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Abstract— In this paper, we consider the effect of mobility
on an ultra-wideband (UWB) direct sequence spread spectrum
communication system. Based on a uniform ring of scatterers
model, we determine that the wideband scattering function
has a “bathtub-shaped” scale spectrum. We compare the the
performances of ascale-lag Rake and afrequency-lag Rake, each
capable of leveraging the diversity that results from mobility.
The scale-lag Rake receiver, whose scale- and lag-shifted basis
functions are matched to the dilation-delay dynamics of the
wideband channel, exploits greater diversity. Finally, we suggest
a low-complexity implementation of the scale-lag Rake receiver.

I. I NTRODUCTION

Ultra wideband (UWB) communication systems are defined
by a ratio of single-sided bandwidth to center frequency in
excess of 0.25. We point out that the combined effects of
multipath and mobility in UWB systems should be modeled
differently than in narrowband systems. For example, in UWB
systems with a dense ring of scatterers surrounding the re-
ceiver, mobility imparts a spreading of thetime-supportof
the signal, calledscale spreading.1 By scale spreading, we
mean that several copies of the transmitted signal combine
at the receiver, each with a different dilation of the time
support of the original signal. In addition, each copy may be
temporally delayed by a different amount. For UWB direct-
sequence spread spectrum (DSSS) signaling, we study ascale-
lag Rake receiverthat exploits this diversity.2

The organization of the paper is as follows: Section II
introduces the wideband system model, and in Section III,
we derive the wideband scattering function for a uniform
ring of scatterers and see that the scale-spreading inducesa
“bathtub-shaped” scale spectrum. In Section IV, we compare
the performance of the scale-lag Rake with a frequency-lag
Rake [2] and show that the scale-lag Rake exploits greater
diversity from the wideband channel. Finally, we propose a
low complexity implementation of the scale-lag Rake receiver.

The analysis can be applied to underwater acoustic systems
[3] as well as to radio frequency UWB systems [4].

This work was supported in part by the Ohio Space Grant Consortium.
1Note that scale-spreading is actually a general concept that applies to both

narrowband and UWB systems. For example, changing the time scaleof a
sinusoidal signal is equivalent to shifting the signal in frequency.

2The possibility of a scale-lag receiver was mentioned in [1],but no details
were developed.

II. SYSTEM MODEL

A. Transmit Signal

The wideband DSSS waveform is

x(t) =
1

√
Np

Np−1
∑

i=0

cip(t − iTo), (1)

where{ci} is the length-Np PN chip sequence,p(t) is the unit-
energy chip waveform, andTo is the chip duration. The symbol
duration isTs = NpTo seconds and the system bandwidth
is defined to beW = 1/To. A PN sequence chosen from
a ternary alphabet{−1, 0, 1} may be used to model time-
hopping [4] or episodic signaling [5] without affecting the
analysis. In this paper, we consider only baseband signaling;
thus, all signals and parameters are real valued. We linearly
modulate the DSSS waveformx(t) with a sequence ofNb

symbols{bj} to obtain the transmitted signal.

B. Wideband Channel Kernel

Analogous to the spreading function in narrowband sig-
naling, the wideband signal input-output relationship canbe
modeled by the linear transformationy(t) = L{x(t)} [1]
defined by:

y(t) =

∫ ∫

L (a, τ)
1√
a

x

(
t − τ

a

)

da dτ, (2)

wherex(t) is the channel input andL (a, τ) is thewideband
channel kernel. Note that the wideband channel transformation
is not shift-invariant; hence, sinusoids arenot eigenfunctions.
The wideband channel kernelL (a, τ) quantifies the scale-
lag spreading produced by the channel—the variablea cor-
responds to the dilation introduced by the channel, and the
variableτ corresponds to the propagation delay.

C. Received Signal

We assume the symbol durationTs is much larger than
the delay spreadτmax; hence, we can ignore inter-symbol
interference (ISI) and without loss of generality assume one-
shot transmission. Letx(t) be linearly modulated by a data
symbolb with energyEb. The received signalr(t) in additive
white Gaussian noisew(t) with two-sided power spectral
density ofNo/2 is

r(t) = L{bx(t)} + w(t), (3)

= by(t) + w(t). (4)

wherey(t) is defined in (5).
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Fig. 1. (a) Transmitted wideband signal. (b) Signal dilated byao.

