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Plug-and-Play (PnP) image recovery

Goal: Recover an unknown image x0 from noisy parallel MRI
measurements y

y =

MF Diag(s1)
...

MF Diag(sC)


︸ ︷︷ ︸

, A

x0 +w, with


M : sampling mask

F : 2D Fourier transform

sc: estimated coil map

Plug-and-play (PnP) algorithms iteratively call a deep-net image
denoiser, which can be trained . . .

from very few images, using patches
independently of A, facilitating generalization to any A

But there are some downsides to PnP:
PnP algs require careful tuning of parameters and early stopping
The denoiser input-error is non-white and non-Gaussian, and difficult to
characterize, so it’s unclear how to optimally train the denoiser

Approximate message passing (AMP) algorithms

AMP is a family of autotuning PnP algorithms that have remarkable
properties for large random A:

The denoiser input-error is AWGN with predictable variance
With an MMSE denoiser, AMP algs converge to the MMSE estimate of x0 given y

Challenge: In most signal recovery problems, A does not satisfy AMP’s
randomness assumptions!

AMP for parallel magnetic resonance (MR) imaging

For parallel MRI, damped AMP has been proposed [Sarkar et al’21]
but it is heuristic and doesn’t appear to follow a state evolution

For MRI with 2D point masks, modified VAMP algs were proposed:
VDAMP [Millard et al’20] and P-VDAMP [Millard et al’22]

but 2D point masks are impractical and uncommon in 2D MRI

Proposed approach: Recover the wavelet coefficients c0, not pixels x0.
This gives y = Bc0 +w with masked Fourier-wavelet matrix B = AΨT

For AMP algorithms, B has desirable behavior:
columns of different subbands are relatively decoupled from eachother
columns of each subband have a randomizing effect on that subband

Proposed algorithm: Denoising GEC (D-GEC)

We build upon the generalized expectation consistent (GEC) algorithm
from Fletcher et al’16:

require: f1(·), f2(·), and gdiag(·)
initialize: r1,γ1
for t = 0, 1, 2, . . .
x̂1← f1(r1,γ1) linear estimation
η1← Diag(gdiag(∇f1(r1,γ1)))−1γ1
γ2← η1 − γ1
r2← Diag(γ2)

−1(Diag(η1)x̂1 − Diag(γ1)r1) Onsager

x̂2← f2(r2,γ2) denoising
η2← Diag(gdiag(∇f2(r2,γ2)))−1γ2
γ1← η2 − γ2
r1← Diag(γ1)

−1(Diag(η2)x̂2 − Diag(γ2)r2) Onsager

GEC is essentially Peaceman-Rachford ADMM with adaptive
vector-valued stepsizes γ1 and γ2

The GEC linear estimation stage is preconditioned LS:

f1(r,γ) =
(
γwB

HB + Diag(γ)
)−1(

γwB
Hy + Diag(γ)r

)
which can be implemented using the conjugate gradient method

For f2, we propose to “plug in” a deep denoiser

∇fi denotes the Jacobian, and gdiag(·) averages its diagonal across
different wavelet subbands. D-GEC approximates the Jacobian using a
Monte-Carlo approach [Ramani et al’08]

Proposed denoiser: Corr+Corr

GEC yields denoiser input-error that is AWGN with known iteration-
and subband-dependent precisions γ in each wavelet subband

In the pixel domain, the error is correlated Gaussian with known covariance matrix
ΨDiag(γ)−1ΨT

How should we inform the denoiser about (Ψ,γ)?

We take an arbitrary existing denoiser (e.g., DnCNN) and feed
independent realizations of N (0,ΨDiag(γ)−1ΨT) into extra channels

The denoiser learns to extract the error statistics
We call it “corr+corr”

Example PSNRs for depth-1 2D wavelet transform:√
γ−1 white DnCNN Metzler et al’21 DnCNN corr+corr DnCNN genie DnCNN

[48,47,6,19] 25.36 31.23 31.69 32.12
[10,40,23,14] 32.44 34.87 35.24 35.54

[13,7,8,10] 36.50 31.03 37.02 37.41
[10,10,10,10] 37.41 31.94 37.31 37.63

uniform [0-50,0-50,0-50,0-50] 31.07 33.24 34.08 —

white DnCNN trained unif [0-50]; Metzler et al’21 DnCNN & corr+corr DnCNN
trained unif [0-50,0-50,0-50,0-50]

MR image recovery experiments

Setup:

multi-coil fastMRI [Zbontar et al’18] brain and knee data
8 virtual coils; acceleration R = N/M = 4 & 8
additional AWGN w for noise-robustness study
variable-density 2D point- and line-masks:

2D line-mask results averaged over 16 test images:

Knee Brain
R = 4 R = 8 R = 4 R = 8

method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
P-VDAMP 33.84 0.9018 20.34 0.5614 30.30 0.8847 13.51 0.4763
PnP-PDS 36.28 0.9204 32.34 0.8556 38.07 0.9501 28.97 0.8269

D-GEC 38.82 0.9504 33.66 0.8893 39.04 0.9631 30.61 0.9015

Average PSNR versus measurement SNR with 2D point-mask:

Note: PnP-PDS penalty and stopping iteration tuned for every (SNR,R,dataset)

Predictability of D-GEC error variance vs iteration with 2D line-mask at R = 4:
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Example wavelet error at iteration 10 with 2D line-mask at R = 4:

Example wavelet-error QQ plots at iteration 10 with 2D line-mask at R = 4:


