
A New Pulse Shaped Frequency Division
Multiplexing Technique for Doubly Dispersive

Channels
Sibasish Das and Philip Schniter

Dept. EE, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210
das.36@osu.edu, schniter.1@osu.edu

Abstract— There is a growing demand for higher data rate
systems that can function in a highly mobile environment.
This mandates designs suited to doubly selective channels. This
paper presents a pulse-shaped frequency-division multiplexing
(PS-FDM) scheme for transmission over doubly-dispersive chan-
nels. The pulse shapes are designed to yield an inter-symbol
interference (ISI)/ inter-carrier interference (ICI) profile match-
ing a given target response. The receiver relies on a high-
performance/low-complexity equalizer based on the maximum
likelihood (ML) criterion to reliably extract the transmitted sym-
bols from the observations in the presence of controlled amounts
of interference in the target response. In order to protect the
transmitted information against sub-carrier nulls, a convolutional
code is used at the transmitter. The equalizer exchanges soft
information with a maximum a-posteriori probability (MAP)
optimal decoder in a turbo-like fashion at the receiver. Simula-
tions suggest that turbo-equalization with the linear complexity
iterative equalizer offers significant performance enhancements
over standard techniques. 1

I. INTRODUCTION

In non-trivial time- and frequency-selective environments,
i.e., doubly-dispersive environments, single carrier modulation
requires long and quickly-adapting equalizers for inter-symbol
interference (ISI) mitigation, leading to computationally ex-
pensive receivers. Multi-carrier modulation (MCM) has thus
emerged as an attractive alternative.

Orthogonal frequency-division multiplexing (OFDM) [1] is
probably the most well-known MCM technique. Leveraging
FFTs at the transmitter and receiver, its complexity is the
lowest among spectrally-efficient MCM techniques. While
the use of a cyclic prefix (CP) gives OFDM robustness
to time-dispersive fading (at the expense of reduced spec-
tral efficiency), CP-OFDM is often considered non-robust to
frequency-dispersive fading, since this fading induces inter-
carrier interference (ICI) in CP-OFDM (see, e.g., [2], [3]
and references therein). This notion should be considered
more carefully, however: while ICI mandates a more complex
receiver, it also introduces beneficial Doppler-diversity [3]–[5].
In fact, [6] suggests that MCM schemes based on ICI shaping
achieve a higher outage capacity than MCM schemes which
based on ICI suppression. In other words, the benefits of ICI
may outweigh the costs.

1This work was supported by an NSF CAREER award and Motorola, Inc.

In [7], a receiver for uncoded CP-OFDM transmissions
over doubly-selective channels was proposed based on max-
SINR pulse shaping (for ICI control) and soft iterative ICI
cancellation. The prefix and pulse lengths were constrained to
prevent inter-symbol interference (ISI), leading to simplified,
but suboptimal, receiver designs. In this paper, max-SINR
pulse shaping is employed only at the transmitter. The receiver
pulses are constrained to be rectangular. We allow arbitrary-
length transmitter pulses, implying that ISI, in addition to ICI,
must be controlled through pulse design and mitigated at the
receiver. In addition, we relax the traditional CP length require-
ment (to the point of entirely removing the CP), allowing for
higher spectral efficiency.

Because the bit error rate (BER) of uncoded MCM can
be severely degraded by deep sub-carrier nulls, we employ
coding at the transmitter and combine decoding with ICI-
cancellation at the receiver. Specifically, we propose a receiver
scheme that passes soft bit estimates between an equalizer
and soft-input soft-output (SISO) MAP decoder in a turbo-
like fashion [8]. The scheme is based on an equalizer which
is related to the probabilistic data association (PDA) algorithm
of [9] and similar to [10]. In contrast to [9] and [10], however,
our algorithms are specifically tailored to the structure of the
ISI/ICI-shaped channel.

Computer simulations were performed for a MCM system
employing the SINR-maximizing pulses and the aforesaid
equalization strategy. The results suggest that the performance
is significantly better than standard techniques.

The paper is structured as follows. Section II describes
the system model, including the pulse-shaped multi-carrier
modulator, demodulator, and the doubly-dispersive channel.
Section III demonstrates the SINR-optimal pulse design, while
Sec. IV details the iterative receiver processing. Section V dis-
cusses the simulation results obtained, and Sec. VI concludes.

