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Abstract

When OFDM systems with large block length are used
in fast-fading multipath channels, the channel may in-
duce significant inter-carrier interference (ICI). As a re-
sult, the standard ML, MMSE and ZF detectors be-
come prohibitively complex. In response, we propose
a computationally-efficient decision-feedback detection
strategy based on optimal windowing and linear MMSE
estimation. Simulation results indicate good performance
relative to the standard MMSE detector but with significant
computational savings.

1 Introduction

While the application of orthogonal frequency division
multiplexing (OFDM) in slow-fading frequency-selective
(FS) channels is well understood (e.g., [1, 2, 3, 4]), the ap-
plication of OFDM in fast-fading FS channels results in
new challenges (e.g., [5, 6, 7]), many of which have not
been practically treated in the literature.

Current trends in broadband communication systems
lead us to believe that channel time-variation will soon
play an important role in OFDM systems. First, as com-
munication systems are implemented in higher frequency
bands (e.g., > 1 GHz) and thus using smaller wavelengths,
the sensitivity of channel parameters to physical movement
grows proportionally. In other words, effective rates of
channel variation for a fixed mobile speed increase. Sec-
ond, increasing either the efficiency or the bandwidth of
an OFDM system will increase the sensitivity to channel
variation. This latter claim can be understood from the de-
sire to have a large OFDM block length which allows, in
turn, significant channel variation within a block. Large
block length is motivated by the desire to i) reduce ca-
pacity loss due to insertion of redundant guard intervals,
and ii) maintain narrow subcarrier spacing (to ensure flat
subcarrier fading) as system bandwidth increases. Chan-
nels that exhibit fast time-selective fading lead to a loss

of OFDM subcarrier orthogonality resulting in ICI. Thus,
the primary motivation for OFDM in FS channels—the ab-
sence of ICl—does not carry over to time- and frequency-
selective, i.e., doubly-selective channels.

2 OFDM System Model

Before analyzing the effects of channel time-variation on
OFDM systems, we first review the system model. The
OFDM transmitter parses the incoming (coded) bit-stream
into blocks of IV “frequency-domain” QAM symbols, each
of which gets transformed into a block of “time-domain”
transmitted samples using an N-point inverse FFT. To pre-
vent inter-block interference at the receiver and to ensure
a circular (rather than linear) convolution with the channel
response, the time-domain blocks are cyclically prepended
prior to transmission with an extension length at least as
long as the channel impulse response. The time-domain
blocks are then serially transmitted through a multipath
fading channel, modeled as a discrete linear time-varying
(LTV) system characterized by h,;(n,m), the response at
time n to an impulse applied at time n — m, before cor-
ruption by zero-mean circular white Gaussian noise @w(n).
The OFDM receiver observes the output of the noisy lin-
ear channel and discards the samples corresponding to the
prefix, after which the time-domain observation sequence
for a single OFDM block can be written in vector form as

x; = Hy Fs +w 1)

In (1), s denotes a vector of frequency-domain QAM sym-
bols, FH a unitary matrix representing the inverse N-FFT
operation, H;; a matrix representing the time-domain ef-
fect of the channel and W a vector of time-domain noise
samples. When the channel is linear time-invariant (LTI),
H,g is circulant.

Performing a FFT (denoted by F) at the receiver, we
obtain the frequency-domain observation vector

x; = Fx; = FH  FHs+Fw = Hyps+w (2



where matrix Hq4, ¢ represents the frequency-domain effect
of the channel and w is a vector containing frequency-
domain noise samples which is statistically equivalent to
its time-domain counterpart w.

Given x; and Hgq,f, linear MMSE detection of the
QAM symbols in s can be accomplished by element-by-
element thresholding of the vector

Smmse = ,Hf,f (,Hd,fﬂgf + 0121)1)_le (3)

where we have assumed E{ss’} = I, E{wwH} = o1,
and E{sw#} = 0. For LTI channels, H,; is diagonal and
thus the matrix inversion required in (3) is trivial; this is
the primary motivation for cyclic prefix OFDM.

3 Fading Channel Statistics

LTV channels cause H,; to lose its circulant structure,
preventing Hg4,; from being diagonal. From (2), this im-
plies that each element of x ¢ will contain interference from
multiple symbols in s, a phenomenon we will refer to as
inter-carrier interference (ICI). More specifically, if we as-
sume wide-sense stationary uncorrelated scattering (WS-
SUS) and Rayleigh fading [8], then the Doppler/frequency
channel coefficient k4, ¢ (v, k), appearing in the k" column
and vt" diagonal of H4,¢ (where v = 0 denotes the main
diagonal), has variance [9]
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In (4), o2, denotes the variance of hy;(-,m), Nj, the max-
imum delay spread of the channel in baud, If,,5(-) the in-
dicator function over the interval [a, b), f4 the normalized
Doppler frequency, and x the convolution operation. In
Fig. 1 we evaluate (4) for block length N = 64 and var-
ious fy. Observe that even relatively slow channel varia-
tions (e.g., f4 < 1/N) cause significant ICI power.
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Figure 1: Variance of elements in #4, s vs. Doppler spread.

