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Problem Statement:

Consider communicating over a channel that is

• Rayleigh block-fading with block size N ,

• frequency-selective with delay spread L (where L < N),

• sparse with S non-zero taps (where 0 < S < L),

where both the channel coefficients and support are unknown to the receiver.

Important questions:

1. What is the capacity of this channel?

2. How can we build a practical system that operates near this capacity?
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The Capacity of our Sparse Channel:

For the unknown N -block-fading, L-length, S-sparse channel described earlier,

Kannu/Schniter [1] established that

1. In the high-SNR regime, the ergodic capacity obeys

Csparse(SNR) =
N−S
N

log(SNR) +O(1).

2. To achieve the prelog factor Rsparse =
N−S
N

, it suffices to use

• pilot-aided OFDM (with N subcarriers, of which S are pilots)

• with (necessarily) joint channel estimation and data decoding.

Key points:

• The effect of unknown channel support manifests in the O(1) offset term, not

the prelog factor N−S
N

.

• While [1] uses constructive proofs, the scheme proposed there is impractical.

[1] A. P. Kannu and P. Schniter, “On communication over unknown sparse frequency-selective

block-fading channels,” arXiv 1006.1548, June 2010.
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The Conventional Approach — Compressed Channel Sensing (CCS):

• Motivated by recent advances in the field of “compressed sensing.”

• Consider OFDM with P pilot subcarriers, giving yp = F ph+ vp, where

yp ∈ C
P : observations on pilot subcarriers

F p ∈ C
P×L : a submatrix of the DFT matrix

h ∈ C
L : channel impulse response (S-sparse)

vp ∈ C
P : AWGN with variance σ2

v .

• CCS-based noncoherent decoding takes the following decoupled approach [2]:

1. Use sparse reconstruction to generate a pilot-aided estimate ĥ,

2. Coherently decode assuming h = ĥ.

• Modern CCS typically employs the LASSO (also known as BPDN):

ĥLASSO,λ , argmin
ĥ
‖ĥ‖1 such that ‖yp − F pĥ‖

2

2
≤ λ

which guarantees σ2
v-proportional ℓ2-error with P = O

(

S(logL)5
)

pilots.

[2] W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compressed channel sensing: A new

approach to estimating sparse multipath channels,” Proc. IEEE, June 2010.
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The Main Contribution of this Work:

A new approach to communicating over sparse channels that. . .

• (empirically) achieves the optimal prelog factor Rsparse =
N−S
N

,

• is practical: complexity O(NL), which supports L & 100,

• significantly outperforms CCS-based decoding at both low and high SNR.

Our scheme uses. . .

• a conventional transmitter: pilot-aided BICM OFDM,

• a novel receiver: based on loopy belief propagation (BP)

– key enabler: “relaxed BP” of Guo/Wang [3] and Rangan [4]

[3] D. Guo and C.-C. Wang, “Random sparse linear systems observed via arbitrary channels: A

decoupling principle, in Proc. ISIT, June 2007.

[4] S. Rangan, “Estimation with random linear mixing, belief propagation and compressed

sensing,” arXiv:1001.2228v2, May 2010.
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How would we do optimal decoding?:

• To minimize BER, we need to compute the posterior pmfs
{

p(bq |y, cpt)
}Q

q=1

where cpt denotes known pilot/training bits.

• Assuming

1. bit-interleaved coded modulation (BICM) with OFDM:

info
bits b →

coded/interleaved
bits c →

M -QAM
symbols s →

N OFDM
subcarriers ,

2. sparse WSSUS Rayleigh-fading channel h and AWGN v:

y = D(s)Fh+ v,

we can factor the posterior as follows:

p(bq|y, cpt) ∝

∫

x

L
∏

j=1

p(xj)
∑

s

N
∏

i=1

p(yi|si,x)
∑

c

p(si|ci)
∑

b
−q

p(c|b, cpt)

Q
∏

q=1

p(bq).

which can be visualized using a factor graph. . .
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The Factor Graph for Noncoherent BICM-OFDM:

SISO decoding relaxed BP
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To jointly infer all random variables, we perform belief propagation (BP) on the

factor graph, passing (parameters of) pdfs from node to node.
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Approximate BP for Noncoherent BICM-OFDM:

SISO decoding relaxed BP
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• Since our factor graph (FG) has loops, BP convergence is not guaranteed.

However, our simulations suggest that this is not a problem.

• Approximate BP on the left portion of the FG can be efficiently implemented

using an off-the-shelf soft-input/soft-output (SISO) decoder.

• Approximate BP on the right portion of the FG can be efficiently implemented

using a modification of the “relaxed BP” algorithm (suitable for N & 100).

