Regularization by Denoising: Clarifications and New Interpretations

Phil Schniter and Ted Reehorst

THE OHIO STATE UNIVERSITY

With support from NSF CCF-1716388

Allerton Conference (Monticello, IL) - Oct. 4, 2018

- Introduction to RED
- Clarifications on RED
- New Interpretations of RED
- Fast and Convergent RED Algorithms

Inverse Problems in Imaging

Inverse problems in imaging:

Recover x^0 from measurements $y = \text{corrupted}(Ax^0)$, where A is a known linear operator.

Corruptions include noise, quantization, loss of phase, Poisson...

• Operator A depends on the application:

- deblurring
- super-resolution
- compressive imaging
- inpainting
- etc

Optimization-Based Recovery and MAP Estimation

• A common approach to recovering image x is through optimization:

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \left\{ \ell(\boldsymbol{x}; \boldsymbol{y}) + \lambda \rho(\boldsymbol{x}) \right\} \text{ with } \begin{cases} \ell(\boldsymbol{x}; \boldsymbol{y}) : \text{ loss function} \\ \rho(\boldsymbol{x}) : \text{ regularization} \\ \lambda > 0 : \text{ tuning parameter} \end{cases}$$

• Can be interpreted as Bayesian MAP estimation:

$$\widehat{x}_{\mathsf{map}} = rg\min_{oldsymbol{x}} \left\{ -\ln p(oldsymbol{y} | oldsymbol{x}) - \ln p(oldsymbol{x})
ight\} \, \mathsf{with} \left\{ egin{array}{c} p(oldsymbol{y} | oldsymbol{x}) \colon \ p(oldsymbol{x}) \mapsto \ p(ol$$

• The loss function $\ell(\cdot; y)$ is usually straightforward to choose. But how do we choose the regularization $\rho(\cdot)$?

Plug-and-Play ADMM

- A common approach to convex optimization is ADMM: For k = 1, 2, ... $\boldsymbol{x}_k = \arg \min_{\boldsymbol{x}} \left\{ \ell(\boldsymbol{x}; \boldsymbol{y}) + \frac{\beta}{2} \| \boldsymbol{x} - \boldsymbol{v}_{k-1} + \boldsymbol{u}_{k-1} \|^2 \right\}$ $\boldsymbol{v}_k = \arg \min_{\boldsymbol{v}} \left\{ \rho(\boldsymbol{v}) + \frac{\beta}{2} \| \boldsymbol{v} - \boldsymbol{x}_k + \boldsymbol{u}_{k-1} \|^2 \right\} \triangleq \operatorname{prox}_{\rho/\beta}(\boldsymbol{x}_k - \boldsymbol{u}_{k-1})$ $\boldsymbol{u}_k = \boldsymbol{u}_{k-1} + \boldsymbol{x}_k - \boldsymbol{v}_k$
- The prox performs denoising (eg, soft-thresholding when $\rho(x) = ||x||_1$).
- Bouman et al. proposed plug-and-play (PnP) ADMM,¹ where the prox is replaced by a sophisticated image denoiser $f(\cdot)$ like BM3D.

¹ Venkatakrishnan,Bouman,Wolhberg'13

Regularization by Denoising (RED)

Recently, Romano, Elad and Milanfar² proposed a new family of PnP algorithms that find the image estimate \widehat{x} that obeys

$$abla \ell(\widehat{oldsymbol{x}};oldsymbol{y}) + \lambdaig(\widehat{oldsymbol{x}} - oldsymbol{f}(\widehat{oldsymbol{x}})ig) = oldsymbol{0}$$

They claimed these algs result from optimization under the regularizer

$$\rho_{\mathsf{red}}(\boldsymbol{x}) \triangleq \frac{1}{2} \boldsymbol{x}^\top \big(\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}) \big)$$

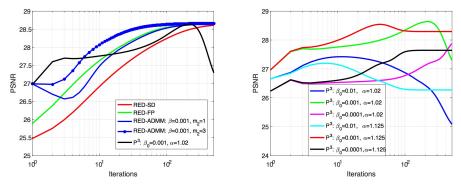
and thus coined the approach Regularization by Denoising (RED).

 \blacksquare They furthermore claimed that $\rho_{\rm red}(\cdot)$ was convex in practice.

²Romano,Elad,Milanfar'17

RED versus PnP-ADMM

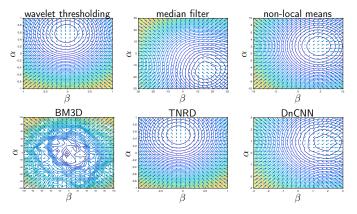
Experiments in the RED paper² suggest advantages over PnP-ADMM:



Super-resolution recovery, averaged over 10 test images.

Are the RED algs explained by the RED regularization?

