AMP Tools for Large-Scale Inference

Prof. Philip Schniter

Supported in part by NSF grant CCF-1018368, by NSF grant 1218754, by NSF-I/UCRC grant IIP-0968910, and by DARPA/ONR grant N66001-10-1-4090.

Seminar @ OSU Laboratory for Artificial Intelligence 11/8/2013

Sparse Linear Regression

In sparse linear regression, we want to learn a sparse weight vector $x\in\mathcal{X}\subset\mathbb{R}^N$ that matches the observed data

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x} + oldsymbol{w} \in \mathbb{R}^M$$

where

- $A \in \mathbb{R}^{M \times N}$ is a matrix that may represent collected feature data or a physical measurement process (e.g., a blur kernel in image restoration),
- w represents an additive perturbation or modeling error,
- $N \gg M$ in many cases of interest, in which case A is assumed to be a stable embedding from \mathcal{X} to \mathbb{R}^M .

Note: We could easily generalize to complex-valued y, A, x, w if needed.

Minimization of regularized squared loss

A popular approach to recovering \boldsymbol{x} is via the optimization problem

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2 + \lambda G(\boldsymbol{x})$$

where $\|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2$ penalizes residual loss, $G(\boldsymbol{x})$ promotes sparsity (e.g., convex $G(\boldsymbol{x}) = \|\boldsymbol{x}\|_1$ or $\|\boldsymbol{x}\|_q^q$ for q < 1), and λ is a trade-off parameter.

- A Bayesian interpretation of the above is that \hat{x} is the MAP estimate of x under the prior pdf $f(x) \propto e^{-\lambda G(x)/\nu^w}$ and error $w \sim \mathcal{N}(0, \nu^w)$.
- For now, we focus on the simple case of separable regularizers, i.e., $G(\boldsymbol{x}) = \sum_{j=1}^{N} g_j(x_j)$, such as $\|\boldsymbol{x}\|_1$ and $\|\boldsymbol{x}\|_q^q$, which corresponds to a statistically independent weight prior, i.e., $f(\boldsymbol{x}) = \prod_{j=1}^{N} f_j(x_j)$.

Minimization of mean-squared weight error

- In practice, we may instead want the MSE-optimal estimate of x:
 - $\hat{x} = \mathsf{E}\{x|y\} = \int x f(x|y) dx$ for posterior pdf $f(x|y) \propto f(y|x) f(x)$

rather than the solution to a surrogate optimization problem.

 \blacksquare Assuming error $\boldsymbol{w} \sim \mathcal{N}(0, \nu^w)$ and statistically independent weights,

$$f(\boldsymbol{x}|\boldsymbol{y}) \propto \prod_{i=1}^{N} \mathcal{N}(y_i; \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x}, \nu^w) \prod_{j=1}^{N} f(x_j),$$

where a_i^{T} denotes the i^{th} row of A.

• Due to the $a_i^T x$ coupling term in the posterior f(x | y), the high-dimensional integral does not decouple and thus exact MMSE inference is computationally intractable.

The factor-graph representation

Recall that the previously discussed MAP and MMSE solutions are the maximizer and mean, respectively, of the posterior pdf

$$f(\boldsymbol{x}|\boldsymbol{y}) \propto \prod_{i=1}^{M} \mathcal{N}(y_i; \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x}, \nu^w) \prod_{j=1}^{N} f(x_j),$$

which can be visualized using a factor graph:

(White circles are random variables and black boxes are pdf factors.)

Inference via the factor graph: Message passing

The factor-graph representation leads to two inference algorithms:

■ sum-product algorithm \rightarrow marginal posteriors $\{f(x_j|\boldsymbol{y})\}_{j=1}^N \rightarrow \mathsf{MMSE}$ ■ max-sum algorithm $\rightarrow \mathsf{MAP}$

both of which pass locally computed messages around the graph.

- When the factor-graph contains no loops (i.e., is tree-structured), both methods yield exact estimates, but with loopy graphs (like ours) the inference is *usually* only approximate.
- In any case, the computations needed by the (exact) sum-product and max-sum algorithms are still intractable in the high-dimensional case.