Notation: We use (·)t to denote transpose, (·)∗ conjugate,
and (·)H conjugate transpose. C(b) denotes the circulant
matrix with first column b, D(b) the diagonal matrix created
from vector b, and IK the K × K identity matrix. We use
[B]m,n to denote the element in the mth row and nth column
of B, where row/column indices begin with zero. � denotes
element-wise multiplication. Expectation is denoted by E{·},
cross-covariance by Σb,c := E{bcH} − E{b}E{cH} and



auto-covariance by Σb := E{bb
H} − E{b}E{bH}. Finally,

δ(·) denotes the Kronecker delta, and Z the set of integers.

II. SYSTEM MODEL

In the system considered, at each multicarrier
symbol index i ∈ Z, a vector of uncorrelated2

bits c(i) = [c(i)

0
t
, c(i)

1
t
, · · · , c(i)

N−1

t
]t, where c

(i)

k =
[

c(i)k,0, c
(i)

k,1, · · · , c
(i)

k,M−1

]t

and c(i)k,m ∈ {0, 1}, is mapped

to a vector of symbols, s(i) = [s(i)

0 , s
(i)

1 , · · · , s(i)

N−1]
t, s(i)

k ∈ S

by the symbol mapping ψ : {0, 1}M → S, where S is the
constellation of size |S| = 2M . In this paper, S is restricted to
a Gray-coded PSK constellation, for simplicity. This set of N
coded PSK symbols {s(i)

k } is collected to form a multicarrier
symbol s(i) = [s(i)

0 , . . . , s
(i)

N−1]
t. These symbols are used to

modulate pulsed carriers as follows:

tn =

∞∑

i=−∞

an−iNs

1√
N

N−1∑

k=0

s(i)

k e
j 2π

N
(n−iNs−No)k (1)

In (1), {an} is the transmit pulse sequence, Ns is the multi-
carrier symbol interval, and No ∈ {0, . . . , N − 1} delays the
carrier origin relative to the pulse origin. The multipath chan-
nel is described by its time-variant discrete impulse response
htl(n, l), defined as the time-n response to an impulse applied
at time n− l. We assume a causal impulse response of length
Nh. The signal observed by the receiver is then

rn = νn +

Nh−1∑

l=0

htl(n, l)tn−l (2)

where νn denotes samples of circular white Gaussian noise
(CWGN) with variance σ2. Defining r(i)

n := riNs+n, ν(i)
n :=

νiNs+n, and h(i)

tl (n, l) := htl(iNs + n, l), it can be shown that

r(i)

n = ν(i)

n +

Nh−1∑

l=0

h(i)

tl (n, l)

∞∑

`=−∞

a`Ns+n−l

× 1√
N

N−1∑

k=0

s(i−`)

k ej
2π
N

(n−l+`Ns−No)k (3)

To estimate the multicarrier symbol s(i), the receiver employs
the pulse {bn} as follows:

x(i)

d =
1√
N

∑

n

r(i)

n bne
−j 2π

N
d(n−No) (4)

Here again No delays the carrier origin relative to the pulse
origin. Specifically, {bn}Nb−1

n=0 is defined as

bn =







0, 0 ≤ n < Nh − 1
√

Ns

N
, Nh ≤ n < N +Nh

0, N +Nh ≤ n ≤ Nb

(5)

Note that this system reduces to CP-OFDM with No =
Ns −N , {an}Ns−1

n=0 = 1 and Na = Nb = Ns. Note also that
Ng := Ns −N is analogous to CP-OFDM guard interval.

2If coding is employed, then c(i) is an interleaved vector of coded bits.

Plugging (3) into (4), we find

x(i)

d = w(i)

d +
∑

`

N−1∑

k=0

h(i,`)

df (d− k, k) s(i−`)

k (6)

where

w(i)

d :=
1√
N

∑

n

bnν
(i)

n e
−j 2π

N
d(n−No) (7)

h(i,`)

df (d, k) :=
1

N

∑

n

Nh−1∑

l=0

h(i)

tl (n, l)bna`Ns+n−l e
−j 2π

N
d(n−No)

×e−j 2π
N
k(l−`Ns) (8)

Equation (6) indicates that h(i,`)

df (d, k) can be interpreted as the
response, at time i and subcarrier k+d, to a frequency-domain
impulse applied at time i− ` and subcarrier k.