Visualize by probing in two random directions: $\boldsymbol{x}_{\alpha,\beta} = \hat{\boldsymbol{x}} + \alpha \boldsymbol{r}_1 + \beta \boldsymbol{r}_2$. Contours show cost: $C_{\mathsf{red}}(\boldsymbol{x}_{\alpha,\beta}) \triangleq \frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{x}_{\alpha,\beta}\|^2 + \rho_{\mathsf{red}}(\boldsymbol{x}_{\alpha,\beta})$. Arrows show gradient: $\nabla_{\alpha,\beta}C_{\mathsf{red}}(\boldsymbol{x}_{\alpha,\beta})$.



Zero of gradient field is not at cost minimizer!

Schniter & Reehorst (OSU)

RED Clarifications & Interpretations

Allerton'18 8 / 18

And cost is not convex!

Clarifications on RED Gradient

It can be shown³ that...

• differentiability of $f(\cdot)$ implies

$$abla
ho_{\mathsf{red}}({m{x}}) \stackrel{\mathtt{D}}{=} {m{x}} - rac{1}{2} {m{f}}({m{x}}) - rac{1}{2} [J {m{f}}({m{x}})]^{ op} {m{x}}.$$

adding local-homogeneity (LH), i.e., $f((1+\epsilon)x) = (1+\epsilon)f(x)$, we get

$$abla
ho_{\mathsf{red}}({\boldsymbol{x}}) \stackrel{\mathtt{D},\mathtt{LH}}{=} {\boldsymbol{x}} - rac{1}{2} [J{\boldsymbol{f}}({\boldsymbol{x}})] {\boldsymbol{x}} - rac{1}{2} [J{\boldsymbol{f}}({\boldsymbol{x}})]^{ op} {\boldsymbol{x}}.$$

adding Jacobian symmetry (JS) finally leads to

$$abla
ho_{\mathsf{red}}(m{x}) \stackrel{ extsf{D,LH,JS}}{=} m{x} - m{f}(m{x}) \quad \dots$$
 which yields the RED algorithms.

But practical denoisers are not LH and JS! And there exists no regularizer ρ_{red} for a non-JS denoiser f!

³Reehorst & Schniter, 2018.

How To Explain the RED Algorithms?

The RED algorithms solve $\left| \nabla \ell(\widehat{x}; y) + \lambda(\widehat{x} - f(\widehat{x})) = \mathbf{0} \right|$ and work well.

Can we justify this approach? Even when $f(\cdot)$ is not locally homogeneous or Jacobian symmetric?

Yes! Using score matching.⁴ We explain this in 3 steps:

- 1 kernel density estimation,
- 2 Tweedie's formula,
- **3** score matching.

⁴Hyvärinen'05.

Kernel Density Estimation (KDE)

• Given training data $\{ {m{x}}_t \}_{t=1}^T$, consider forming the empirical prior

$$\widehat{p}_{\mathsf{x}}(\boldsymbol{x}) = \frac{1}{T} \sum_{t=1}^{T} \delta(\boldsymbol{x} - \boldsymbol{x}_t).$$

• A better match to the true p_x is obtained via Parzen windowing or KDE:

$$\begin{split} \widetilde{p_{\mathsf{x}}}(m{x};
u) &= rac{1}{T}\sum_{t=1}^{T}\mathcal{N}(m{x};m{x}_t,
um{I}) & \text{``smoothed prior''} \\ &= \int_{\mathbb{R}^N}\mathcal{N}(m{r};m{x},
um{I})\,\widehat{p_{\mathsf{x}}}(m{x})\,\mathrm{d}m{x}. \end{split}$$

 \blacksquare Using the smoothed prior $\widetilde{p_{\mathsf{X}}}$ for MAP image recovery, we get

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \left\{ \ell(\boldsymbol{x}; \boldsymbol{y}) - \ln \widetilde{p_{\mathsf{x}}}(\boldsymbol{x}; \nu) \right\}.$$

Tweedie's Formula

Assuming differentiability, the MAP estimation problem is solved by

$$\mathbf{0} = \nabla \ell(\boldsymbol{x}; \boldsymbol{y}) - \nabla \ln \widetilde{p_{\mathsf{x}}}(\boldsymbol{x}; \nu).$$

$$abla \ln \widetilde{p_{\mathsf{x}}}({\boldsymbol{x}}; {\boldsymbol{\nu}}) = rac{1}{{\boldsymbol{\nu}}} ({\boldsymbol{f}_{\mathsf{mmse}}}, {\boldsymbol{\nu}}({\boldsymbol{x}}) - {\boldsymbol{x}}),$$

with $m{f}_{\mathsf{mmse}, \nu}(m{r})$ the MMSE denoiser of $m{x} \sim \widehat{p_{\mathsf{x}}}$ from $m{r} = m{x} + \mathcal{N}(m{0}, \nu m{I}).$

Together, these results match the RED fixed-point equation

$$oldsymbol{0} =
abla \ell(oldsymbol{x};oldsymbol{y}) + \lambdaig(oldsymbol{x} - oldsymbol{f}_{\mathsf{mmse},
u}(oldsymbol{x})ig) \hspace{1.5cm} ext{with} \hspace{1.5cm} \lambda = rac{1}{
u}$$

for the specific denoiser $f_{\mathsf{mmse},\nu}$. What about other f?