AMP Heuristics (Sum-Product)

To compute $\hat{z}_i(x_j), \nu_i^z(x_j)$, the means and variances of $\{p_{i\leftarrow r}\}_{r\neq j}$ suffice, implying Gaussian message passing, like in expectation-propagation. Remaining problem: we have 2MN messages to compute (too many!).

Phil Schniter (OSU)

Approximate message passing (AMP)

When A is large and dense, central-limit-theorem and Taylor-series approximations¹ can be applied to drastically simplify both the sum-product and max-sum algorithms, reducing them to (for $avg\{|a_{ij}|^2\} = \frac{1}{M}$):

$$\begin{split} & \text{for } t = 1, 2, 3, \dots \\ & \hat{\boldsymbol{v}}(t) = \boldsymbol{y} - \boldsymbol{A} \hat{\boldsymbol{x}}(t) + \frac{N}{M} \frac{\boldsymbol{\nu}^{\boldsymbol{x}}(t)}{\boldsymbol{\nu}^{\boldsymbol{r}}(t-1)} \hat{\boldsymbol{v}}(t-1) & \text{Onsager-corrected residual} \\ & \hat{\boldsymbol{r}}(t) = \hat{\boldsymbol{x}}(t) + \boldsymbol{A}^{\mathsf{T}} \hat{\boldsymbol{v}}(t) & \text{back-projection update} \\ & \boldsymbol{\nu}^{\boldsymbol{r}}(t) = \boldsymbol{\nu}^{\boldsymbol{w}} + \frac{N}{M} \boldsymbol{\nu}^{\boldsymbol{x}}(t) \text{ or } \frac{1}{M} \| \hat{\boldsymbol{v}}(t) \|_{2}^{2} & \text{error-variance of } \hat{\boldsymbol{r}}(t) \\ & \hat{\boldsymbol{x}}(t+1) = g(\hat{\boldsymbol{r}}(t), \boldsymbol{\nu}^{\boldsymbol{r}}(t)) & \text{nonlinear thresholding step} \\ & \boldsymbol{\nu}^{\boldsymbol{x}}(t+1) = \boldsymbol{\nu}^{\boldsymbol{r}}(t) \operatorname{avg} \big\{ g'\big(\hat{\boldsymbol{r}}(t), \boldsymbol{\nu}^{\boldsymbol{r}}(t) \big) \big\} & \text{error-variance of } \hat{\boldsymbol{x}}(t+1) \end{split}$$

 $\text{for } \begin{cases} \text{sum-prod: } g(\hat{r}, v^r) = \mathsf{E}\{X | R = \hat{r}\} \text{ for } R = X + E, \ X \sim f(x), \ E \sim \mathcal{N}(0, \nu^r) \\ \text{max-sum: } g(\hat{r}, v^r) = \operatorname{prox}_{\nu^r f}(\hat{r}) = \arg\min_x \ f(x) + \frac{1}{2\nu^r}(x - \hat{r})^2 \end{cases}$

¹Donoho, Maleki, Montanari, PNAS 2009 & Rangan, arXiv:1010.5141, 2010. Phil Schniter (OSU) AMP Tools for Large-Scale Inference OSU-LAIR 2013

9 / 31

AMP in perspective

- As described, the inputs to AMP are the weight priors {f(x_j)}^N_{j=1}, the noise variance ν^w, the choice of sum-product or max-sum, the measurement vector y, and the operators A and A^T.
- By choosing appropriate priors { f(x_j) }^M_{j=1}, one can use AMP to solve many different linear regression problems. For example, to solve the LASSO problem, we'd run max-sum AMP with Laplacian f(x_j).
- The outputs of sum-product AMP are in fact the full marginal posteriors $f(x_j|y)$, not only their means, the MMSE estimates \hat{x}_j .
- The full marginal posteriors report estimate uncertainty and facilitate tasks such as support detection,² tuning,³ and active learning.⁴

Phil Schniter (OSU)

²Schniter CISS 2010.

³Vila & Schniter SAHD 2011, arXiv:1207.3107.

⁴Schniter CAMSAP 2011.