In practice, we implement finite-duration causal pulses {an}
of length Na implying that only a finite number of terms in
the set {h(i,`)

df (d, k), ` ∈ Z} will be non-zero. Specifically, (8)
implies that non-zero terms result from indices ` which satisfy
0 ≤ `Ns + n − l ≤ Na − 1 for some n ∈ {0, . . . , Nb − 1}
and some l ∈ {0, . . . , Nh − 1}. It is straightforward to show
that h(i,`)

df (d, k) is non-zero for ` ∈ {−Lpre, . . . , Lpst} where
Lpre = −bN+Nh−1

Ns
c and Lpst = bNa−2

Ns
c for {bn} in (5).

With the definitions x(i) := [x(i)

0 , . . . , x
(i)

N−1]
t, w(i) :=

[w(i)

0 , . . . , w(i)

N−1]
t, and [H(i,`)]d,k := h(i,`)

df (d − k, k), (6)
implies the linear time-varying (LTV) multiple-input multiple-
output (MIMO) system

x(i) = w(i) +

Lpst∑

`=−Lpre

H(i,`)s(i−`). (9)

In the sequel we assume wide-sense stationary uncorrelated
scattering (WSSUS) [11] so that E{htl(n, l)h

∗
tl(n − q, l −

m)} = rt(q)σ
2
l δ(m). Here, rt(q) denotes the normalized

autocorrelation (i.e., rt(0) = 1) and σ2
l the variance of the

lth lag.

III. PULSE DESIGN

The choice of {an} and {bn} affect the ISI/ICI patterns of
the MIMO system (9). For example, the CP-OFDM choices
yield a system for which ISI and ICI vanish if the channel is
LTI with delay spread Nh ≤ Ns −N + 1. When the channel
is LTV, however, no choice of {an} and {bn} is capable of
completely suppressing both ISI and ICI. In this paper, our
strategy is to choose {an} (with {bn} fixed to the CP-OFDM
receiver window (5)) so as to impart a particular structure
to the effective channel response H (i,`). The ideal target
ICI/ISI pattern should allow high-performance/low-complexity
equalization while being (nearly) attainable for some choice of
{an}. We use the optimality criterion defined in [12] to design
pulse {an}. We focus on an ICI/ISI target that has a “cursor”
coefficient H(i,0) with the banded structure illustrated in Fig. 1
and ISI coefficients {H (i,`)} 6̀=0 which equal zero. This choice
is motivated by the low-pass nature of typical Doppler spectra
(see [7]) and assumes that ISI can be effectively suppressed.



(With very long delay spread, it may be more appropriate to
design pulses which allow post-cursor ISI and apply block
decision feedback equalization; this is discussed in [12].) The
width of the band in Fig. 1 is proportional to design parameter
D. When Rayleigh fading with maximum normalized Doppler
frequency fd is assumed, i.e., rt(q) = J0 (2πfdq), we choose
D ≈ dfdNe.
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Fig. 1. Desired structure of MIMO cursor coefficient H(i,0) .

We design pulses according to the SINR(x(i)) := Es/Eni

criterion, where signal energy Es and noise-plus-interference
energy Eni are defined relative to the target. If we define Es,d

to be the energy contributed by s(i)

d to x(i)

d , and if we define
Eni,d to be the energy contributed to x(i)

d by additive noise w(i)

d ,
non-cursor symbols {s(j)

d }j 6=i, and non-neighboring co-cursor
symbols {s(i)

k }d−D−1
k=0 ∪ {s(i)

k }N−1
k=d+D+1, then Es =

∑

d Es,d

and Eni =
∑

d Eni,d. Note that the energy contributed to x(i)

d

by neighboring co-cursor symbols {s(i)

k }d−1
k=d−D ∪{s(i)

k }d+Dk=d+1

is considered neither signal nor interference, but rather a
“don’t care” quantity. In choosing a := [a0, . . . , aNa−1]

t, we
impose the average transmitted power constraint ‖a‖2 = Ns,
consistent with CP-OFDM. Here we present a summary of the
pulse shape derivation. The details can be found in [12].

From (6), (8), the description above and our WSSUS
assumption it can be shown that

Es = 1
N

aH
(
Ra � Bs

)
a, (10)

where Ra and Bs are Na×Na matrices, defined element-wise
as [Ra]p,q := rt(q − p), and [Bs]p,q :=

∑Nh−1
l=0 σ2

l bq+lb
∗
p+l.

