Iterative Equalization for Single Carrier Cyclic Prefix in Doubly-Dispersive Channels

Phil Schniter and Hong Liu

November 10, 2003
Background:

- First, consider communication over **time-dispersive** channels.

- Options:
 1. Single-Carrier Modulation with Time-Domain Equalization
 - $\mathcal{O}(N_h)$ operations/symbol for chan length N_h.
 - low peak-to-average-power ratio (PAPR).
 2. Multi-Carrier Modulation with Freq-Domain Equalization
 - $\mathcal{O}(\log N)$ operations/symbol for block length N.
 - high PAPR.
 - “OFDM.”
 3. Single-Carrier Modulation with Freq-Domain Equalization
 - $\mathcal{O}(\log N)$ operations/symbol for block length N.
 - low PAPR.
 - “single carrier cyclic prefix (**SCCP**).”
Single-Carrier Cyclic Prefix (SCCP):

- SCCP is like OFDM with both FFTs at the receiver.
- Freq-domain equalization requires only one mult-per-symbol if:
 1. cyclic prefix length > channel delay spread,
 2. channel time-invariant over the FFT-block interval.
- Our final goal, however, is communication over *time-dispersive and frequency-dispersive* channels.

How can we handle SCCP with significant channel variation over the block interval?
System Model:

\[r = H_{tl} s + \nu \]

\[x = \underbrace{F H_{tl} F^H}_{H_{df}} \underbrace{F s + F \nu}_{w} \]

where

\[H_{tl} \] = circular-convolution matrix,

\[H_{df} \] = “virtual-subcarrier” coupling matrix.

\[\sim H_{df} \] diagonal iff channel is LTI and prefix-length is adequate.
Virtual-Subcarrier Coupling Matrix \mathcal{H}_{df}:

$$
\mathcal{H}_{df} =
\begin{pmatrix}
 h_{df}(0,0) & h_{df}(-1,1) & \ldots & h_{df}(1-N,N-1) \\
 h_{df}(1,0) & h_{df}(0,1) & \ldots & h_{df}(2-N,N-1) \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{df}(N-1,0) & h_{df}(N-2,1) & \ldots & h_{df}(0,N-1)
\end{pmatrix}
$$

$$
h_{df}(\nu,k) := \frac{1}{N} \sum_{n=0}^{N-1} \sum_{l=0}^{N-1} h_{tl}(n,l)e^{-j\frac{2\pi}{N}n\nu}e^{-j\frac{2\pi}{N}lk}
$$

= response at carrier $k+\nu$ to an impulse applied at carrier k

$$
h_{tl}(n,l) := \text{response at time } n \text{ to an impulse applied at time } n-l
$$
Inter-Carrier Interference Mechanism:

Doppler Spread meets Finite Block Length:

\[
E \{ |h_{df}(\nu, k)|^2 \} = \left(\frac{I_{[0, 2\pi f_d]}(|\phi|) \sum I}{\sqrt{\left(2\pi f_d\right)^2 - \phi^2}} \right) \ast \left(\frac{\sin(\phi N/2)}{N \sin(\phi/2)} \right)^2 _{\phi = \frac{2\pi}{N} \nu}
\]

\[
= \text{Samples of} \ * \text{Samples of} \ * \text{Samples of}
\]

Note: Zero Doppler spread \(\Rightarrow\) Sample at sinc nulls \(\Rightarrow\) Zero ICI
Rayleigh $\mathbb{E}\{|h_{df}(\nu, k)|^2\}$ for $N = 128$ and $f_d = 0.03$:
Rayleigh $\mathbb{E}\{ |h_{df}(\nu, \cdot)|^2 \}$ for $N = 128$ and various f_d:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\end{figure}
SCCP Equalization/Detection:

Objective: Recover finite-alphabet vector s from $x = \mathcal{H}_{df} F s + w$.

Classical Strategies:

- ZF, LS: $\hat{s}_{zf} = \text{slice}\left[F^H \mathcal{H}_{df}^{-1} x \right]$
- MMSE: $\hat{s}_{mmse} = \text{slice}\left[F^H \mathcal{H}_{df}^H (\mathcal{H}_{df} \mathcal{H}_{df}^H + \sigma_w^2 I)^{-1} x \right]$
- MLSD: $\hat{s}_{mlsd} = \arg \max_s ||x - \mathcal{H}_{df} F s||^2$

With LTV channel: \leadsto Equalization requires $\geq O(N^3)$ operations
\leadsto Low-complexity advantage of SCCP is lost!
Linear Pre-Processing to Simplify Detection:

- Use linear pre-processing to simplify detection.
 - Want to make H_{df} sparse
 - ICI-response “shortening”
 - Reminiscent of ISI-shortening for single-carrier MLSD
- Time-domain windowing = Doppler-domain convolution!

![Diagram showing before and after processing](image-url)
Max-SINR Window Coefficients:

- Say we allow $2D$ diagonals of controlled ICI.