D. Wideband Scale-Lag Canonical Model Representation

Balan et al. [1], inspired by the narrowband frequency-
lag canonical model of [2], derived a powerful time-scale
canonical model for the wideband transformation (2). The
output is simply written as a weighted sum of delayed and
dilated versions of the input:

y(t) =
∑

m,n

cm,n
1

a
m/2
o

x

(
t − nToa

m
o

am
o

)

, (5)

where the canonical coefficientscm,n are given by,

cm,n =

∫ τmax

0

∫ amax

amin

L (a, τ)

sinc

(

n − τ

aTo

)

sinc

(
ln(a)

ln(ao)
− m

)

da dτ. (6)

This canonical representation (5) motivates the study of a two-
dimensionalscale-lagRake receiver.

E. Definitions

In a practice, the wideband channel kernelL (a, τ) has finite
support:{(a, τ) : amin < a < amax, 0 < τ < τmax}, where
amin and amax are the minimum and maximum dilation,
respectively, andτmax is the delay spread. By convention, the
time delay of the shortest path is zero lag.

If we consider a system composed of a mobile receiver,
fixed reflectors, and a fixed transmitter, the minimum dilation
and maximum dilation areamin = 1 − vmax/c and amax =
1+vmax/c, respectively, wherevmax is the maximum mobile
velocity. However, we note that the wideband kernel can be
used to model any dynamic geometry between the transmitter,
scatters, and receiver, e.g., a turbulent underwater environment
with rings of scatters moving at different speeds.

An important system parameter is the widebandscale
spread: γmax := amax−amin

2 = vmax/c = amax − 1, which
defines the maximum deviation from unit temporal dilation.

Consider the inner product ofx(t) with x(t) dilated bya:
〈

x(t),
1√
a

x

(
t

a

)〉

. (7)

Let a = ao result in a dilation by one chip period, (illustrated
by Fig. 1) or in other words, letao satisfy the relation

aoTs − Ts = To ⇔ ao = 1 + 1/Np. (8)

The expected value of the inner product (7) evaluated at
a = ao vanishes if and only if the pulse-shape has zero

DC component [6]. Hence, we defineao as the minimum
resolvable dilation. Equivalently,γo := ao − 1 is the scale
resolutionof the wideband DSSS signalx(t). We haveγo =
To/Ts = 1/TsW = 1/Np, i.e., the scale resolution is the
inverse of the time-bandwidth product.

A useful quantity is thenormalized scale spread: γmax

γo

which can be written in terms of the velocity, speed of
signal propagation, and the time-bandwidth product:γmax

γo
=

vmax

c TsW . Note the similarity to the narrowband normalized
Doppler-frequency spread [7]:fdTs = vmax

c Tsfc, wherefc is
the carrier frequency.

III. SCATTERING FUNCTION

In the following, we compute the wideband scattering func-
tion assuming the wideband channel kernel can be modeled
as a sum ofN discrete paths:

L (a, τ) =

N−1∑

n=0

`nδ(a − an)δ(τ − τn), (9)

where thenth path has real-valued gaiǹn, dilation an, and
lag τn. A similar assumption is used to derive the channel
autocorrelation function in the narrowband setting [8].

In order to proceed with the derivation, we make the
following assumptions on the statistics of the wideband kernel:
(A1) The paths are i.i.d., i.e., they have the same joint density

between the gaiǹn, dilation an, and lagτn.
(A2) The paths have zero mean.
(A3) The dilationan is independent of the amplitudèn and

lag τn.
(A4) The amplitudè n is correlated with the lagτn.
Assumption (A4) is often the case in wireless communications
channels where propagation losses manifest as an exponen-
tially decaying function of increasing lag [9].

From assumptions (A1) and (A2) we write

E[L(a′, τ ′)L(a′′, τ ′′)] = E[δ(a′ − a)δ(a′′ − a)

N |`|2δ(τ ′ − τ)δ(τ ′′ − τ)] (10)

For convenience, we have dropped the subscriptn. From
assumption (A3), we break the expectation in (10) into two
parts: an expectation over dilationa, and an expectation over
the joint distribution of the gaiǹ and lagτ .

