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Introduction to RED

Inverse Problems in Imaging

Inverse problems in imaging:

Recover x0 from measurements y = corrupted(Ax0),

where A is a known linear operator.

Corruptions include noise, quantization, loss of phase, Poisson. . .

Operator A depends on the application:

deblurring

super-resolution

compressive imaging

inpainting

etc
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Introduction to RED

Optimization-Based Recovery and MAP Estimation

A common approach to recovering image x is through optimization:

x̂ = argmin
x

{
ℓ(x;y) + λρ(x)

}
with





ℓ(x;y) : loss function
ρ(x) : regularization
λ > 0 : tuning parameter

Can be interpreted as Bayesian MAP estimation:

x̂map = argmin
x

{
− ln p(y|x)− ln p(x)

}
with

{
p(y|x) : likelihood
p(x) : prior

The loss function ℓ(·;y) is usually straightforward to choose.

But how do we choose the regularization ρ(·)?
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Introduction to RED

Plug-and-Play ADMM

A common approach to convex optimization is ADMM: For k = 1, 2, ...

xk = argmin
x

{
ℓ(x;y) + β

2
‖x− vk−1 + uk−1‖

2
}

vk = argmin
v

{
ρ(v) + β

2
‖v − xk + uk−1‖

2
}

, proxρ/β(xk − uk−1)

uk = uk−1 + xk − vk

The prox performs denoising (eg, soft-thresholding when ρ(x) = ‖x‖1).

Bouman et al. proposed plug-and-play (PnP) ADMM,1 where the prox
is replaced by a sophisticated image denoiser f(·) like BM3D.

1
Venkatakrishnan,Bouman,Wolhberg’13
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Introduction to RED

Regularization by Denoising (RED)

Recently, Romano, Elad and Milanfar2 proposed a new family of PnP
algorithms that find the image estimate x̂ that obeys

∇ℓ(x̂;y) + λ
(
x̂− f(x̂)

)
= 0

They claimed these algs result from optimization under the regularizer

ρred(x) ,
1

2
x⊤

(
x− f(x)

)

and thus coined the approach Regularization by Denoising (RED).

They furthermore claimed that ρred(·) was convex in practice.

2
Romano,Elad,Milanfar’17
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Introduction to RED

RED versus PnP-ADMM

Experiments in the RED paper2 suggest advantages over PnP-ADMM:

Super-resolution recovery, averaged over 10 test images.
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Clarifications on RED

Are the RED algs explained by the RED regularization?

Visualize by probing in two random directions: xα,β = x̂+ αr1 + βr2.
Contours show cost: Cred(xα,β) ,

1

2σ2 ‖y − xα,β‖
2 + ρred(xα,β).

Arrows show gradient: ∇α,βCred(xα,β).
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Zero of gradient field is not at cost minimizer! And cost is not convex!
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Clarifications on RED

Clarifications on RED Gradient

It can be shown3 that. . .

differentiability of f(·) implies

∇ρred(x)
D
= x−

1

2
f(x)−

1

2
[Jf(x)]⊤x.

adding local-homogeneity (LH), i.e., f
(
(1 + ǫ)x

)
= (1+ ǫ)f(x), we get

∇ρred(x)
D,LH
= x−

1

2
[Jf(x)]x−

1

2
[Jf(x)]⊤x.

adding Jacobian symmetry (JS) finally leads to

∇ρred(x)
D,LH,JS
= x− f(x) . . .which yields the RED algorithms.

But practical denoisers are not LH and JS!
And there exists no regularizer ρred for a non-JS denoiser f !

3
Reehorst & Schniter, 2018.
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New Interpretations of RED

How To Explain the RED Algorithms?

The RED algorithms solve ∇ℓ(x̂;y) + λ
(
x̂− f(x̂)

)
= 0 and work well.

Can we justify this approach?
Even when f(·) is not locally homogeneous or Jacobian symmetric?

Yes! Using score matching.4 We explain this in 3 steps:

1 kernel density estimation,

2 Tweedie’s formula,

3 score matching.

4Hyvärinen’05.
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New Interpretations of RED

Kernel Density Estimation (KDE)

Given training data {xt}
T
t=1

, consider forming the empirical prior

p̂x(x) =
1

T

T∑

t=1

δ(x− xt).

A better match to the true px is obtained via Parzen windowing or KDE:

p̃x(x; ν) =
1

T

T∑

t=1

N (x;xt, νI) “smoothed prior”

=

∫

RN

N (r;x, νI) p̂x(x) dx.