- Max-SINR window coefficients b_\star are

$$b_\star = \text{gen-evec}_{\text{max}}\left(A \odot R^*, \ diag(R + \sigma^2 I) - A \odot R^* \right)$$

where, for WSSUS Rayleigh fading,

$$[A]_{m,n} = \frac{\sin\left(\frac{\pi}{N}(2D + 1)(n - m)\right)}{N \sin\left(\frac{\pi}{N}(n - m)\right)}$$

$$[R]_{n,m} = J_0\left(2\pi f_d(n - m)\right) \sum_{l=0}^{N_h-1} \sigma_l^2$$

- Note that b_\star is a function of $\left\{D, N, f_d, \frac{\sum \sigma_l^2}{\sigma^2}\right\}$
Windowed-System Model:

- Apply windowing before first receiver DFT:
 \[\tilde{x} = F \mathcal{D}(b)r\]
 \[= F \mathcal{D}(b)F^H F r = C(\beta) x\text{ for } \beta = \frac{Fb}{\sqrt{N}}\]
 \[= C(\beta) \mathcal{H}_{df} F s + C(\beta) w\]
 nearly banded

- **Goal:**
 Estimate finite-alphabet \(\{s_0, \ldots, s_{N-1}\}\) given \(\mathcal{H}_{df}, \beta\), and \(\tilde{x}\).

- **Approach:**
 Leverage sparse \(\mathcal{H}_{df}\) to estimate \(t\), then relate \(t \rightarrow s\).
Iterative MMSE Estimation:

Block Iteration:

L-MMSE step for each k:

\[
\tilde{x}_k = \tilde{h}_k \tilde{H}_k + t_k C_k + w
\]
Algorithm requiring $O(D^2 \log N)$ operations/symbol:

\[L^{(0)}(s_k) = 0 \quad \forall k \]

\[\text{for } i = 0 \ldots, \]
\[\text{for } k = 0 \ldots N - 1, \]
\[\tilde{s}_k^{(i+1)} = \tanh(L^{(i+1)}(s_k)/2) \]
\[v_k^{(i+1)} = 1 - (\tilde{s}_k^{(i+1)})^2 \]
\[\text{end} \]
\[\bar{t}^{(i)} = F\tilde{s}^{(i)} \]
\[\text{for } k = 0 \ldots N - 1, \]
\[g_k^{(i)} = -\hat{H}_k F \mathcal{D}(\mathbf{v}^{(i)}) F^H \hat{H}_k^H + \sigma^2 C_k C_k^H \]^{-1} \hat{H}_k F \mathcal{D}(\mathbf{v}^{(i)}) F^H i_k \]
\[\hat{t}_k^{(i)} = \bar{t}_k^{(i)} + g_k^{(i)H}(x_k - \hat{H}_k \bar{t}^{(i)}) \]
\[\text{end} \]
\[Q^{(i)} = F^H \left(\sum_{k=0}^{N-1} \hat{H}_k g_k^{(i)H} i_k^H \right) F \]
\[P^{(i)} = F^H \left(\sum_{k=0}^{N-1} C_k C_k^H g_k^{(i)H} i_k^H \right) F \]
\[\hat{s}^{(i)} = F^H \hat{t}^{(i)} \]
\[\text{for } k = 0 \ldots N - 1, \]
\[L^{(i+1)}(s_k) = L^{(i)}(s_k) + 4 \frac{\text{Re}\{Q^{(i)}_{k,k}(\hat{s}_k^{(i)} - \tilde{s}_k^{(i)})\} + |Q^{(i)}_{k,k}|^2 \tilde{s}_k^{(i)}}{q_k^{(i)H} \mathcal{D}(\mathbf{v}^{(i)}) q_k^{(i)} - |Q^{(i)}_{k,k}|^2 v_k^{(i)} + \sigma^2 \|P_k^{(i)}\|^2} \]
\[\text{end} \]
end
Uncoded-SER versus SNR:

- Left: $fd=0.001$, $D=1$, $N=128$
- Middle: $fd=0.01$, $D=3$, $N=128$
- Right: $fd=0.03$, $D=5$, $N=128$

Legend:
- LIN
- ITER
- AMFB
- MFB
Observations:

• Classical (Joint Linear) MMSE:
 – $O(N^2)$ operations/symbol.
 – Worst performance.

• Iterative MMSE:
 – $O(\log N)$ operations/symbol.
 – ~ 2dB from MFB
 – Easily combined with decoding algorithm (i.e., turbo eq).

• Approximate MFB:
 – Uses sparse \tilde{H}_{df} with perfect interference cancellation.

• MFB:
 – Uses true \tilde{H}_{df} with perfect interference cancellation.
Summary:

- SCCP reception complicated by time-selectivity.
- Proposed a two-stage SCCP receiver for doubly-selective channels:
 1. SINR-optimal windowing,
 2. Iterative MMSE estimation.
- Like classical SCCP receivers, requires $O(\log N)$ operations/symbol.
- Uncoded error rate is ~ 2dB from MFB.
- Soft decoding can be easily incorporated.