From (6) and our definition of Eni,d, it can be shown that

Eni = a
H(

σ
2
INa + Ra � Ca � Bt − Ra � Da � Bs

)
a (11)

In (11),Ca, Da, and Bt are Na × Na
matrices defined element-wise as [Da]p,q :=
1
N

sin( π
N

(2D + 1)(q − p))/ sin( π
N

(q − p)), [Bt]p,q :=
∑Lpst

`=−Lpre

∑Nh−1
l=0 σ2

l bq+l−`Ns
b∗p+l−`Ns

, and [Ca]p,q :=

δ(〈q − p〉N ). We use ‖a‖2 = ‖b‖2 = Ns to write (11).
The optimization SINR = Es/Eni with respect to a under
the constraint ‖a‖2 = Ns, can be written as (12), where
v?(M ,N) denotes the principle generalized eigenvector of
the matrix pair (M ,N). The optimization can be carried
out in advance for Rayleigh fading. The pulse {an} depends
on maximum Doppler frequency, power profile, and noise
variance. Typical pulses generated can be seen in Fig. 2(a)-(b).

a? = arg max
a:‖a‖2=Ns

aH
(
Ra � Bs

)
a

aH
(
σ2I + Ra � Ca � Bt − Ra � Da � Bs

)
a

=
v?

(
Ra � Bs, σ2I + Ra � Ca � Bt − Ra � Da � Bs

)

N−1/2
(12)
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Fig. 2. Typical SINR-optimal pulse shapes generated when (a) fd =
0.01, SNR = 2dB, and (b) fd = 0.03, SNR = 2dB.

IV. ITERATIVE EQUALIZATION

Here we develop a low complexity algorithm that extracts
information about the bits c(i) from the observation x(i) while
leveraging the sparse channel structure that results from SINR-
optimal pulse design.

IV.1) Simplified System Model: With proper application of
the pulse shapes described in Sec. III, the MIMO chan-
nel {H(i,`)}Lpst

`=−Lpre
has negligible pre- and post-cursor ISI

and a cursor coefficient H (i,0) with the banded structure
shown in Fig. 1. This structure implies that s(i)

k will con-
tribute primarily to the observation elements {x(i)

d }k+Dd=k−D,
where all indexing in this section is taken modulo-N .
Thus, good “local” estimates of s(i)

k can be generated us-
ing x

(i)

k := [x(i)

k−D , · · · , x
(i)

k+D ]t. If we define s
(i)

k :=
[s(i)

k−2D , · · · , s
(i)

k+2D ]t, w
(i)

k := [w(i)

k−D , · · · , w
(i)

k+D ]t, and
ε

(i)

k := [ε(i)

k−D, · · · , ε
(i)

k+D]t, then we can write

x
(i)

k = H
(i)

k s
(i)

k + ε
(i)

k , (13)

where H
(i)

k is the sub-matrix of H (i,0) built from rows {k −
D, . . . , k+D} and columns {k−2D, . . . , k+2D}, and where
ε

(i)

k denotes noise plus residual ICI and ISI. ε
(i)

k is modeled
as zero-mean Gaussian with covariance Σεk

. The proposed
equalizer uses the system model in (13).

IV.2) Iterative Maximum Likelihood Equalizer (IMLE): Our
equalizer uses the observation x(i) and knowledge of H (i,0)

to update the ith multicarrier symbol’s bit reliability metrics
{L(i)(k,m), ∀m}N−1

k=0 , also referred to as L-values (LVs).

L(i)(k,m) := ln
P (c(i)k,m = 0|x(i))

P (c(i)k,m = 1|x(i))
(14)

Since all quantities pertain to the ith multicarrier symbol, we
can omit superscript indices w.l.o.g. Note that the sign of
L(k,m) is the uncoded MAP bit decision and the magnitude of
L(k,m) indicates the reliability of this decision. Using Bayes’
rule and assuming independent bits,3 L(k,m) can be rewritten

3As a consequence of, e.g., interleaving.



as the sum of the prior LV, Lo(k,m), and the extrinsic LV,
∆L(k,m), defined in (15).