First, the expectation over dilation is,

E[δ(a′ − a)δ(a′′ − a)] =
∫

δ(a′ − a)δ(a′′ − a)pa(a)da,

= pa(a′)δ(a′ − a′′), (11)

where pa(a) is the probability distribution of the dilation
variablea.

Second, the expectation over the joint distribution between
gain and lag is,

E[N |`|2δ(τ ′ − τ)δ(τ ′′ − τ)] =

N

∫ ∫

|`|2δ(τ ′ − τ)δ(τ ′′ − τ)

p`,τ (`, τ)dτd`

= f(τ ′)δ(τ ′ − τ ′′) (12)
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where we define

f(τ) := Npτ (τ)

∫

|`|2p`|τ (`|τ)d`. (13)

The functionf(τ) is essentially the average received energy
density as a function of lagτ . Thus, a decaying energy profile
can be modeled.

We substitute the expectation outcomes (11) and (12) into
(10) to obtain

E[L(a, τ)L(a′, τ ′)] = pa(a)f(τ)
︸ ︷︷ ︸

:=Ψ(a,τ)

δ(a − a′)δ(τ − τ ′)(14)

whereΨ(a, τ) is thescattering function.
Now that the form of the scattering function has been

determined, we investigate the density function of the dilation
pa(a). An often studied channel geometry for the narrowband
channel is a fixed transmitter and dense ring of scatterers
surrounding the mobile receiver. In this case, the relation
between the angle-of-arrival relative to the direction of travel
θ and dilationa is

a = 1 − γmax cos(θ). (15)

whereγmax = vmax

c is the scale-spread. Given the angle of
arrival distributionpθ(θ), it is a simple matter to compute the
dilation distributionpa(a),

pa(a) =
1

γmax
pY

(

−a − 1

γmax

)

, (16)

whereY = cos(θ) and

pY (y) =
pθ(cos−1(y)) + pθ(− cos−1(y))

√

1 − y2
. (17)

If the angle of arrivalθ is distributed uniformly on(−π, π],
then we have

pY (y) =
1

π
√

1 − y2
, |y| < 1, (18)

which is a familiar “bathtub shape” [10]. We call the function
pa(a)|a=γ+1 the scale spectrum.

IV. T WO-DIMENSIONAL RAKE RECEIVER

The term “two-dimensional Rake” refers to projecting the
received signal onto a basis of frequency-lag or scale-lag
shifted waveforms. The definition will become clear when
we define the scale-lag and frequency-lag Rake receivers. The
motivation for applying a two-dimensional Rake is to exploit
a mechanism of diversity in addition to lag3 diversity.

The two-dimensional Rake can be divided into two parts:
first, the projection of the received signal onto a basis, and
second, the combining of the projection coefficients to form
the bit estimate. In the following, we clarify these two parts
and state the average bit error rate (BER) expression for a
coherent maximal-ratio combining receiver.

3Lag diversity is sometimes called multipath diversity and arises when the
receiver is able to resolve signals arriving at different delays.

We project the received signalr(t) onto basis{xm,n(t)}:

rm,n = 〈xm,n(t), r(t)〉, (19)

= bym,n + wm,n, (20)

whereym,n = 〈xm,n(t), y(t)〉 are the signal coefficients and
wm,n = 〈xm,n(t), w(t)〉 are the noise coefficients.

Next, the coefficients{rm,n}, −M ≤ m ≤ M and 0 ≤
n ≤ N , are stacked into a vectorr = by + w and linearly
combined to form the bit estimatêb

b̂ = c
T
r (21)

= bcT
y + c

T
w (22)

wherec is the combining vector. The valuesM and N are
chosen so that a significant portion of the energy is contained
in the coefficients. Several possible criteria exist for choosing
c, e.g., maximal-ratio combining, equal-gain combining, or
selection combining. In this paper, we assume the projec-
tion coefficientsy are perfectly known to the receiver, and
maximal-ratio combiningc = y is used to minimize BER.

The BER expression, given the coefficients fade according
to a real-valued Gaussian distribution, i.e.,y ∼ N (0,Σ), is
[11]

Pe =
1

π

∫ π/2

0

κ−1∏

i=0

(
2Ebλi

No sin2 θ
+ 1

)−1/2

dθ, (23)

≤ 1

2

κ−1∏

i=0

(
2Ebλi

No
+ 1

)−1/2

. (24)

whereκ = (2M + 1)(N + 1), and{λi} are the eigenvalues
of the correlation matrixE[yy

T ] = Σ.