Using the smoothed prior p̃x for MAP image recovery, we get

x̂ = argminx
{
ℓ(x;y)− ln p̃x(x; ν)

}
.
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New Interpretations of RED

Tweedie’s Formula

Assuming differentiability, the MAP estimation problem is solved by

0 = ∇ℓ(x;y)−∇ ln p̃x(x; ν).

Tweedie’s formula5 says that

∇ ln p̃x(x; ν) =
1

ν (fmmse,ν(x)− x),

with fmmse,ν(r) the MMSE denoiser of x ∼ p̂x from r = x+N (0, νI).

Together, these results match the RED fixed-point equation

0 = ∇ℓ(x;y) + λ
(
x− fmmse,ν(x)

)
with λ =

1

ν

for the specific denoiser fmmse,ν . What about other f?

5Robbins’56
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New Interpretations of RED

Score-Matching by Denoising

Recall fmmse,ν = argminf E{‖x− f(r)‖2} for

{
r= x+N (0, νI)
x∼ p̂x.

Since fmmse,ν is expensive to implement, use approximation f
θ̂

with

θ̂ = argmin
θ

E{‖x− fθ(r)‖
2} e.g., deep network

= argmin
θ

E{‖x− fmmse,ν(r)‖
2}

+ E
{∥∥fmmse,ν(r)− fθ(r)

∥∥2} via orthog principle

= argmin
θ

E
{∥∥fmmse,ν(r)− fθ(r)

∥∥2}

= argmin
θ

E
{∥∥∇ ln p̃x(r; ν)︸ ︷︷ ︸

“score”

+ 1

ν

(
fθ(r)− r

)
︸ ︷︷ ︸
RED with fθ

∥∥2} via Tweedie.

Thus RED with general fθ can be interpreted as “score matching.”
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New Interpretations of RED

Score-Matching by Denoising (SMD)

Key points:

1 RED algs solve 0 = ∇ℓ(x;y) + λ
(
x− fθ(x)

)
where λ

(
x− fθ(x))

approximates the score −∇ ln p̃x(x; ν).

2 This SMD interpretation holds for any p̂x, any denoiser class fθ (i.e.,
may be non-JS and/or non-LH), and any θ.

3 SMD arises naturally via non-parametric estimation (i.e., KDE).
Matches construction of learned denoisers liked TNRD and DnCNN.

Related work:
Alain and Bengio6 showed that learned auto-encoders are be explained by
score-matching and not by minimization of an energy function.

6Alain/Bengio’14
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Fast and Convergent RED Algorithms

Fast RED Algorithms

Until now we focused on how to explain the RED method, which solves

0 = ∇ℓ(x̂;y) + λ
(
x̂− f(x̂)

)
.

Now we focus on algorithms that try to solve this equation.

In the RED paper, three algorithms were described:

1 steepest-descent

2 ADMM with I inner iters (to solve argmin
x
{λρred(x) +

β

2
‖x− rt‖

2})

3 a heuristic “fixed-point” method.

We propose a several others. . .
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Fast and Convergent RED Algorithms

Algorithm Comparison: Image Deblurring

New algorithms:

PG: Proximal
gradient with
stepsize L > 0.

DPG: “Dynamic”
proximal gradient,
which schedules Lt.

APG: Accelerated
proximal gradient,
similar to FISTA.7 10 0 10 1 10 2 10 3 10 4

24
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p
s
n
r

ADMM I=1

FP

DPG

APG

PG

iteration

In this experiment, APG is about 3× faster than the Fixed-Point method.

7Beck/Teboulle’09
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Fast and Convergent RED Algorithms

Convergence to a Fixed Point

Theorem

If ℓ(·) is proper, convex, and continuous; f(·) is non-expansive; L > 1; and

RED-PG has at least one fixed point, then RED-PG converges to a fixed

point.

Proof.

Uses α-averaged operators and Mann iteration.
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Fast and Convergent RED Algorithms

Conclusions

RED algorithms seem to work well in practice.

But, in practice, they are not minimizing any cost function.

Practical denoisers f(·) are not LH and JS.

Non-JS f ⇒ that there exists no regularizer ρ s.t. ∇ρ(x) = x− f(x).

The RED methodology can be explained as “score-matching by
denoising”.

We proposed new RED algorithms with i) faster recovery and ii)
guaranteed convergence to a fixed point.

http://arxiv.org/abs/1806.02296
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