We emphasize the fact that the non-diagonal structure
of Hg4,5 complicates symbol detection. For example, the

MMSE detector (3) would require a non-trivial N x N
matrix inversion that may not be feasible for typical block
lengths V (which can be as large as 8192).

4 Linear Receiver Pre-Processing

For large-N systems under significant ICI, optimal se-
quence detection is infeasible. As a practical subopti-
mal alternative, we propose low-complexity linear pre-
processing that renders the ICI response sparse, thereby
simplifying subsequent symbol detection. The ICI struc-
ture evident in (4) and Fig. 1 suggests pre-processing that
strives to limit the ICI to adjacent subcarriers. This ICI-
response shortening can be regarded as the frequency-
domain dual of I1SI-channel shortening that has been pro-
posed to reduce the complexity of maximum likelihood se-
quence detection (MLSD) in single-carrier systems [10].

4.1 Time-Domain Windowing

While single-carrier systems typically achieve ISI-
shortening via convolutive linear filtering, we propose
to leverage the receiver FFT operation to achieve ICI-
shortening via fast-convolution. The simplest such strat-
egy is to apply an N-point time-domain window to the re-
ceived signal x; prior to the FFT operation. Making use of
the DFT property

FD(b)F" = LC(Fb) (5)
B

where D(-) denotes the vector-to-diagonal-matrix opera-
tor and C(-) denotes the vector-to-circulant-matrix oper-
ator, the windowed frequency-domain observation vector
can be written

ff = FD(b Xt
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Recall that our goal is to make the matrix C(B)H.q, ¢
sparse, reducing the effective number of ICI coefficients
corrupting Xy and thus the complexity of subsequent sym-
bol detection. For simplicity, we assume that the detection
algorithm ignores all ICI coefficients in C(B)H g4, 7 Outside
of a desired region, implying that unattenuated ICI in the
undesired region acts as interference. To make these state-
ments more precise, we introduce a mask operator M(-)
which nulls all matrix elements in the undesired-ICI region
and a complementary mask operator M(-) which nulls the
elements in the desired-1ClI region. The effective “signal”



and “noise + interference” energies are
& = FlIMECBHap)llE
JR— 0,2
Eni = HIMECBYHas) 3+ ZICB)I3

where || - || denotes the Frobenius norm.

4.2 Max-SINR Window Design

Ideally, the ICI-shortening window should be optimized to
maximize symbol detection performance. If we assume an
OFDM system employing powerful error-control coding,
then the performance will be proportional to the average
signal to interference-plus-noise ratio (SINR) across car-
riers [11], which motivates a window design maximizing
average carrier SINR.

From (4) and Fig. 1, we are motivated to choose an
“adjacent-carrier” desired ICI region, i.e., C(B)H4,7 with
a banded structure (including the top-right and bottom-left
corners). Equivalently, the mask operator M(-) nulls the
vth diagonal for each v in the range D+1 < {(v)y <
N —D—1, where v = 0 corresponds to the main diag-
onal. The parameter D controls the target level of ICI
shortening: smaller D corresponds to a shorter ICI span
and thus reduced detection complexity. While technically
we require 0 < D < % —1, we have observed that, for
good window performance, D must be chosen in accor-
dance with the Doppler spread.

Our definition of M(-) allows the simplification

IM(CB)Ha, )7 = IPC(B)Ha, s[5
where Hy ¢ is a re-arrangement of # 4, ¢ defined by

Ha tlvk = ha,y (v, k).

and
Ipys 0 O
P = 0 0 O
0 0 Ip

Similarly, we can use P+ = Iy — P to say
M (C(B)Ha,s) I = [IPC(B)Ha,z |3
Maximizing SINR &/&,; is accomplished by

b, = agmax I'PC(B)Ha,lI7
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where [Hyln,m = hei(n,m). This can be solved in
closed form through

b = diag(c2I+H,H)ib
- [PED(b)H,,[|3

b, = arg max — ——
b [[bl]> - [[PFD(b)H,,

%

using
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Since SINR is invariant to the scaling of b, we assume
w.l.0.g. that ||b|| = 1, in which case

b, =arg max |[PFD(b)H %
IBll=1

It helps to rewrite the above norm as
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Thus b, is the principle eigenvector of A and
b, = diag(o21+ H,,H) 2b, (10)

Fig. 2 illustrates the effect of N-point max-SINR win-
dowing on a representative realization of H 4, ¢.
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Figure 2: Typical effect of N-point max-SINR windowing on
Ha,s. (Dot size proportional to coefficient log-magnitude.)

