE near **oracle bounds** [Schniter CAMSAP 11].
NMSE versus cumulative # measurements [Schniter CAMSAP 11]:

- Note gains from structured sparsity, adaptivity, and the combination.
- Adaptive turbo-AMP performs 1.5 dB from the support-oracle bound!
Waterfilling-based Adaptation for Noncoherent Change Detection:

- We now add **waterfilling-based adaptive sensing** to our **noncoherent change detection** scheme.

Conventional

\[
\begin{align*}
 & y
 \xrightarrow{\text{MMSE reconstruction}} \hat{x}
 \xrightarrow{\text{noncoherent detection}} \hat{s} \\
 & r
\end{align*}
\]

Proposed

\[
\begin{align*}
 & y_t \\
 & r
 \xrightarrow{\text{adaptation of } A_t} \\
 & y_t
 \xrightarrow{\text{joint noncoherent reconstruction} \& \text{change detection (turbo-AMP)}} \hat{x}_t \\
 & r
 \xrightarrow{\hat{s}_t}
\end{align*}
\]

- To minimize **signal-recovery normalized MSE** (NMSE), we perform waterfilling based on a Gaussian approximation of \(p(x|y_{t-1}) \).
- To minimize the **normalized change-support error rate** (NSER), we perform waterfilling based on a Gaussian approximation of \(p(s|y_{t-1}) \).
Numerical Example:

Notice that:

- the matrices designed to improve the recovery of the change pattern s do significantly improve the NSER (left), and
- those designed to improve the recovery of signal x do improve NMSE (right),
- but not vice versa!