AMP Methods for Fourier-Structured Operators and Signals

Saurav K. Shastri (OSU), Rizwan Ahmad (OSU), Christopher A. Metzler (UMD), and Philip Schniter (OSU)

Supported in part by NSF CCF-1955587 and NIH R01-EB029957

Asilomar Conference on Signals, Systems, and Computers Oct 30 - Nov 2, 2022

The linear inverse problem

Goal: Recover an unknown signal $x_0 \in \mathbb{C}^N$ from noisy measurements $y \in \mathbb{C}^M$ of the form

$$m{y} = m{A}m{x}_0 + m{w}, \,\, ext{with} \,\, egin{cases} m{A} : ext{linear measurement operator} \ m{w} : ext{AWGN with precision} \,\, \gamma_w \end{cases}$$

Typical methodologies:

- Optimization based algorithms
 - Simple and robust, but not state-of-the-art in accuracy
- Deep networks that recover x from y
 - \blacksquare Accurate but may not generalize well to a different A
- Plug-and-play algorithms that call deep denoisers
 - Accurate and handles any A, but its performance can be improved!

Optimization-based recovery

• The classical approach to recovering x_0 is through optimization:

$$\widehat{x} = \arg\min_{x} \left\{ g_1(x) + g_2(x) \right\}$$
 with $\begin{cases} g_1(x) : \text{ data fidelity loss} \\ g_2(x) : \text{ regularization} \end{cases}$

• Common choice for data-fidelity term: $g_1(x) = \frac{\gamma_w}{2} \|y - Ax\|^2$

• Common choice for regularization: $g_2(x) = \lambda ||\Psi x||_1$ with a suitable sparsifying transform Ψ (e.g., wavelet or total-variation) and carefully chosen $\lambda > 0$

Plug-and-play (PnP) image recovery

 \blacksquare A common approach to convex optimization is ADMM: For $k=1,2,\ldots$

$$\begin{aligned} \boldsymbol{x}_{k} &= \arg\min_{\boldsymbol{x}} \left\{ g_{1}(\boldsymbol{x}) + \frac{\beta}{2} \|\boldsymbol{x} - \boldsymbol{v}_{k-1} + \boldsymbol{u}_{k-1}\|^{2} \right\} \\ \boldsymbol{v}_{k} &= \arg\min_{\boldsymbol{v}} \left\{ g_{2}(\boldsymbol{v}) + \frac{\beta}{2} \|\boldsymbol{v} - \boldsymbol{x}_{k} + \boldsymbol{u}_{k-1}\|^{2} \right\} \triangleq \operatorname{prox}_{g_{2}/\beta}(\boldsymbol{x}_{k} - \boldsymbol{u}_{k-1}) \\ \boldsymbol{u}_{k} &= \boldsymbol{u}_{k-1} + \boldsymbol{x}_{k} - \boldsymbol{v}_{k} \end{aligned}$$

- The prox performs denoising (eg, soft-thresholding when $g_2(\boldsymbol{x}) = \|\boldsymbol{x}\|_1$)
- Bouman et al. proposed PnP¹ ADMM, where the prox is replaced by a sophisticated image denoiser f(·) like BM3D or a deep image denoiser²

¹Venkatakrishnan,Bouman,Wolhberg'13, ²Meinhardt,Moller,Hazirbas,Cremers'17 Saurav K. Shastri (Ohio State) D-GEC Asilomar 2022 4/20

Challenges in plug-and-play (PnP) image recovery

- In PnP, the denoiser input-error is difficult to characterize. For example, it is non-white, non-Gaussian, and has iteration-dependent statistics
- PnP algs require careful tuning of parameters (eg, β) and early stopping
- Also, it's unclear how to optimally train the denoiser in PnP
 - Typically the denoiser is trained to remove AWGN
 - Gilton et al. recently proposed¹ to train the denoiser at the PnP equilibrium point, but the result is *A*-dependent and thus may not generalize

¹Gilton,Ongie,Willet'21

Is it possible to design a PnP-style algorithm that presents the denoiser with known error statistics at every iteration?

Is it possible to construct a deep denoiser that can efficiently leverage those error statistics?