A. Scale-Lag Rake Receiver

Motivated by (5), and to match the scale-lag spreading of the
wideband channel, it is natural to choose as basis functionsthe
set of dilated-delayed versions of the DSSS transmitted signal:

xm,n(t) =
1

a
m/2
o

x

(
t − nam

o To

am
o

)

, (25)

where ao is the minimum resolvable dilation andTo is the
chip duration. Together, the scale-lag resolution properties
(defined in Section II-E) of the basis signals imply that
〈xm,n(t), xm̄,n̄(t)〉 ≈ δm−m̄δn−n̄, whereδn is the Kroneker
delta function. Hence, the noise coefficients are approximately
uncorrelated. In [6], we showed that the scale-lag Rake re-
ceiver outperforms the conventional lag-only Raker receiver,
which ignores dilation components in the channel.

The coefficients{rm,n} are effectively a sampling of the
scale-lag plane, as shown in Fig. 2. A Taylors series approxi-
mation aroundao = 1 givesam

0 ≈ 1+m(a0 − 1) = 1+mγo;
hence, a uniform spacing in the scale domain suffices for
typical values of dilation (i.e.,a ≈ 1).

For the unit-energy second-derivative Gaussian pulse [12],4

p(t) =

√
fo

4
√

32π√
3

[
1 − 2(πfo(t − To/2))2

]

exp
(
−(πfo(t − To/2))2

)
, (26)

4We wish to point out that other zero-DC component signals may beused,
such as the modified duobinary pulse [7].
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Fig. 2. Sampling the scale-lag plane.

it can be shown5 that for largeNp, the correlations can be
approximated by

E[ym,nym̄,n̄] ≈
∫ τmax

To

0

∫ γmax
γo

− γmax
γo

Ψ(1 − γoδ, τ̃To)

χ̄(m + δ, n − τ̃)χ̄(m̄ + δ, n̄ − τ̃)dδdτ̃ , (27)

where, forfo = 2/To, we have

χ̄(δ, τ̃) =
1

12

4∑

k=0

wk

∫ 1

0

xke−2π2(δx+τ̃)2dx, (28)

w0 = 12 − 96π2τ̃2 + 64π4τ̃4,

w1 = 256π4τ̃3δ − 192π2τ̃ δ,

w2 = 24
(
16π4τ̃2δ2 − 4π2δ2

)
,

w3 = 256π4τ̃ δ3,

w4 = 64π4δ4.

B. Frequency-lag Rake Receiver

The frequency-lag basis functions are uniform frequency-
and time-shifted versions of the DSSS waveform:

x̃m,n(t) :=

{√
2 cos

(
2πmt

Ts

)

x(t − nTo) m 6= 0

x(t − nTo) m = 0
(29)

In [2], it is shown that the complex-valued extension of the
frequency-lag basis (29) is approximately orthonormal, which
motivated using the frequency-lag Rake receiver to exploit
diversity in doubly-spread narrowband channels.

For the frequency-lag basis (29) employing unit energy
second-derivative pulses (26), it can be shown5 that for large
Np, the autocorrelation can be approximated by

E[ym,nym̄,n̄] ≈
∫ τmax

To

0

∫ γmax
γo

− γmax
γo

Ψ(1 − γoδ, τ̃To)

R̄m,n(δ, τ̃)R̄m̄,n̄(δ, τ̃)dδdτ̃ , (30)

where

R̄m,n(δ, τ̃) =

∫ 1

0

√
2 cos(2πmx)Rp((δx − n + τ̃)To)dx,(31)

andRp(τ) is the autocorrelation

Rp(τ) =

∫

p(t)p(t − τ)dt,

=
1

3

(
(πfoτ)4 − 6(πfoτ)2 + 3

)
exp

(

− (πfoτ)2

2

)

.

5Contact the authors for derivation details.
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Fig. 3. Eigenvalues of (a) frequency-lag Rake, (b) scale-lag Rake.
The curves are indexed by the normalized scale spreadγmax

γo
=

0.1, 0.01, and 0.001. The normalized delay spread isτmax

To
= 1. A

“bathtub-shaped” scale spectrum (18) is assumed.