4.3 Max-SINR Window Approximation

Calculation of the optimal window (10) requires knowl-
edge of current channel coefficients. We now seek a
channel-independent approximation to (10). From (7) and
(9), we see that A, can be expanded into

A2 = dlag (0'121)I+Ht,lH1{,{l)

1 *
? (H,Hf)
- diag (021 + Hy ) ™7



With large delay-spread (i.e., large Ny), we can approxi-
mate the summation in Ht,szl using an expectation:

Q
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since our WSSUS/Rayleigh assumption implies
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The max-SINR window quantities then become

Nh —% N
(afu + Z afn> b,

m=0

N

Np
oL+ > o2

m=0"m

b, =~

(A3, ) Jo (2 fa(n = 1))

As desired, an approximate max-SINR window can be con-
structed using channel and noise statistics rather than chan-
nel realizations. Furthermore, o2 and o2, only affect win-
dow scaling and not the resulting SINR. Thus the window
coefficients need only be a function of f;, D and N.

In Fig. 3we plot SINR (£, /&,,;) versus symbol-to-noise
power ratio for an OFDM system with N = 128, N, = 32,
and various values of f;. The benefits of windowing are
clear. Observe that the max-SINR window (from Sec. 4.2)
and its realization-independent approximation (from Sec.
4.3) have nearly identical performance.
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Figure 3: Post-windowing SINR (£s/&x:) vs. SNR (E/N,).

5 MM SE-based Decision-Feedback

Say that a max-SINR window has been designed with par-
ticular ICI-range D (as defined in Sec. 4). The windowed
reception Xy can be written in terms of signal and interfer-
ence components as

Xp=His+W
where, as illustrated in Fig. 4(a),

Hay = JxMCB)Hay)
w = L (MC®Hs)s +CB)W)

If the first D and last D elements of s are known or
suppressed pilots, the relationship between the unknown
symbols s,, and the windowed frequency domain observa-
tion after pilot removal can be written X = ’Fld,fsu + w,
where ﬁd,f has the banded structure shown in Fig. 4(b).
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Figure 4: General structure of (a) Ha,f and (b) Ha, f.

Noting that all information about the last element in s,,
is contained in the 2D+1 last elements of X, we can set up
the relation ) = ’H,(jl}s&l) +w® where V) s{H W)

are the last 2D+1 entries in X, s,,, W respectively and ﬁg{}

is the (2D+1) x (2D+1) upper triangular matrix formed by
the last 2D +1 rows and columns of H4, ;. Fig. 5(a) shows
the basic structure of ﬁd,f for D = 1 with the dashed

region identifying ﬁg}. With channel knowledge, we can

perform linear-MMSE estimation of the last element in sS})
using an O(D?) matrix inverse:

[$M]2py1 =
ity (HoGHG) +olCCW") 1%

Above we used the fact that w) ~ N(0,02CHCD™),
where C(1) is a matrix containing the 2D+ 1 last rows of
C(B) and esp41 is a length 2D +1 unit vector given by
espi1 = [0,...,0,1]%. Having estimated the last ele-
ment in s,,, a tentative decision can be fed back to cancel
this symbol’s contribution to X using the last column of
”Fld,f as shown in Fig. 5(b). Now the second-to-last ele-
ment of s,, can be MMSE estimated using the same pro-
cedure. This process can be repeated until only the first



2D+1 elements of s,, remain as shown in Fig. 5(d). These
remaining symbols can be jointly detected using a linear
MMSE scheme.
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Figure 5: MMSE-based decision-feedback detection.

6 Simulationsand Conclusions

In Fig. 6 we plot the performance of the O(N?) lin-
ear MMSE detector (3) and the O(D3N) MMSE-based
decision-feedback detector described in Sec. 5. The
OFDM system employed QPSK and block length N =
128. The channel was WSSUS Rayleigh with delay spread
Np, = 32 and normalized Doppler f; = 0.001 in (a) and
fa =0.01in(b). Biterror probability was calculated as

(@) (b)

LTI channel
-2 = O(Na) Linear-MMSE | -
-~ O(D°N) DF-MMSE
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Figure 6: Comparison of different detectors.

follows. First, Jakes’ method was used to generate fading
channel realizations over a span of many blocks. For each
block, the SINRs of symbol estimates were computed at
each subcarrier, averaged over the NV subcarriers, and then
converted to BER assuming Gaussian interference. Finally,
these BERs were averaged over a large number of blocks.
As discussed previously, carrier-averaging was employed
to mimic the use of heavy coding. The “LTI channel”
traces in Fig. 6 were included as a reference; they reflect
the case where the channel remains fixed throughout each
block but changes between blocks.

Fig. 6 demonstrates that the decision-feedback scheme
offers good performance relative to the linear MMSE de-

tector. When f; = 0.001, the O(N?) linear detector out-
performs the O(D3N) decision-feedback detector at the
cost of a much greater complexity. When f; = 0.01, how-
ever, the decision-feedback detector outperforms the linear
detector even though the former is much simpler to imple-
ment! This can be understood by the fact that the decision-
feedback detector employs non-linear processing to lever-
age receiver knowledge of the finite-alphabet constellation.

Future research directions will investigate improved
linear pre-processing, more sophisticated detection algo-
rithms (e.g., “turbo” methods), the effect of practical cod-
ing, and low-complexity channel identification.
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