Approximate message passing (AMP) algorithms

- AMP¹ is a family of autotuning PnP algorithms that have remarkable properties for large random A:
 - The denoiser input-error is AWGN with predictable variance²
 - When used with the MMSE denoiser, AMP algorithms converge³ to the MMSE estimate of x_0 given y
- Challenge: In most image recovery problems, A does not satisfy AMP's randomness assumptions!
 - Recent work⁴ has studied AMP with nearly deterministic A under i.i.d. x₀, but our problems of interest have structured x₀

¹Donoho et al'09, ²Bayati,Montanari'11, ³Berthier,et al'19, ⁴Dudeja et al'22 Saurav K. Shastri (Ohio State) D-GEC Asilomar 2022 7/20

AMP for parallel MRI

In this work, we focus on the Fourier-structured matrix and images encountered in parallel magnetic resonance imaging (MRI)

$$A = \begin{bmatrix} MF \operatorname{Diag}(s_1) \\ \vdots \\ MF \operatorname{Diag}(s_C) \end{bmatrix} \quad \text{where} \quad \begin{cases} M = \text{sampling mask} \\ F = 2\text{D Fourier transform} \\ s_c = \text{ESPIRiT-estimated coil map} \end{cases}$$

For MRI, damped AMP techniques have been proposed:

- Denoising AMP (D-AMP)¹
- Damped denoising vector-AMP (DD-VAMP)²

but they are heuristic and don't appear to follow a state evolution

¹Eksioglu, Tanc'18, ²Sarkar, Ahmad, Schniter'21

AMP for MRI with 2D point masks

- For MRI with 2D point masks, modified VAMP algs were proposed: VDAMP¹ and P-VDAMP²
 - they recover wavelet-domain coefficients, not the image itself
 - they use wavelet thresholding instead of deep denoising
 - they yield AWGN denoiser input error in each subband
- Later the above approaches were extended to deep image denoising by D-VDAMP³ and PD-VDAMP⁴
- But 2D point masks are impractical and uncommon in 2D MRI

Why recover wavelet coefficients?

- Suppose $c_0 = \Psi x_0$ are coefficients of an orthogonal wavelet transform
- Can rewrite $oldsymbol{y} = oldsymbol{A} oldsymbol{x}_0 + oldsymbol{w}$ as

 $oldsymbol{y} = oldsymbol{B} oldsymbol{c}_0 + oldsymbol{w}$ with masked Fourier-wavelet matrix $oldsymbol{B} = oldsymbol{A} oldsymbol{\Psi}^{ op}$

- For AMP algorithms, B has desirable behavior:¹
 - columns of different subbands are relatively decoupled from eachother
 - columns of each subband have a randomizing effect on that subband

¹Schniter, Rangan, Fletcher'17

Saurav K. Shastri (Ohio State)

Proposed algorithm: Denoising GEC (D-GEC)

We build upon the generalized expectation consistency (GEC) algorithm:¹

require: $f_1(\cdot), f_2(\cdot), \text{ and } gdiag(\cdot)$ initialize: r_1, γ_1 for $t = 0, 1, 2, \ldots$ $\widehat{x}_1 \leftarrow f_1(r_1, \gamma_1)$ linear estimation $\boldsymbol{\eta}_1 \leftarrow \text{Diag}(\text{gdiag}(\nabla \boldsymbol{f}_1(\boldsymbol{r}_1,\boldsymbol{\gamma}_1)))^{-1}\boldsymbol{\gamma}_1$ $oldsymbol{\gamma}_2 \leftarrow oldsymbol{\eta}_1 - oldsymbol{\gamma}_1$ $r_2 \leftarrow \text{Diag}(\gamma_2)^{-1}(\text{Diag}(\eta_1)\hat{x}_1 - \text{Diag}(\gamma_1)r_1)$ Onsager $\widehat{\boldsymbol{x}}_2 \leftarrow \boldsymbol{f}_2(\boldsymbol{r}_2, \boldsymbol{\gamma}_2)$ denoising $\boldsymbol{\eta}_2 \leftarrow \text{Diag}(\text{gdiag}(\nabla \boldsymbol{f}_2(\boldsymbol{r}_2,\boldsymbol{\gamma}_2)))^{-1}\boldsymbol{\gamma}_2$ $\boldsymbol{\gamma}_1 \leftarrow \boldsymbol{\eta}_2 - \boldsymbol{\gamma}_2$ $r_1 \leftarrow \text{Diag}(\gamma_1)^{-1}(\text{Diag}(\eta_2)\hat{x}_2 - \text{Diag}(\gamma_2)r_2)$ Onsager

¹Fletcher,Sahraee-Ardakan,Rangan,Schniter'16

Proposed algorithm: Denoising GEC (D-GEC)

- GEC is a version of VAMP¹ that tracks different subsets of coefficients using distinct variances
- Can be interpreted as Peaceman-Rachford ADMM with adaptive vector-valued stepsizes γ_1 and γ_2
- The GEC linear estimation stage is preconditioned LS:

 $f_1(r, \gamma) = \left(\gamma_w B^{\mathsf{H}} B + \operatorname{Diag}(\gamma)\right)^{-1} \left(\gamma_w B^{\mathsf{H}} y + \operatorname{Diag}(\gamma) r\right)$

which can be implemented using the conjugate gradient method

- For f_2 , we propose to "plug in" a deep denoiser
- For the MRI application, we will show that D-GEC yields per-subband denoiser input-errors that are AWGN with a predictable variance

¹Rangan,Fletcher,Schniter'16

D-GEC: Jacobian computation

• ∇f_i denotes the Jacobian, and $gdiag(\cdot)$ averages its diagonal across L wavelet subbands using:

gdiag
$$(\boldsymbol{Q}) \triangleq [d_1 \boldsymbol{1}_{N_1}^\mathsf{T}, \dots, d_L \boldsymbol{1}_{N_L}^\mathsf{T}]^\mathsf{T}, \ d_\ell = \frac{\operatorname{tr}\{\boldsymbol{Q}_{\ell\ell}\}}{N_\ell},$$

where N_ℓ is the size of the ℓ th subset and $Q_{\ell\ell} \in \mathbb{R}^{N_\ell \times N_\ell}$ is the ℓ th diagonal subblock of the matrix input Q

D-GEC approximates the Jacobian using a Monte-Carlo approach¹

For both f_1 and f_2 , we approximate the $\operatorname{tr}\{Q_{\ell\ell}\}$ using

$$\operatorname{tr} \{ \boldsymbol{Q}_{\ell \ell} \} \hspace{0.2cm} pprox \hspace{0.2cm} \delta^{-1} \boldsymbol{q}_{\ell}^{\mathsf{H}} \big[\boldsymbol{f}_{i}(\boldsymbol{r} + \delta \boldsymbol{q}_{\ell}, \boldsymbol{\gamma}) - \boldsymbol{f}_{i}(\boldsymbol{r}, \boldsymbol{\gamma}) \big]$$

where the ℓ th coefficient subset in q_ℓ is i.i.d. unit-variance Gaussian and the other coefficient subsets are zero

¹Ramani,Blu,Unser'08

Proposed denoiser: Corr+Corr

- GEC yields denoiser input-error that is AWGN with known iteration- and subband-dependent precisions γ in each wavelet subband
 - In the *pixel* domain, the error is correlated Gaussian with known covariance matrix $\Psi \operatorname{Diag}(\gamma)^{-1} \Psi^{\mathsf{T}}$
 - How do we design a deep denoiser to remove this correlated noise?
- We take an arbitrary existing denoiser (e.g., DnCNN) and feed independent realizations of N(0, Ψ Diag(γ)⁻¹Ψ^T) into extra channels
 - \blacksquare The denoiser learns to extract the error statistics (Ψ,γ) and use them productively for denoising!
 - In practice, we find that one extra channel suffices

Parallel-MRI experiments

Setup:

- fastMRI¹ brain and knee data
- 8 virtual coils
- acceleration R = N/M = 4 & 8
- extra AWGN w for noise-robustness study
- variable-density 2D point- and line-masks:

Average performance results

	Knee				Brain			
	R = 4		R = 8		R = 4		R = 8	
method	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
P-VDAMP	33.84	0.9018	20.34	0.5614	30.30	0.8847	13.51	0.4763
PnP-PDS	36.28	0.9204	32.34	0.8556	38.07	0.9501	28.97	0.8269
D-GEC	38.82	0.9504	33.66	0.8893	39.04	0.9631	30.61	0.9015

2D line-mask results averaged over 16 test images:

PSNR vs iterations for brain MRI recovery with 2D point-mask at R = 4:

Robustness to measurement noise

Average PSNR and SSIM versus measurement SNR with 2D point-mask:

Note: PnP-PDS penalty and stopping iteration tuned for every (SNR, R, dataset)

Example D-GEC behavior (R = 4, 2D line-mask)

Standard deviation of D-GEC denoiser-input error vs iteration:

Example behavior of D-GEC vs PnP-PDS

Denoiser input-error QQ plots at iteration 10, demonstrating Gaussianity:

D-GEC

Saurav K. Shastri (Ohio State)

- We proposed a GEC-based PnP algorithm for MRI called D-GEC
- Our algorithm yields denoiser-input error that behaves like AWGN with predictable variance in each wavelet subband
- We proposed a new corr+corr denoiser, which aims to remove the resulting *colored* pixel-domain noise
- Empirical results demonstrate that D-GEC yields significantly better recovery PSNR and SSIM than PnP-PDS and existing AMP-based algorithms on multicoil fastMRI data