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CS Problem Statement

@ Recover a signal from undersampled measurements

y=Ax+w xeR" yweRM M<nN
where x is K-sparse (or compressible) with K < M.

@ With sufficient sparsity and appropriate conditions on the mixing
matrix A (e.g. RIP, nullspace), signal recovery is possible.

@ Common approach (LASSO) is to solve
min [y — Ax||3 + o|x||s.

where o must be tuned in accordance with sparsity and SNR.
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LASSO Phase Transition

@ Region beneath the curve shows (M, N, K) combinations where
LASSO can perfectly recover a noiseless signal.
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Bayesian Interpretation

@ The sparse signal recovery problem can be interpreted through a
Bayesian framework.

o Minimizing the LASSO criterion [ly — Ax||3 + al|x||1 is equivalent to
finding the MAP estimate from y = Ax + w when w is i.i.d. Gaussian

and x is i.i.d. Laplacian.

@ Alternative Bayesian approaches to the CS problem follow from
different assumptions on the signal and noise priors, and/or from
seeking the MMSE rather than MAP estimate of x.

@ MAP estimation using assumed i.i.d. signal/noise priors has the form

M N
max Y In p(ymlam"x) + Y In p(xn).
m=1 n=1
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Approximate Message Passing (AMP)

o Efficient algorithms for Bayesian CS can be constructed using loopy
belief propagation using carefully constructed message
approximations:

@ The “original” AMP [Donoho, Maleki, Montanari '09] solves the
LASSO problem (i.e., Laplacian MAP) under i.i.d. matrices A.

@ The “Bayesian” AMP [Donoho, Maleki, Montanari '10] framework
tackles MMSE inference under generic signal priors.

@ The “generalized AMP" [Rangan '10] framework tackles MAP or
MMSE inference under generic signal and noise priors and generic
matrices A.

@ All of these AMP algs are sophisticated iterative thresholding algs,
thus complexity is dominated by two applications of A per iteration
and ~ 15 iterations (for any M and N).
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Bernoulli-Gaussian GAMP

@ Suppose the signal is known to be i.i.d Bernoulli Gaussian. That is,
p(xn) = M (xn; 0, @) + (1 — A)d(xn), where a genie supplies us with
the true parameters (\, 6, ¢)

@ For such signals, the PT improves:
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Expectation-Maximization BG-GAMP (EM-BG-GAMP)

@ In practice, the pdf parameter values q = (A, 0, ¢, 1) are unknown.
Thus, we propose to learn them via the EM algorithm while
simultaneously recovering x.

@ In our EM algorithm, we treat both x and w as missing data, and
perform element-wise incremental updates.

@ The update of A equates to solving the E and M steps

N
(E-step) QAIN) =D E{Inp(xm A, 60", ¢")y;q'}
n=1

(M-step) N = argmax Q(A|N).
X€E(0,1)

Updates of (6, ¢, 1) have a similar form.

@ All quantities required to compute the EM conditional expectation are
provided by GAMP!
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Parameter Initialization

Smart initialization is critical since the EM algorithm can converge to local
maxima of the likelihood function.

@ Set the sparsity \° = %psg(’\—,\/,’), where pSE(%) is the theoretical
LASSO PTC.

@ Assume signal prior is symmetric and initialize the active mean
6° = 0.

@ Given a hypothesis SNR? we find that the active variance ¢ and noise
variance v can be initialized based on the energy of the
measurements ||y||3.

(SNR® + 1)M’ tr(ATA)\O
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EM-BG-GAMP Algorithm

Initialize EM parameters (A%, 6%, $%4/°) and GAMP mean /variance (X0, 2/0)
fori=1,2,..., max EM iters
for t = 1,2, ..., max GAMP iters
Update soft signal estimates (X%, ) assuming prior params g'~*
Break if early convergence
end;
Update prior parameters (A, 07, ¢/ ") using GAMP outputs.
Break if early convergence

end;
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EM-BG-GAMP Phase Transition Curve

@ We now demonstrate EM-BG-GAMP performance for noiseless BG

signals.

@ As shown, EM-BG-GAMP
learns the signal prior
parameters well enough to

perform as good as genie
BG-AMP!

o EM-BG-GAMP performs
significantly better than

LASSO for this signal class.
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EM-BG-GAMP PTC (cont.)

@ The good performance of EM-BG-AMP is not limited to BG signals.
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@ For Bernoulli distributions, EM-BG-GAMP was able to recover nearly
all signal realizations (99.8%) when M/N > 0.65!
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Noisy Signal Recovery

@ We now compare EM-BG-GAMP to state-of-the-art CS algorithms for
noisy signal recovery using normalized MSE.

@ For BG signals, fix N = 1000, K = 100, SNR = 25dB and vary M.

o EM-BG-GAMP outperforms
the other algorithms for all
meaningful M/N.

@ The other “Bayesian”
approaches, BCS and SBL,
exhibit the next best
performance.
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Noisy Signal Recovery (cont.)

@ We also see excellent NMSE for other K-sparse distributions:
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@ For Bernoulli signals especially, EM-BG-GAMP exhibits a huge
improvement over the other algorithms.
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Algorithm Complexity

@ We now compare algorithm complexity. Fix M = 0.5N, K = 0.1N,
SNR = 25dB, and vary N. Results averaged over 50 iterations.
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@ For large N, EM-BG-AMP has state-of-the-art complexity.
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EM-BG-GAMP Limitations

o EM-BG-GAMP is outperformed by genie-LASSO and SLO with a
non-compressible Student’s-t signal.
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@ Interestingly, the algorithms that performed best for sparse signals
performed the worse for the Student’s-t.
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Conclusions

@ We proposed an extension of BG-AMP wherein the signal and noise
distributional parameters were automatically learned via the EM
algorithm.

@ Advantages of EM-BG-AMP
@ State-of-the-art NMSE performance for a wide class of signal /matrix

types.
o State-of-the-art complexity scaling as problem dimensions get large.

@ No tuning parameters.

o Limitations of EM-BG-AMP

o If the true signal/noise pdfs cannot be well matched by BG/Gaussian
priors, then performance may suffer.

@ To address this limitation, we are working on a Gaussian-Mixture
version (EM-GM-AMP) with automatic selection of the mixture order.
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EM-GM-GAMP Teaser

@ Our new EM-GM-GAMP algorithm may alleviate the shortcomings
seen in recovering a non-compressible Student’s-t signal.
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@ Details coming soon.

November 8th, 2011 17 /19

Jeremy Vila and Philip Schniter (OSU) EM-BG-AMP



Matlab code is publicly available at
http://ece.osu.edu/~vilaj/EMBGAMP/EMBGAMP.html

Thanks!
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Explicit Results

o GAMP outputs:

% = =w(fvia)v(Fva)
Vo= a(rvha) (B, v a) + (F e a)R) — (x(P v @) (R v a)
where
1
p(s =1ly) £ n(?,v";q) = NGOG
1+(1—A ./&/Cry(;bu’y))
P/t +0/¢
E -1 2 PV
[xly,s =1] £ v(?,v";q) v +1/6
1
var(x|y,s =1 (87 _
(xly ) £ B(7, v q) £ U+ 16
@ EM updates:
. 1 M . N . .
/\’“:N;ﬂ(?n,VZ:Q’)- ot = >\:+1N2; (P, v @) (P, i @)
) 1 g 2 :
o = S Z;w(?n,u;,q'>(|e' =9 v @) + B, vgi )
p
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