AMP in perspective (cont.)

- AMP is a so-called first-order algorithm; its computational complexity is dominated by one operation of $A\hat{x}(t)$ and $A^{\mathsf{T}}\hat{v}(t)$ per iteration.
- AMP can directly exploit fast operator implementations of A and A^T, such as with Fourier, Wavelet, Hadamard transforms, and even sparse matrices.
- AMP is a form of iterative thresholding that uses an "Onsager" correction term to ensure that

 î(t) is an i.i.d-Gaussian corrupted version of the true *x*.
 This concept is key to understanding the how & why of AMP!

AMP in theory

- For large A with entries drawn i.i.d zero-mean sub-Gaussian, a state-evolution⁵ characterizes the per-iteration MSE, E{(X̂_j(t)-X_j)²}. Morover, when the state-evolution fixed-points are unique, the marginal posterior pdfs f(x_j|y) of sum-product AMP converge to the true pdfs, and thus the MMSE estimates x̂(t) become exact.
- For generic A, the fixed points⁶ of max-sum AMP minimize the optimization objective (i.e., are exact), while those of sum-product AMP minimize a particular variational objective based on independent-Gaussian approximations of KL divergence.
- Note: these analyses study the AMP algorithm itself, not the belief-propagation approximations used to derive AMP.

⁵Bayati & Montanari, *arXiv:1001.3448*, 2010 ⁶Rangan, Schniter, Riegler, Fletcher, Cevher, *arXiv:1301.6295*, 2013 Phil Schniter (OSU) AMP Tools for Large-Scale Inference OSU

AMP in practice

- With "well-behaved" A, AMP runs much faster than typical sparse linear regression algorithms, e.g., FISTA:
- With "poorly behaved" A (e.g., strongly correlated columns/rows), AMP will diverge unless its iterations are damped.

An adaptive damping mechanism has been included in the open-source GAMPmatlab toolbox (http://sourceforge.net/projects/gampmatlab) that varies the amount of damping so that the objective decreases across iterations.

Choosing weight priors

- As previously described, AMP algorithms can be formulated around different choices of weight prior $f(x_j)$. Note that this prior can vary with the coefficient index j (so we should really be writing $f_{X_j}(x_j)$.)
- In some cases we are forced to work with an established criterion (e.g., LASSO) or we have good prior knowledge of the true $f(x_j)$.
- Then all that remains is to derive the nonlinear thresholding function: sum-prod: $g(\hat{r}, v^r) = \mathbb{E}\{X | R = \hat{r}\}$ for R = X + E, $X \sim f(x)$, $E \sim \mathcal{N}(0, \nu^r)$ max-sum: $g(\hat{r}, v^r) = \operatorname{prox}_{\nu^r f}(\hat{r}) = \arg \min_x f(x) + \frac{1}{2\nu^r}(x - \hat{r})^2$
- In the case that closed-form expressions do not exist, a scalar Gaussian mixture⁷ (GM) approximation can be used to mimic the desired $f(x_j)$ with arbitrarily high accuracy.

⁷Vila and Schniter, arXiv:1207.3107, 2012.

Learning weight priors

- Often we don't know the weight prior $f(x_j)$ in advance, even though reconstruction MSE would benefit from knowing it.
- Fortunately, in the high dimensional setting, we can learn the weight prior from the noisy compressed measurements y.
- For example, we can learn a GM approximation of $f(x_j)$ by using expectation maximization⁸ iterations outside AMP, yielding MSE performance virtually indistinguishable from knowing $f(x_j)$ in advance!
- In the high-dimensional limit, the estimates returned by the EM procedure converge to maximum-likelihood estimates.⁹
- In addition, we can simultaneously learn the data-error variance ν^w .

⁹Kamilov, Rangan, Fletcher, and Unser, arXiv:1207.3859, 2012.

Phil Schniter (OSU)

⁸Vila and Schniter, arXiv:1207.3107, 2011.

Algorithm comparison 1

Recall: higher phase-transition-curve = better algorithm.

Here, the non-zero elements of x were drawn independent zero-mean Gaussian. EM-GM-AMP learns and exploits the true weight prior!

Phil Schniter (OSU)

Algorithm comparison 1

Recall: higher phase-transition-curve = better algorithm.

Here, the non-zero elements of x were = 1. EM-GM-AMP learns and exploits the true weight prior!

Phil Schniter (OSU)

Generalized linear models

• Until now we have assumed linear regression under quadratic loss, i.e., that the observations y are i.i.d-N-corrupted versions of the (hidden) linear transform outputs $z \triangleq Ax$:

$$f(\boldsymbol{y}|\boldsymbol{z}) = \prod_{i=1}^{M} f(y_i|z_i)$$
 with $f(y_i|z_i) = \mathcal{N}(y_i; z_i, \nu^w)$

But there are many applications that need a more general $f(y_i|z_i)$:

- outliers: $y_i = z_i + w_i$ with super-Gaussian w_m
- binary classification: $f(y_i|z_i) = [1 + \exp(-y_i z_i)]^{-1}$
- quantization: $y_i = quant(z_i)$
- phase retrieval: $y_i = |z_i|$
- \blacksquare OFDM comms: $f(y_i|z_i) = s_i z_i + w_i$ with unknown symbol s_i
- Fortunately, the Generalized AMP (GAMP)¹⁰ extension tackles these generalized-linear inference problems.

¹⁰Rangan, arXiv:1010.5141, 2010.

Phil Schniter (OSU)

AMP Tools for Large-Scale Inference

OSU-LAIR 2013 20 / 31

GAMP in perspective

- GAMP is very similar to AMP but it uses two non-linear thresholding steps: one produces the weight estimate $\hat{x}(t)$ and the other produces the transform estimate $\hat{z}(t)$.
- Max-sum GAMP can be interpreted as a primal-dual algorithm (Arrow-Hurwicz in particular) with adaptively controlled step-sizes.¹¹
- Like with AMP, experiments show GAMP running much faster than its peers.
- All AMP theory can be extended to GAMP: the state evolution¹² for large i.i.d sub-Gaussian A and the fixed-point analysis¹¹ for generic A.

¹¹Rangan, Schniter, Riegler, Fletcher, Cevher, *arXiv:1301.6295*, 2013
 ¹²Javanmard and Montanari, arXiv:1211.5164, 2012.

Phil Schniter (OSU)

GAMP enables "co-sparse" or "analysis" models

So far we have been operating under the "synthesis" framework, where x is, say, a sparse (e.g., wavelet) representation of an image $s = \Psi x$, yielding problems like LASSO

$$\hat{oldsymbol{x}} = rg\min_{oldsymbol{x}} \|oldsymbol{y} - oldsymbol{\Phi} oldsymbol{\Psi} oldsymbol{x}\|_2^2 + \lambda \|oldsymbol{x}\|_1 \;\; ext{and then} \;\; \hat{oldsymbol{s}} = oldsymbol{\Psi} \hat{oldsymbol{x}}.$$

An alternative is the "analysis" framework, e.g., TV regularization

$$\hat{\boldsymbol{s}} = rg\min_{\boldsymbol{s}} \|\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{s}\|_2^2 + \lambda \|\boldsymbol{\Psi}^+ \boldsymbol{s}\|_1.$$

- The two are equivalent when the dictionary Ψ is invertible, but not when the dictionary is overcomplete, as is often the case of interest.
- GAMP can be used¹³ to solve the analysis problem via the augmentation $\mathbf{A} = \begin{bmatrix} \mathbf{\Phi} \\ \mathbf{\Psi}^+ \end{bmatrix}$ and appropriate definition of $\{f(y_i|z_i)\}_{i>M}$.

Phil Schniter (OSU)

¹³Borgerding, Schniter, Rangan, 2013.

Breaking the independence assumption

AMP & GAMP were derived under the independence assumptions

$$f(\boldsymbol{x}) = \prod_j f(x_j)$$
 and $f(\boldsymbol{y}|\boldsymbol{z}) = \prod_i f(y_i|z_i)$

But in many applications, x or y|z are known to be structured and exploiting this structure can often dramatically aid inference:

- Persistence-across-time in multi-observation problems
- Persistence-across-wavelet-scale in natural images
- Persistence-across-delay in sparse impulse responses
- Persistence-across-space in change detection
- Code structure in communications
- Such structure can be modeled via structured sparsity (e.g., block-, tree-, field-structured), amplitude correlation, and other methods.