• Repeated forward-backward BP iterations are reminiscent of “noncoherent

turbo equalization.”
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Numerical Results:

Transmitter:

• LDPC codewords with length ≈ 10000 bits.

• M -QAM with M ∈ {4, 16, 64, 256} and multi-level Gray mapping.

• OFDM with N = 1021 subcarriers.

• Various choices of P “pilot subcarriers” and TM interspersed “training bits.”

Channel:

• Delay spread L = 256 ≈ N/4.

• Sparsity S = 64 = L/4.

Compressed channel sensing:

• LASSO was implemented using SPGL1 with genie-aided tuning.

• For comparison, we also performed CCS using several reference estimators:

LMMSE, support-aware MMSE, and bit+support-aware MMSE.
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NMSE & BER versus pilot ratio P/S (at SNR=20dB, T =0):
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implementable schemes reference schemes
LMMSE= LMMSE-based CCS SG= support-aware genie
LASSO= LASSO-based CCS BSG= bit- and support-aware genie
BP-n=BP after n turbo iterations

Observations:

• For CCS, channel estimation MSE improves monotonically with P .

• As P grows too large, BER suffers due to necessary decrease in LDPC code-rate.

• For CCS, P =4S=L gives best tradeoff. (No longer “compressed” channel sensing!)
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Bit-Rate versus SNR (with P =4S=L pilots and T =0 training):
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Key points:

• Turbo-BP outperforms not only LASSO, but even the support genie (SG)!

• Turbo-BP performs nearly as well as the bit+support-aware genie (BSG)!

• With P = L, all approaches achieve the prelog factor R ≈ N−L

N
= 3

4
, which falls

short of the optimal Rsparse =
N−S

N
= 15

16
.
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Bit-Rate versus SNR (with P =0 pilots and T =S training):

 

 

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−2.5

−2

−1.5

−1

−0.5

log10(BER) (M=8, SNR=20dB, bpcu=3.75)

T
/S

P/S SNR dB

bp
cu

10 12 14 16 18 20

0.5

1

1.5

2

2.5

3

3.5

4

BER=0.01 contour (M=8, P=0, T=1)

BP

BP

BP

BP

Key points:

• At high-SNR, BP favors the use of P =0 pilots and TM=SM training bits.

• With this pilot/training arrangement, BP achieves the channel’s capacity prelog

factor Rsparse =
N−S

N
.
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BER versus SNR (with P =4S=L pilots and T =0 training):

2 3 4 5 6 7 8
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

N
M

S
E

 [d
B

]

 

 
LMMSE
LASSO
SG
BP−1
BP−2

BSG
BP-∞

Eb/No [dB]

M=2, P=4, bpcu=0.5

2 3 4 5 6 7 8

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

 

 
LMMSE
LASSO
SG
BP−1
BP−2

BSG
BP-∞

Eb/No [dB]

M=2, P=4, bpcu=0.5

implementable schemes reference schemes
LMMSE= LMMSE-based CCS SG= support-aware genie
LASSO= LASSO-based CCS BSG= bit- and support-aware genie
BP-n=BP after n turbo iterations

Key points:

• Sparsity can be exploited even at very low SNR. (SNR= 1

bpcu
Eb

No

range is [0,6.5] dB.)

• BP has a 1.8dB advantage over LASSO, which has a 2.2dB advantage over LMMSE.
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Conclusions:

• We proposed a new noncoherent decoding scheme for N -subcarrier

BICM-OFDM transmitted over an S-sparse L-length channel that. . .

– is based on approximate belief propagation,

– is computationally efficient: complexity O(NL).

• Simulations suggest that our scheme. . .

– at high SNR, achieves the channel’s capacity prelog factor Rsparse =
N−S
N

,

– at low SNR, is only 0.8dB worse than bit+support-aware genie,

– significantly outperforms LASSO-based compressed channel sensing.

• Future work:

– automatically learn the channel statistics (e.g., SNR, sparsity S),

– further reduce complexity to O(N logN),

– exploit channel tracking across OFDM symbols,

– handle channel variation within each OFDM symbol.
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Thanks!
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Performance Limits of CCS:

In the large system limit (i.e., L, S, P → ∞) with i.i.d F p, the Donoho/Tanner

phase transition curve (PTC) predicts exactly where noiseless LASSO will fail:
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The PTC translates directly to a minimum required P/L for CCS (as SNR→∞).

[5] D. L. Donoho and J. Tanner, “Observed universality of phase transitions in high-dimensional geometry,

with implications for modern data analysis and signal processing,” Phil. Trans. Royal Soc. A, 2009.
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