L(k,m) = ln

∑

γ∈GNM
kN+m,0

p(x|c = γ)
∏

k′ 6=k
m′ 6=m

P (ck′,m′ = γk′N+m′ )

∑

γ∈GNM
kN+m,1

p(x|c = γ)
∏

k′ 6=k
m′ 6=m

P (ck′,m′ = γk′N+m′ )

︸ ︷︷ ︸

∆L(k,m)

+ ln
P (ck,m = 0)

P (ck,m = 1)
︸ ︷︷ ︸

Lo(k,m)

. (15)

Here, Gk1k2 ,α denotes the set of all length-k1 bit vectors in
which the kth2 bit has been set to α ∈ {0, 1}. The decoupling
of ∆L(k,m) and Lo(k,m) is important; we will ensure that
Lo(k,m) is not used in the calculation of ∆L(k,m).

Since exact computation of ∆L(k,m) is generally infeasi-
ble, we use a sub-optimal algorithm based on an approxima-
tion of ∆L(k,m) using only the partial observation xk (from
(13)). This approximation will involve the symbol means {µk}
and variances {vk} defined in (16)-(17).

µk =
∑

β∈S

βP (sk = β) (16)

vk =
∑

β∈S

|β|2P (sk = β) − |µk|2 (17)

The equalizer derives its name from the fact that ∆L(k,m)
is the maximum likelihood (ML) decision statistic for bit ck,m.
Here, however, ∆L(k,m) is approximated to reduce compu-
tational complexity. The key idea is to first perform a soft
interference cancellation (SIC) using the symbol means {µk},
then to apply a Gaussian model to the residual interference-
plus-noise. The resulting ∆L(k,m) approximation, denoted
by ∆L̃(k,m), is much easier to compute. Specifically, the
partial observation after SIC is written

yk = xk − Hkµk

= hk,0sk +

k+2D∑

j=k−2D
j 6=k

hk,j(sj − µj) + εk

︸ ︷︷ ︸

qk

(18)

where hk,j denotes the (j+ 2D)th column of Hk and where

µk := [µk−2D , . . . , µk−1, 0, µk+1, . . . , µk+2D ]t. (19)

The residual interference vector qk is modeled as zero-mean
Gaussian, independent of sk, with covariance Σqk

:

Σqk
=

k+2D∑

j=k−2D
j 6=k

vjhk,jh
H
k,j + Σεk

. (20)

= Hk D(vk)H
H
k + Σεk

(21)

where

vk := [vk−2D , . . . , vk−1, 0, vk+1, . . . , vk+2D ]t. (22)

Replacing p(x|c = γ) in (15) with p(yk|sk = ψ(γ)), the
extrinsic LV becomes

∆L̃(k,m) = ln

∑

γ∈GM
m,0

eRe
(
ψ(γ)gk

)
∏

m′ 6=m e
(−1)

γ
m′ Lo(k,m′)

2

∑

γ∈GM
m,1

eRe
(
ψ(γ)gk

)
∏

m′ 6=m e
(−1)

γ
m′ Lo(k,m′)

2

where gk := yHk Σ
−1
qk

hk,0.
The IMLE algorithm proceeds as follows. Prior to the first

iteration, {Lo(k,m) ∀k,m} are obtained from the output of a
soft decoder, if available, or otherwise set to zero. These LVs
are then used to initialize {µk}N−1

k=0 and {vk}N−1
k=0 . We begin by

working on symbol index k = 0. The means µ0 and variances
v0 are used to calculate y0 and Σq0

, which in turn are used to
compute g0. From g0 and {Lo(0,m)}M−1

m=0 , {∆L̃(0,m)}M−1
m=0

are calculated and used to compute {L(0,m)}M−1
m=0 . Finally,

{L(0,m)}M−1
m=0 are used to update µ0 and v0. The k = 1 case

is tackled next, then k = 2, and so on, until k = N − 1.
Finally, {L(k,m) ∀k,m} are copied to {Lo(k,m) ∀k,m}.
This concludes the first iteration.The algorithm terminates after
a specified number of iterations.