Augmenting the factor graph

As a tangible example, consider recovering a sequence of sparse vectors $\{x^{(l)}\}_{l=1}^T$ from the sequence of compressed linear observation vectors $y^{(l)} = Ax^{(l)} + w^{(l)}, \quad l = 1, \dots, T$ where $x^{(l)} = d^{(l)} \odot \theta^{(l)}$, with support $d^{(l)} \in \{0,1\}^p$ and amplitudes $\theta^{(l)}$ that both vary slowly over time l.

To tackle such applications, the "turbo AMP" methodology¹⁴ uses sum-product message-passing with AMP approximations in the dense portion of the factor graph.

In this application, turbo-AMP's MSE *nearly matches that of the support-oracle Kalman smoother*.

¹⁴Schniter, CISS 2010; Ziniel and Schniter, arXiv:1205.4080, 2010.

Phil Schniter (OSU)

Learning the structural hyperparameters

When modeling structure *across* coefficients, one faces the burden of specifing additional hyperparameters.

For example, on the previous slide, one would need to specify the support transition probabilities $f(d_n^{(l)}|d_n^{(l-1)})$ and the amplitude correlation $\mathsf{E}\{\theta_n^{(l)}\theta_n^{(l-1)}\}$.

- Fortunately, in the high-dimensional regime, these structural hyperparameters can be learned on-the-fly using an EM procedure similar to that discussed earlier.
- An object-oriented implementation¹⁵ of this EM-turbo-AMP methodology is included in the GAMPmatlab toolbox (http://sourceforge.net/projects/gampmatlab).

¹⁵Ziniel, Rangan, and Schniter, SSP 2012.

Generalized-bilinear inference

- Until now we have considered (generalized) linear problems: Estimate x given (y, A) under likelihood f(y|z), where z = Ax.
- But many important problems are (generalized) bilinear, i.e.,
 Estimate (A, X) given Y under likelihood f(Y|Z), where Z = AX.
 For example...
 - Matrix completion:

Z = AX is a low-rank matrix and f(Y|Z) hides certain elements. **Robust PCA**:

 ${\boldsymbol{Z}} = {\boldsymbol{A}} {\boldsymbol{X}}$ is a low-rank matrix and $f({\boldsymbol{Y}}|{\boldsymbol{Z}})$ models outliers.

Dictionary learning:

 $m{A}$ is dense, $m{X}$ is sparse, and $f(m{Y}|m{Z})|_{m{Z}=m{A}m{X}}$ models small errors.

Bilinear Generalized AMP (BiG-AMP)

The AMP framework has been applied to the generalized-bilinear factor-graph on the right, yielding the BiG-AMP¹⁶ algorithm.

Furthermore, EM and turbo extensions have been developed for automatic parameter tuning and exploitation of structure *across* the elements of A and X.

Experimental results show state-of-the-art performance for BiG-AMP in matrix completion, robust PCA, and dictionary learning applications.

¹⁶Parker, Schniter and Cevher, ITA 2012, arXiv:1310.2632 Phil Schniter (OSU) AMP Tools for Large-Scale Inference

Conclusion

- AMP provides a fast and flexible approach to classical sparse linear regression with theoretical guarantees for large i.i.d sub-Gaussian matrices and known fixed-points in general.
- GAMP extends to the generalized linear model, enabling, e.g., logistic regression, phase retrieval, and TV-regularization.
- GAMP can be run inside an expectation-maximization (EM) loop to learn and exploit the true weight prior and data likelihood, since usually these are apriori unknown.
- Turbo-GAMP exploits structure across the weights $\{x_j\}$ and the conditional observations $\{y_i|z_i\}$.
- BiG-AMP extends all of the above to generalized bilinear inference problems like matrix completion, robust PCA, and dictionary learning.
- All of the above is implemented in the GAMPmatlab toolbox.