⁵Robbins'56

Score-Matching by Denoising

Recall
$$f_{\text{mmse},\nu} = \arg\min_{f} \mathbb{E}\{\|x - f(r)\|^{2}\}$$
 for $\begin{cases} r = x + \mathcal{N}(0, \nu I) \\ x \sim \hat{p}_{x}. \end{cases}$
Since $f_{\text{mmse},\nu}$ is expensive to implement, use approximation $f_{\hat{\theta}}$ with
$$\hat{\theta} = \arg\min_{\theta} \mathbb{E}\{\|x - f_{\theta}(r)\|^{2}\}$$

$$= \arg\min_{\theta} \mathbb{E}\{\|x - f_{\text{mmse},\nu}(r)\|^{2}\}$$

$$+ \mathbb{E}\{\|f_{\text{mmse},\nu}(r) - f_{\theta}(r)\|^{2}\}$$

$$= \arg\min_{\theta} \mathbb{E}\{\|f_{\text{mmse},\nu}(r) - f_{\theta}(r)\|^{2}\}$$

$$= \arg\min_{\theta} \mathbb{E}\{\|f_{\text{mmse},\nu}(r) - f_{\theta}(r)\|^{2}\}$$

$$= \arg\min_{\theta} \mathbb{E}\{\|\sum \ln \tilde{p}_{x}(r; \nu) + \frac{1}{\nu}(f_{\theta}(r) - r)\|^{2}\}$$
via Tweedie.

• Thus RED with general f_{θ} can be interpreted as "score matching."

Score-Matching by Denoising (SMD)

Key points:

- **1** RED algs solve $\mathbf{0} = \nabla \ell(\mathbf{x}; \mathbf{y}) + \lambda (\mathbf{x} \mathbf{f}_{\theta}(\mathbf{x}))$ where $\lambda (\mathbf{x} \mathbf{f}_{\theta}(\mathbf{x}))$ approximates the score $-\nabla \ln \widetilde{p}_{\mathbf{x}}(\mathbf{x}; \nu)$.
- 2 This SMD interpretation holds for any \hat{p}_{x} , any denoiser class f_{θ} (i.e., may be non-JS and/or non-LH), and any θ .
- **3** SMD arises naturally via non-parametric estimation (i.e., KDE). Matches construction of *learned* denoisers liked TNRD and DnCNN.

Related work:

Alain and Bengio⁶ showed that learned auto-encoders are be explained by score-matching and *not* by minimization of an energy function.

⁶Alain/Bengio'14 Schniter & Reehorst (OSU) RED Clarifications & Interpretations

Fast RED Algorithms

Until now we focused on how to explain the RED method, which solves

$$\mathbf{0} = \nabla \ell(\widehat{\boldsymbol{x}}; \boldsymbol{y}) + \lambda \big(\widehat{\boldsymbol{x}} - \boldsymbol{f}(\widehat{\boldsymbol{x}}) \big).$$

Now we focus on algorithms that try to solve this equation.

In the RED paper, three algorithms were described:

steepest-descent

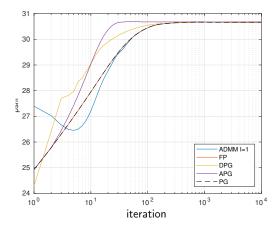
- 2 ADMM with I inner iters (to solve $\arg \min_{x} \{\lambda \rho_{\mathsf{red}}(x) + \frac{\beta}{2} \|x r_t\|^2\}$)
- **3** a heuristic "fixed-point" method.

We propose a several others...

Algorithm Comparison: Image Deblurring

New algorithms:

- PG: Proximal gradient with stepsize L > 0.
- DPG: "Dynamic" proximal gradient, which schedules L_t.
- APG: Accelerated proximal gradient, similar to FISTA.⁷



In this experiment, APG is about $3 \times$ faster than the Fixed-Point method.

⁷Beck/Teboulle'09

Convergence to a Fixed Point

Theorem

If $\ell(\cdot)$ is proper, convex, and continuous; $f(\cdot)$ is non-expansive; L > 1; and RED-PG has at least one fixed point, then RED-PG converges to a fixed point.

Proof.

Uses α -averaged operators and Mann iteration.

Conclusions

- RED algorithms seem to work well in practice.
- But, in practice, they are *not* minimizing any cost function.
 - Practical denoisers $f(\cdot)$ are not LH and JS.
 - Non-JS $f \Rightarrow$ that there exists no regularizer ρ s.t. $\nabla \rho(x) = x f(x)$.
- The RED methodology can be explained as "score-matching by denoising".
- We proposed new RED algorithms with i) faster recovery and ii) guaranteed convergence to a fixed point.

http://arxiv.org/abs/1806.02296