The computational complexity for IMLE is dominated by
the inversion of the (2D+1)× (2D+1) matrix Σqk

, yielding
a per-iteration complexity order of O

(
ND3

)
. It is interesting

to note that IMLE-BPSK is similar to the probabilistic data
association (PDA)-based multi-user detection (MUD) schemes
proposed in [9]. However, in [9], the iterative symbol detection
strategy is applied after a zero-forcing (ZF) transformation is
applied to x, i.e., after the channel has been trivialized. Since
the ZF transformation has a complexity order of O

(
N3

)
, it

is much more costly than IMLE and IMSE since, typically,
D � N . Essentially, IMLE leverages the banded structure
of H, while PDA does not. IMLE is also similar to [10].
However, our algorithm updates LVs for individual bits and
passes bit LVs to the decoder, whereas soft symbol estimates
are updated in [10] and bits are detected via hard decision on
the final symbol estimate. Also note that whereas [10] works
in the time-lag domain, our scheme operates in the frequency-
doppler domain. This is advantageous since the number of
interfering symbols is smaller for our scheme as D � Nh.

V. SIMULATION RESULTS

Here we characterize the performance of the proposed
PS-FDM system employing IMLE and coding. End-to-end
coded BER is used as a performance measure for the pro-
posed iterative equalizer. The iterative equalizer is used in
a turbo-equalizer configuration Fig. 3. As a reference, we
use the perfect global interference canceler (PGIC) with one
equalization and decoding iteration, in which the equalization
step is IMLE for {L(i)(k,m)}M−1

0 assuming all interference
{s(j)

d }(j,d)6=(i,k) is known perfectly. We also consider the
perfect local interference canceler (PLIC). PLIC is similar
to PGIC except that, when using IMLE for {L(i)(k,m)}M−1

0 ,
only neighboring co-cursor ICI {s(i)

d }k+2D
d=k−2D is known; ISI

and non-neighboring ICI are unknown. This PLIC lower
bounds the BER of the IMLE, since, in the best case, it too



cancel only local interference. The proximity of PLIC and
PGIC performance curves measures the success of the pulse
design’s out-of-target interference suppression ability.

V.1) Setup: Experiments employed (Gray-mapped) QPSK
constellations, SNR−1-variance CWGN noise, a WSSUS Ray-
leigh-fading channel with uniform power profile (i.e., σ2

l =
N−1
h for 0 ≤ l < Nh), and design choices Na = 1.5Ns,

Nb = Na +Nh/2, and D = dfdNe + 1. We chose N = 64,
Nh = 32, and Ns = N (i.e., no guard interval) and studied
fd = 0.03 and fd = 0.01. Recall that fd is normalized to the
chip rate, i.e., rt(q) = J0(2πfdq). Channel knowledge was
assumed and, hence, no pilots were employed. For purposes
of coding, a (7, 5) rate- 1

2 (non-systematic) convolutional code,
along with a SISO BCJR decoder [13], was used.

V.2) Results and Discussion: Figure 4 depicts the performance
of the system with max-SINR transmitter pulses and a standard
CP-OFDM receiver window.

The BER is plotted against the ratio of information-bit
energy to noise spectral density. In these BER plots, MLk
refers to IMLE with k decoding iterations. LIN refers to
the performance of the MCM system with standard linear
MMSE based equalization and one decoding iteration. WN
refers to the performance of the convolutional code over a
CWGN channel, representing performance in the absence of
interference and fading.

In Fig. 4, the gap between the PLIC and PGIC curves is less
than 1dB for all cases, implying that, with our pulse shapes
and simplified system model (13), the loss in performance is
small, even at the high Doppler frequency of fd = 0.03. Also
notice that, PGIC/PLIC for fd = 0.03 is lower than fd = 0.01.
Recall that D increases with fd and provides diversity gain at
the cost of complexity.

We note that, as fd increases, PGIC/PLIC performance
improves (as a consequence of diversity) while IMLE per-
formance degrades. We attribute this degradation to error
propagation during iterative equalization. Even so, we find
that IMLE performance is within 1.5dB the PLIC bound at
fd = 0.03. In both cases, it is clear that the algorithms perform
significantly better than an O

(
N3

)
standard non-iterative

linear MMSE based equalization strategy. This is remarkable
considering that the IMLE has O

(
ND3

)
complexity.

VI. CONCLUSIONS

We presented a new approach to PS-FDM in the presence
of doubly-dispersive fading. Pulse sequences were constructed
to shape ICI/ISI into a pattern that enables low-complexity
diversity-leveraging equalization, and a suitable equalization
algorithm was described. Simulations demonstrated the effi-
cacy of the proposed technique.
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Fig. 4. QPSK with transmitter pulses and CP-OFDM receiver window for
(a) fd = 0.01 and (b) fd = 0.03