C. Performance Comparison

In this section, we compare the diversity exploited by the
scale-lag basis with the diversity exploited by the real-valued
frequency-lag basis (similar to the complex-valued basis in
[2]). The scale-lag basis is expected to exploit greater diversity
in wideband channels since it is more closely matched to the
channel dynamics.

Eigenvalue profiles of the scale-lag and frequency-lag Rake
receivers are shown in Fig. 3, given that the chip pulse
shapep(t) is a second-derivative Gaussian pulse (26). The
normalized delay spread isτmax/To = 1 chip, and the
power profilef(τ) is assumed to be constant; furthermore,
we assume a uniform ring of scatterers and use the “bathtub”
scale spectrum specified in Section III. The number of basis
functions for each basis is set byM =

⌊
γmax

γo

⌋

+ 1 and

N =
⌊

τmax

To

⌋

+ 1 in order to capture a significant portion
of the received energy.

The normalized scale spread ofγmax

γo
= vmax

c WTs = 0.001
would be common in practical RF systems; for example, in
an RF system with mobile velocity of 10 km/hr, data rate of
10 kbps, and bandwidth of 1 GHz, or likewise in an RF system
with velocity of 100 km/hr, data rate of 1 Mbps, and bandwidth
of 10 GHz. A normalized scale spread of 0.1 would occur in
a practical underwater acoustic telemetry system with mobile
velocity of 15 km/hr, data rate of 1000 bps, and bandwidth of
36 kHz.

It is easy to see by comparing the third and fourth eigen-
values of the profile that the scale-lag Rake will outperform
the frequency-lag Rake. This is verified by Fig. 4, which
shows the BER performances of the two receivers. Note the
large diversity advantage of the scale-lag Rake receiver, whose
basis functions are more closely matched to the dilation-delay
dynamics of the wideband channel.
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D. Scale-Lag Projection Implementation

In this section, we construct a low-complexity scale-lag pro-
jection implementation centered on feeding the output of the
chip matched filter into a bank of samplers with frequencies
1/am

o To, m ∈ {−M, . . . ,M}. This can be seen by writing
the projection in the following form:

rm,n =

∫

xm,n(t)r(t)dt,

=

∫
1

a
m/2
o

x

(
t − nToa

m
o

am
o

)

r(t)dt,

=
1

a
m/2
o

Np−1
∑

i=0

ci

Np

∫

p

(
t − nToa

m
o − iToa

m
o

am
o

)

r(t)dt,

=
1

a
m/2
o

Np−1
∑

i=0

ci

Np
p

(

− t

am
o

)

∗ r(t)

∣
∣
∣
∣
t=(n+i)am

o To

,

≈ 1

a
m/2
o

Np−1
∑

i=0

ci

Np
p (−t) ∗ r(t)

∣
∣
∣
∣
t=(n+i)am

o To

,

=
1

a
m/2
o

Np−1
∑

i=0

ci

Np
zm,n[i], (32)

where ∗ denotes linear convolution and

zm,n[i] = p (−t) ∗ r(t)

∣
∣
∣
∣
t=(n+i)am

o To

. (33)

The approximation in the second to last step of (32) is close
because dilating the pulse shapep(t) by am

o is insignificant
compared to dilating the entire DSSS waveformx(t). A block
diagram of the basis projection is shown in Fig. 5.

V. CONCLUSION

We have studied the effect of mobility (i.e., temporal
variation in the physical geometries between transmitter,re-
ceiver, and scatterers) on UWB systems and designed receivers
capable of leveraging the potential diversity gains that result
from multipath propagation in mobile environments.
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Fig. 5. Scale-lag Rake receiver implementation.

We derived the wideband scattering function for a uniform
ring of scatterers and found that the scale-spreading induces
a “bathtub-shaped” scale spectrum. We compared the
performance of the scale-lag Rake with a frequency-lag
Rake [2] and showed that the scale-lag Rake exploits greater
diversity since its dilated-delayed basis waveforms are
better matched to the wideband channel scale-lag spreading.
Finally, we proposed a low complexity implementation of the
scale-lag Rake receiver based on applying a bank of samplers
to the output of the pulse matched filter.

Future work will concentrate on characterizing the
time variations of the scale-lag projection coefficients and
developing estimation and tracking schemes.
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